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The target of the study is to predict the inhibitory effect of amide derivatives on
xanthine oxidase (XO) by building severalmodels, which are based on the theory of
the quantitative structure–activity relationship (QSAR). The heuristic method (HM)
was used to linearly select descriptors and build a linear model. XGBoost was used
to non-linearly select descriptors, and radial basis kernel function support vector
regression (RBF SVR), polynomial kernel function SVR (poly SVR), linear kernel
function SVR (linear SVR), mix-kernel function SVR (MIX SVR), and random forest
(RF) were adopted to establish non-linear models, in which the MIX-SVR method
gives the best result. The kernel function of MIX SVR has strong abilities of learning
and generalization of established models simultaneously, which is because it is a
combination of the linear kernel function, the radial basis kernel function, and the
polynomial kernel function. In order to test the robustness of the models, leave-
one-out cross validation (LOOCV) was adopted. In a training set, R2 = 0.97 and
RMSE = 0.01; in a test set, R2 = 0.95, RMSE = 0.01, and R2

cv = 0.96. This result is in
line with the experimental expectations, which indicate that the MIX-SVR
modeling approach has good applications in the study of amide derivatives.
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1 Introduction

Hyperuricemia is a chronic metabolic disorder caused by impaired purine metabolism
(Yang et al., 2022; Zeng et al., 2022; Johnson et al., 2023). Excess serum uric acid induces the
formation of monosodium uric acid crystal deposits, which eventually leads to gout. In
addition, hyperuricemia is also associated with many other chronic diseases, such as
cardiovascular diseases, hypertension, and kidney disease (Johnson et al., 2023).

Xanthine oxidase (XO) is a key rate-limiting enzyme in the purine metabolism pathway. It
catalyzes the oxidation of hypoxanthine and xanthine to uric acid with reactive oxidants being
released in the process (Cicero et al., 2021; Yang et al., 2022). Excessive oxidants may lead to an
oxidative stress reaction in the cells, which can lead to cell damage, and excessive oxidants are
involved in many pathological processes, such as diabetes, chronic heart failure, and
atherosclerosis (Jin et al., 2022). Therefore, XO is an important therapeutic target not only
for the treatment of hyperuricemia and gout but also formany diseases related to oxidative stress.

Current therapeutic approaches for gout are mainly based on lowering serum uric acid
levels; these approaches include the inhibition of XO, promotion of uric acid excretion, or
alkalinization of urine (Fathallah-Shaykh and Cramer, 2014; Feng et al., 2022). One effective
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TABLE 1 In vitro XO inhibitory potency of compounds.

Compound R1 group Ar IC50 (μM) -lg (IC50) MIX SVR

1 Propyl 16.17 −1.21 −1.12

2 Propyl 0.13 0.89 0.89

3 Propyl 0.06 0.89 0.89

4 Propyl 6.45 −0.81 −0.81

5 Propyl 0.018 1.74 1.76

6 Propyl 5.12 −0.71 −0.71

7 Propyl 2.05 −0.31 −0.31

8* Propyl 1.06 −0.03 −0.02

9 Propyl 7.36 −0.87 −0.90

10* Propyl 0.80 0.10 0.10

11 Propyl 0.94 0.03 −0.15

12 Benzyl 3.11 −0.49 −0.49

13 Benzyl 0.071 1.15 1.14

14 Benzyl 0.022 1.66 1.54

15 Benzyl 12.10 −1.08 −0.61

(Continued on following page)
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TABLE 1 (Continued) In vitro XO inhibitory potency of compounds.

Compound R1 group Ar IC50 (μM) -lg (IC50) MIX SVR

16* Benzyl 3.33 −0.52 −0.50

17 Benzyl 10.67 −1.03 −0.52

18 Benzyl 24.39 −1.39 −1.39

19 Benzyl 8.85 −0.95 −0.82

20 Cyclopentyl 7.26 −0.86 −0.86

21 Cyclopentyl 0.25 0.60 0.60

22* Cyclopentyl 0.073 1.14 1.03

23 Cyclopentyl 1.58 −0.20 −0.15

24* Cyclopentyl 0.026 1.59 1.46

25 Cyclopentyl 4.08 −0.61 −0.52

26 Cyclopentyl 0.55 0.26 −0.11

27 Cyclopentyl 1.71 −0.23 −0.23

28* Cyclopentyl 1.68 −0.52 −0.50

(Continued on following page)
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TABLE 1 (Continued) In vitro XO inhibitory potency of compounds.

Compound R1 group Ar IC50 (μM) -lg (IC50) MIX SVR

29 Cyclopentyl 0.31 0.51 0.15

30 Cyclopentyl 3.06 −0.49 −0.49

Compound R1 group R2 group R3 group IC50 (μM) -lg (IC50) MIX SVR

31 H H CN 8.59 −0.93 −0.89

32 Ethyl H CN 7.89 −0.90 −0.90

33 Propyl H CN 7.34 −0.88 −0.88

34 Isopropyl H CN 4.43 −0.65 −0.65

35 Allyl H CN 7.65 −0.88 −0.88

36 Prop-2-yn-1-yl H CN 1.18 −0.07 −0.10

37 Benzyl H CN 12.46 −1.10 −0.94

38 Cyclopentyl H CN 0.73 0.14 −0.15

39* H Cl CN 4.30 −0.63 −0.63

40* Propyl Cl CN 16.19 −1.21 −1.18

41 H F CN 6.95 −0.84 −0.63

42* Propyl F CN 12.64 −1.10 −1.09

43 Allyl F CN 21.79 −1.34 −1.33

44 Prop-2-yn-1-yl F CN 5.04 −0.70 −0.54

45 Cyclopentyl F CN 12.64 −1.10 −0.86

Compound R1 group IC50 (μM) -lg (IC50) MIX SVR

46 H 3.52 −0.55 −0.55

47 Methyl 4.49 −0.65 −0.66

48 Ethyl 2.16 −0.33 −0.33

49 Propyl 2.17 −0.34 −0.34

50 Isopropyl 4.25 −0.63 −0.53

51* Allyl 2.04 −0.31 −0.31

(Continued on following page)
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treatment for patients with hyperuricemia is the use of XO inhibitors,
which directly block the oxidation of hypoxanthine and xanthine to
produce uric acid. Several XO inhibitors have been developed, such as
clinically approved allopurinol and febuxostat (Kojima et al., 2016;
Packer, 2020). However, side effects of these drugs have been observed
during clinical applications, so it is important to find new XO
inhibitors.

Amide derivatives are a newly discovered type of XO inhibitors
that have significant research value. Although assessing the
inhibitory effect of XO (IC50) is a time-consuming and labor-
intensive process, models based on the quantitative
structure–activity relationship (QSAR) theory can predict the
biological activity of new compounds precisely and quickly by
constructing the quantitative relationship between chemical
structure and biological activity (Si et al., 2021a; Chen et al.,
2021). By constructing quantitative relationships and machine
learning techniques, researchers can explore large datasets and
accurately and quickly predict the biological activity of new
compounds, which is of great significance for developing new
drugs and saving human and material resources (Chen et al., 2022).

In this study, QSAR models were established by linear and non-
linear methods based on descriptors selected by the heuristic
method (HM) and XGBoost methods. Comparing the
performance of models developed by linear regression, support
vector regression (SVR), and random forest (RF) regression, it
was observed that the model built by mix kernel SVR exhibits
the best predictive ability and robustness.

2 Materials and methods

2.1 Data preparation

The compounds listed in Table 1 were taken from the following
papers: Tu et al., 2021; Zhang et al., 2021; Zhang et al., 2022. All IC50

values were measured in the same experimental environment. The
compounds were randomly divided into training and test sets, which
contain 44 compounds and 10 compounds, respectively.

2.2 Descriptor calculation

The process of descriptor calculation is the basis of
constructing QSAR models. First, the structures of these

compounds were drawn using ChemDraw software. The result
file was then imported into HyperChem and optimized using
MM+ in the molecular mechanics force field. Second, the semi-
empirical method was used to carry out further optimization so
that the compound could have the lowest energy. According to
the principle of minimum potential energy, molecular stability is
enhanced by minimizing the energy state of a system, with lower
energy states resulting in greater stability. After this process, the
corresponding result file was sent to MOPAC software to change
the format. Finally, five classes of descriptors were calculated
using CODESSA software. These classes include topological,
constitutional, geometrical, quantum chemical, and
electrostatic descriptors (Katritzky et al., 2006).

2.3 Linear model by the heuristic method

The heuristic method, an efficient approach for descriptor
selection and linear model construction, has no limitation to the
size of the dataset (He et al., 2014; Si et al., 2021b). Before executing
the model establishment algorithm, descriptors should be pre-
selected under the guidance of the following principles: non-
generic descriptors and descriptors with a constant value should
be removed, and descriptors with a large correlation coefficient
(greater than 0.8) should also be discarded (Si et al., 2021b).

The descriptor selection process by the HM involves calculating
intercorrelations between all descriptors and identifying pairs with
high regression coefficients but low correlation coefficients. Non-
collinear descriptors are added to these pairs to perform higher-
order regression treatments, and the final equation is selected based
on the maximum Fisher criterion and the highest cross-validated
correlation coefficient used in the linear model (Katritzky et al.,
1995).

2.4 Non-linearly selecting descriptors by
XGBoost

In order to improve the performance and robustness of the non-
linear model, a non-linear method is used to select descriptors.
XGBoost can be adopted to perform non-linear dimensionality
reduction, which is mainly based on feature importance evaluation
(Chen et al., 2020). There are two ways to calculate feature importance
in XGBoost: based on the coverage or on the split gain.

TABLE 1 (Continued) In vitro XO inhibitory potency of compounds.

Compound R1 group IC50 (μM) -lg (IC50) MIX SVR

52 Prop-2-yn-1-yl 4.27 −0.63 −0.52

53 Benzyl 1.52 −0.18 −0.19

54 Cyclopentyl 0.62 0.21 0.27

“*”: the compounds of the test set.
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The coverage method determines feature importance by
calculating the sum of the number of times that each feature
occurs in all tree nodes. The higher the coverage is, the more
important the feature is considered to be. This method is useful
when working with datasets that have many features as it provides a
quick way of identifying the most relevant features.

The split gain method determines feature importance by
calculating the information gain of each feature when the
decision tree is split. The higher the split gain, the more
important the feature is considered to be. This method is
especially useful when working with datasets that have complex
relationships between the features as it can capture subtler
interactions than the coverage method.

The split gain method is the default method used by XGBoost
if no extra settings are added because the split gain method is
generally more effective at capturing the underlying relationships
between the features in the dataset. The coverage method
provides a quick and simple way to evaluate feature
importance, but it tends to favor features with a high
cardinality. However, both methods have their own strengths
and weaknesses, and the choice of which method to use will
depend on the specific dataset and the goals of the analysis.

2.5 Non-linear model by the random forest

Random forest is a popular bagging algorithm, which combines
multiple decision trees to make accurate predictions in a regression.
This algorithm creates multiple decision trees by randomly selecting
subsets of features and data samples, and then averaging their
outputs to obtain the final prediction. In this process, as the
depth of the tree increases, the entropy of sample types under
decision tree branches will also increase, which will seriously
affect the efficiency of the decision tree and increase the risk of
overfitting. Therefore, the random forest reduces the overfitting
probability and improves the generalization ability of the model by
pruning and other methods. These methods remove unnecessary
nodes or branches from the decision tree.

Random forest has the advantages of fast training and good
performance in a classification, and it can handle non-linear data
very well. However, compared to other regression methods like SVR,
the performance of random forests may be affected by outliers in the
data, which can result in reduced robustness. Therefore, its
performance somewhat depends on the dataset.

2.6 Non-linear model by SVR

The support vector machine (SVM) (Vapnik, 1995) is a
classification algorithm proposed by Vapnik et al., in 1990. The
SVM uses kernel tricks to map data into higher dimensions and find
optimal hyperplanes, allowing it to handle non-linear problems with
great accuracy. The SVM aims to minimize the difference between
predicted and actual values and, at the same time, maximize the
distance between the hyperplane and sample points. This approach
was later extended to support vector regression for regression
problems, which has demonstrated strong performance.
Generalization performance and robustness of regression models

based on the SVR approach can be enhanced (Tang et al., 2022;
Helmy et al., 2023; Ying et al., 2023).

Because SVR is very sensitive to the scale of the input data,
normalization must be executed before the SVR process to ensure
the accuracy and robustness of the model to be established.

After performing normalization, the next step is to establish
models by SVR. First, the original problem is transformed into a
dyadic problem while satisfying the Karush–Kuhn–Tucker (KTT)
principle, and the Lagrange multiplier method is used on the basis of
the dyadic problem. Ultimately, the problem can be simplified to
solve the following quadratic convex programming problems:

min
1
2
∑
m

i,j�1
y i( )y j( )αiαj <x i( ), x j( ) > −∑

m

i�1
αi, (1)

s.t. αi ≥ 0 ∀i( ),∑
m

i�1
αiy

i( ) � 0. (2)

The initial SVR excelled in solving linear problems rather than
non-linear problems, so the kernel method was then introduced to
solve non-linear problems. It is an easy way that uses the kernel
function to calculate the inner product in Eq. 1 after mapping it to a
higher dimensional space. Common kernel functions include linear
kernel functions, polynomial kernel functions, and radial basis
kernel functions. We replace < x(i), x(j) > by
φ(x(i))Tφ(x(j)) � κ(x(i), x(j)) � κij, where φ is the mapping
function that maps vectors from a low-dimensional to a high-
dimensional space. Then, the problem is expressed as follows:

min
1
2
∑
m

i,j�1
y i( )y j( )αiαjκi,j −∑

m

i�1
αi, (3)

s.t. αi ≥ 0 ∀i( ),∑
m

i�1
αiy

i( ) � 0. (4)

Moreover, a soft-interval SVM was introduced to enhance the
robustness of the SVM, which controls the tolerance of the SVM to
noise by introducing relaxation variables and penalty factors.

2.7 PSO parameter optimization (Eberhart
and Kennedy, 2023)

Since the RF andMIX-SVR algorithm has many parameters that
are not independent, particle swarm optimization (PSO) was used
for parameter optimization in RFs and MIX SVR.

PSO, an optimization algorithm based on population
intelligence, was first proposed by Eberhart and Kennedy in
1995. PSO is a vector-based method, which achieves optimal
search by sharing information among populations, and all
iterations update the position vector and velocity vector,
according to the following two equations:

v � w*v + C1*r1* pbest − x( ) + C2*r2* gbest − x( ), (5)
x � x + v, (6)

where w is the inertia coefficient, pbest is the historical optimal
position of each particle, and gbest is the position of the best
advantage of the whole population.

Based on the traditional PSO algorithm, some improvements
have been made. Because some parameters can only be integer
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values, while some parameters take values in the whole real
number domain, mixed optimization is introduced, which
means that the improved algorithm will automatically match,
whether it is for integer optimization or real number
optimization. The principle of solving the integer search
problem is based on the original real number search problem,
which involves rounding the real number x generated by each
operation to the nearest integer to participate in the next
operation.

In addition, the improvement of PSO also involved the method
of linear decreasing weights, which means the pace is very large at
first but decreases with each epoch. The weight varies according to
Eq. 7, wherewinit is the initial weight,wend is the end weight,NGEN
is the total number of iterations, and gen is the current iteration.
When the inertia weight is large, it has a large exploration space;
however, it is easy to miss the optimal solution. When the inertia
weight is small, it is favorable for seeking local optimization.
Therefore, a large weight is used at the beginning of all iterations
for a wide range of search, and as the number of iterations increases,
the weight decreases linearly, which is more favorable for the local
optimization search.

w � winit − wend( )* NGEN − gen( )/NGEN + wend. (7)

3 Results

3.1 Linear model by the HM

A total of 646 descriptors were calculated according to the
descriptor calculation step described in the descriptor calculation
subsection. The number of descriptors in linear models was
increased from one to seven, and the corresponding R2 and R2

cv

values were recorded. As shown in Figure 1, the R2
cv value stopped

increasing when descriptor numbers reached seven. The seven
selected descriptors and their correlation coefficients are shown
in Table 2 and Table 3, respectively.

Based on the seven descriptors selected by the HM, the linear
model was built and shown in Eq. 8. As shown in Figure 2, the linear
model did not achieve satisfactory results. Moreover, as shown in
Figure 1, the R2 value continues to increase with the increase in the
descriptors’ number, but the R2

cv value reaches 0.6 and stops
increasing, which indicates that the linear model is not robust.

FIGURE 1
Influence of the number of descriptors on R2 and R2

cv .

TABLE 2 Physical–chemical meaning of the chosen descriptors.

Physical–chemical meaning Abbreviation

FPSA-3 Fractional PPSA (PPSA-3/TMSA) (Zefirov’s PC) FFP

Min total interaction for a C–H bond MTI

Min exchange energy for a C–C bond MEE

Relative number of F atoms RNO

HA-dependent HDCA-2/TMSA (Zefirov’s PC) HDH

HACA-1/TMSA (Zefirov’s PC) HTZ

Count of H-acceptor sites (Zefirov’s PC) CHZ

TABLE 3 Correlation matrix of descriptors by the HM.

Descriptor FFP MTI MEE RNO HDH HTZ CHZ

FFP 0.32 0.13 0.09 0.66 0.02 0.54

MTI 0.00 0.04 0.58 0.35 0.04

MEE −0.09 0.12 −0.00 0.02

RNO 0.13 0.17 −0.43

HDH 0.47 0.19

HTZ −0.46

CHZ

FIGURE 2
Plot of the experimental and calculated −lg (IC50) of the HM
model.
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The IC50 value is influenced by various factors; most
biochemistry data may be not linear (Wang et al., 2020), so non-
linear models were attempted.

−lg (IC50) � 325.03*FFP − 3.16*MTI − 4.69*MEE − 46.34*RNO
+3899.61*HDH − 168.41*HTZ − 0.58*CHZ + 57.74. (8)

3.2 Non-linearly selecting descriptors by
XGBoost

Non-linear descriptor selection can better capture complex non-
linear relationships in the data (Yamada et al., 2018). As selecting
descriptors by the HM is a linear method, XGBoost is a non-linear
method by contrast, so it was chosen to select a new group of
descriptors before building a non-linear model.

All calculated descriptors exported from CODESSA were pre-
processed, and non-generic descriptors were removed. As mentioned
previously, XGBoost selects descriptors by calculating the importance
of each descriptor based on the split gain method. Figure 3 shows the
importance of the highest four descriptors. The cumulative
importance of the four descriptors reached 85%, which can already
express the complete characteristics of the dataset. Adding the fifth
descriptor will not significantly increase the expressiveness, but will
increase the risk of overfitting; therefore, the four descriptors shown in
Table 4 were chosen for the sake of balance.

The correlation matrix is shown in Table 5, so as to initially
verify the validity of the selected descriptors. As shown in Table 5,

the correlation coefficient of any two descriptors is less than 0.5,
which means that a non-linear method can be built using these
descriptors.

3.3 Non-linear model by RFs

The RF method is a popular regression method, which performs
well in many research fields (Gao et al., 2022). Four important
parameters should be determined when building models using this
method. Their names and functions are as follows:

(1) Number of trees (NT): Increasing the number can improve the
model performance at the cost of computational complexity.

(2) Maximum depth of the tree (MD): The purpose of this
parameter is to prevent overfitting by controlling the depth
of the tree. Increasing the maximum depth can improve the
model performance at the cost of the risk of overfitting.

(3) Minimum number of samples required to split internal nodes
(MS): The purpose of this parameter is to control the minimum
size of leaf nodes to avoid overfitting. Increasing this parameter
may lead to underfitting.

(4) Minimum number of samples required for leaf nodes (ML): It is
used in the pre-pruning of the decision tree.

The PSO method is adopted to tune the hyperparameters; one
relatively good set of parameters are NT = 522, MD = 13, MS = 7,
andML = 4. The tuning process of the model based on RFs by PSO is

FIGURE 3
Importance of descriptors selected by XGBoost.

TABLE 4 Physical–chemical meaning of the chosen descriptors.

Physical–chemical meaning Number representation

HA-dependent HDCA-2/TMSA (Quantum-Chemical PC) HD

Maximum electronic repulsion for a hydrogen atom ME

HACA-2 (Quantum-Chemical PC) HC

HASA-1 (Quantum-Chemical PC) HS

FIGURE 4
Fitness of each iteration.
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shown in Figure 4. The R2 value of the training and test sets are
0.86 and 0.86, respectively. The RMSE values of the training and test
sets are 0.01 and 0.01, respectively. The R2

cv value of the model by
RFs is 0.66. The result is shown in Figure 5. As mentioned
previously, the PSO algorithm here adopts the idea of decreasing
linear weights and performs hybrid parametric search optimization,
which further improves its parametric searching efficiency.

3.4 Non-linear models by single-kernel SVR

To ensure comparability between models, the same four
descriptors selected by XGBoost were used in the models built by
linear-kernel SVR, polynomial kernel function (poly)-kernel SVR,
and radial basis kernel function (RBF)-kernel SVR. The R2 values of
the test set are 0.03, 0.79, and 0.91, for which the results are shown in
Figure 6, Figure 7, and Figure 8, respectively. LOOCV was used to
evaluate the model, and the R2

cv values of the models built by linear-
kernel SVR, poly-kernel SVR, and RBF-kernel SVR are 0.53, 0.87,
and 0.90, respectively.

As shown in the results, the three models by single-kernel
functions did not perform well, which is related to their

characteristics. So attempts were made to get better models by
combining different kernels. The radial basis kernel function is
strong in fitting, which increases the possibility of overfitting to
some extent. The polynomial kernel function and the linear kernel
function show good generalization performances, which increases
the possibility of underfitting to some extent. MIX SVR is an attempt
at combining the superiority of different kernels in order to build a
model with both strong generalization and fitness abilities.

FIGURE 5
Plot of the experimental and calculated −lg (IC50) of the RF
model.

FIGURE 6
Plot of the experimental and calculated −lg (IC50) of the linear-
SVR model.

FIGURE 7
Plot of the experimental and calculated −lg (IC50) of the poly-SVR
model.

TABLE 5 Correlation matrix of descriptors by XGBoost.

Descriptor HD ME HC HS

HD 0.1 0.32 0.17

ME −0.05 −0.19

HC −0.29

HS
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3.5 Non-linear model by mix-kernel SVR

For SVR, the choice of the kernel function has an obverse impact
on the regression results. Asmentioned previously in the single-kernel
SVR part, the RBF kernel is good at fitting, while the linear and poly
kernel are good at generalization. The kernel function designed in this
paper is a proportional combination of these three kernel functions,
which improves both the generalization performance and robustness

of the model. The mix kernel function is expressed as follows in Eq. 9
(Shawe-Taylor and Cristianini, 2004):

κ � w · κrbf + 1 − w( ) · κpoly + b · κlinear. (9)

After adjusting the parameters using PSO, optimum C = 206.79,
gamma = 50.47, p = 2, w = 0.04, and b = 0.03. The R2 values of the
training and test sets are 0.97 and 0.95, respectively, and the RMSE
of the training set is 0.01, while it is 0.01 for the test set. Furthermore,
the model has a robust cross-validation result of 0.96. By
comparison, the mixed-kernel function performs better than the
single-kernel function in building regression models. The contrast
between the experimental and calculated results is shown in
Figure 9. Inverse normalization is carried out, and the prediction
value is shown in Table 1.

4 Discussion

A visual comparison is shown in Table 6. As shown in the table, the
R2
cv value of the model based on mix-kernel SVR is the highest, which

also illustrates the robustness of the model. Moreover, the result further
shows that the XGBoost descriptor selection method is valid.

The MIX-SVR method can effectively fit the data without
overfitting because it takes advantage of the complementary features
of polynomial and radial basis kernel functions. Overall, the mix-kernel
SVR method is a promising approach for use in various applications
requiring accurate and reliable regression analysis results.

The descriptor-labeled HD is the surface area of the hydrogen
donor divided by the total area of the molecule. It has been
determined to hold the greatest significance among the four
descriptors being evaluated. This suggests that it is likely a
variable that is strongly associated with the dependent variable or
that it possesses a high degree of predictive power. In addition, this
descriptor may also enhance model performance by collaborating
with other descriptors. The second descriptor, ME, has the
maximum electron–electron repulsive force between electron
clouds in a hydrogen atom. The inter-electron repulsion affects
the reaction rate to some extent. HS is the surface area of the
hydrogen-bonded receptors in the molecule. Molecules with more
hydrogen-bonded receptors can form tighter bindings to target
proteins. HC is the surface charge of the hydrogen bonding
donor atom. They are both quantum chemical descriptors, which
can be used to predict their chemical properties.

FIGURE 9
Plot of the experimental and calculated −lg (IC50) of the MIX-SVR
model.

TABLE 6 Comparison of the results between different modeling methods.

Modeling method R2cv Training set Test set

R2 RMSE R2 RMSE

Linear model 0.60 0.69 0.17 0.79 0.14

MIX-SVR model 0.96 0.97 0.01 0.95 0.01

RBF-SVR model 0.90 0.85 0.08 0.91 0.06

Poly-SVR model 0.87 0.61 0.02 0.79 0.01

Linear-SVR model 0.53 0.20 0.04 0.03 0.07

RF model 0.66 0.86 0.01 0.86 0.01

FIGURE 8
Plot of the experimental and calculated −lg (IC50) of the RBF-SVR
model.
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5 Conclusion

The performance and robustness of the models constructed by
mix-kernel SVR have been verified in predicting the IC50 value of the
related derivatives. This suggests that mix-kernel SVR could
potentially serve as a valuable tool in reducing the cost and time
required for amide derivative drug development. Additionally, this
study has identified four key descriptors that appear to affect the
activity of drugs used to treat gout and related diseases. These
descriptors are HA-dependent HDCA-2/TMSA (Quantum-
Chemical PC), the max e–e repulsion for a H atom, HACA-2
(Quantum-Chemical PC), and HASA-1 (Quantum-Chemical PC).
By understanding the roles of these descriptors in the activity of
these types of drugs, researchers may gain insights into the
mechanisms of action and potential avenues for further drug
design and development (Chen and Guestrin, 2023).
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