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Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory
disease. In the pathological process of RA, the alteration of fibroblast-like
synoviocyte (FLS) and its related factors is the main influence in the clinic and
fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype,
leading to synovial hyperplasia, destruction of the cartilage and bone, and a
pro-inflammatory environment in the synovial tissue for perpetuation and
progression. Evidently, it is a highly promising way to target the pathological
function of FLS for new anti-RA drugs. Based on this, we summed up the
pathological mechanism of RA-FLS and reviewed the recent progress of small
molecule drugs, including the synthetic small molecule compounds and natural
products targeting RA-FLS. In the end, there were some views for further action.
Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling
pathway has great potential for research as targets. A small number of synthetic
small molecule compounds have entered the clinic to treat RA and are often used
in combination with other drugs. Meanwhile, most natural products are currently
in the experimental stage, not the clinical trial stage, such as triptolide. There is an
urgent need to unremittingly develop new agents for RA.
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1 Introduction

Rheumatoid arthritis (RA) is a type of autoimmune joint disease. It often occurs in
women and the elderly. RA might affect 0.5%–1% of the global population (Zhang et al.,
2022). Among the multiple factors, genetic and autoimmune along with environmental
factors might be the primary causes. It shows the clinical presentation of joint pain,
thickening of the synovial membrane, pannus formation, and infiltration of various
inflammatory cells in the joint space, leading to the damage of the cartilage as well as
bone tissue, even remarkably joint deformity and dysfunction (Smolen et al., 2018). A lot of
attention is paid to the treatment of RA because it has high morbidity, might lead to
disability, and has poor prognosis (Davis et al., 2012; Almutairi et al., 2021). Currently, non-
steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs
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(DMARDs) (synthetic or biologic agents), and glucocorticoids
(Lampropoulos et al., 2015; Zhang et al., 2022) are popular in the
treatment of RA. With the use of NSAIDs, the risk of cardiovascular
disease might occur as well as gastrointestinal side effects, so a
comprehensive evaluation is needed (O’Shea et al., 2013). DMARDs
such as methotrexate (MTX), while suppressing inflammation and
joint destruction, might cause nausea, anorexia, stomatitis, alopecia,
myelosuppression, and even liver and pulmonary toxicity in severe
cases, which requires careful monitoring. In addition, there are also
problems of high expense and gastrointestinal adverse effects for
DMARDs (Zhang et al., 2019). Biologic disease-modifying anti-
rheumatic drugs (bDMARDs) show therapeutic effects for RA, but
there are some individual differences because of different genetic
backgrounds and environmental stimuli (Lampropoulos et al.,
2015), and they do not cure the disease (Yamada, 2023). There is
an urgent need to continuously develop new anti-RA drugs.

The synovium is considered to be a structure of connective soft-
tissue membrane located in the joint cavity and the fibrocartilage,
around arthrosis to provide nutrition and lubrication (Jay et al.,
2000). The fibroblast-like synoviocytes (FLSs) are highly specialized
mesenchymal cells found in the synovial membrane. In normal
physiological regulation, FLS produces joint lubricants, for example,
hyaluronic acid which nourishes the cartilage surface and shapes the
synovial extracellular matrix (ECM). However, in RA, FLS exhibits a
distinctive aggressive phenotype, with this aggressive behavior
toward the ECM further exacerbating joint damage (Nygaard and
Firestein, 2020). For this reason, one potential strategy for treating
RA is the creation of medicines that target FLS (Bartok and Firestein,
2010). It is important to note that several of their monomers appear
to have a positive impact on preventing arthritic synovial
hyperplasia. They are mainly related to the induction of
apoptosis and the inhibition of FLS proliferation. In this review,
taking the state of FLS as a starting point, we summarize and discuss
the literature on the small molecule drugs of FLS from PubMed,
Embase, and other databases in the recent 3 years until 28 February
2023. Specific keywords used are “RA,” “FLS,” “MAPK,” “NF-κB,”
“JAK/STAT,” “Wnt,” and “signaling pathways.” The small molecule
drugs contain organic compounds with low molecular weights,
typically ≤1000 Da. Also, these include both synthetic
compounds and natural products derived mainly from plants and
animals. Publications with incomplete data or conclusions and those
not directly related to RA and small molecule compounds are
excluded. Here, first, there is an introduction of the pathological
mechanisms of RA-FLS. Second, according to the signaling
pathways controlling the abnormal behavior of FLS, small
molecule drugs of related pathways, especially drugs with high
anti-RA-FLS potential, are analyzed in depth. Finally, we list our
comments, which we hope will provide directions to developing
targeted anti-rheumatic drugs for clinics.

2 FLS involved in the pathogenesis
of RA

In RA, FLS proliferation releases several anti-inflammatory
cytokines and growth factors, among which are tumor necrosis
factor (TNF), interleukin (IL) (such as IL-6, IL-1β, and IL-17),
chemokines, and inflammatory enzymes [such as nitric oxide

synthase (NOS) and cyclooxygenase-2 (COX-2)]. Meanwhile, it
provides the inflammatory microenvironment and potentially
contributes to the initiation of chronic inflammation in the
preliminary stage of RA. In addition, FLS produces large
amounts of receptor activator of NF-κB ligand (RANKL),
vascular endothelial growth factor (VEGF), matrix
metalloproteinases (MMPs), and so on, which causes synovial
hyperplasia and arthritic joint destruction (Wang et al., 2012).
Worse still, the activated FLS migrates to the cartilage and bone.
This migration occurs not only at local sites but also through the
bloodstream into distant areas and joints, destroying the cartilage,
activating osteoclasts, and enhancing joint destruction in RA
(Neumann et al., 2010; Hu et al., 2019). Here, we review the
pathological mechanisms of RA from the three perspectives
shown in Figure 1: synovial hyperplasia, joint damage, and
immune inflammation.

2.1 Synovial hyperplasia

The synovium of RA exhibits endothelial hyperplasia and
transformation into pannus tissue that destroys the articular
cartilage and bone, with occasional lymphatic-like aggregates. A
large number of inflammatory cytokines (IL-1β, TNF-ɑ, etc.)
stimulate FLS to proliferate abnormally and exhibit anti-
apoptosis. The imbalance between FLS anti-apoptotic and pro-
apoptotic factors increases the number of FLS considerably,
which directly leads to synovial hyperplasia. The FLS in the
synovial lining layer is increased from the normal 1–3 to
10–15 cell layers (Neumann et al., 2010). The proliferated FLS
develops into lymphoid-like structures, interacting with immune
cells to form lymphoid organs and releasing pro-inflammatory
factors and inflammatory mediators. Growth factors, such as
platelet-derived growth factor (PDGF), transforming growth
factor-β (TGF-β), and stimulatory cytokines in the synovial
tissue, induce FLS proliferation through the activation of the
signaling pathway. Along with the in situ proliferative capacity of
FLS, the expression of anti-apoptotic molecules is also increased.
The anti-apoptotic molecule FLICE inhibitory protein (FLIP)
suppresses intracellular apoptosis-triggering cystatase-8,
decreasing apoptosis and causing synovial proliferation (Bartok
and Firestein, 2010).

2.2 Joint damage

Cartilage and bone destruction are hallmarks of RA. MMPs
expressed by FLS degrade the chondral matrix, leading to impaired
nutrient supply to the articular cartilage and tissue joint destruction.

2.2.1 Chondral matrix degradation
FLS mediates the overproduction of MMPs that interrupts the

joint tissue, which contains a structure abundant in collagen and
facilitates FLS infestation into the cartilage surface. Mediated by pro-
inflammatory cytokines and toll-like receptors (TLRs), FLS
upregulates the expression of MMPs, which activate osteoclasts
and directly erode the bone, causing cartilage and bone
destruction. Activated osteoclasts can reduce bone mass in the
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periarticular bone early in the lesion, leading to osteoporosis. In
addition, the extra expression of MMPs upregulates the levels of
inflammatory factors and soluble mediators in the synovial tissue.
Also, the factors are bound to receptors of MAPK, JAK/STAT, etc.,
signaling pathways, promoting and maintaining joint inflammation
(Firestein, 2003).

2.2.2 Bone destruction
The migration of FLS is also the process of bone destruction.

Due to the cytokines, FLS can migrate into the cartilage and bone,
thus exacerbating cartilage destruction (Zeng et al., 2017). FLS
produces RANKL in the cartilage or bone. Then, RANKL binds
to the receptor activator of NF-κB (RANK) on osteoclast precursors,
inducing osteoclast differentiation, activation, and production. A
large number of osteoclasts erode the surface of the adjacent
articular cartilage membrane and induce bone destruction. Not
only that, RA-FLS hinders the recovery process of bone erosion
by hindering osteoblast activation through the secretion of dickkopf-
1 (DKK-1). DKK-1 is a crucial regulatory molecule within the Wnt
pathway, acting as an inhibitor of osteoclast function (Miao et al.,
2013). Under specific microenvironmental conditions, macrophages
can also differentiate directly into mature osteoclasts. In addition,
inflammatory macrophages are a consistent source of matrix

metalloproteinases, such as MMP-1, MMP-3, MMP-7, MMP-10,
MMP-12, MMP-14, and MMP-25, which participate in connective
tissue transformation and joint surface erosion observed in RA.

2.3 Immune inflammation

FLS are known to contribute significantly to RA by secreting
inflammatory chemokines that interact with synovial infiltrating
cells. The chemokines secreted by FLS, including, CXC motif
chemokine 8 (CXCL-8), CXCL-10, and CC motif chemokine
ligand 2 (CCL2), can recruit a range of immune cells into the
synovial tissue. Then, the inflammatory mediators, for example, IL,
TNF-α, and TGF-β1, from these immune cells in turn stimulate FLS
activation, resulting in a vicious circle. Macrophages are constantly
affected by inflammatory stimuli and participate in the development
of chronic synovitis, bone erosion, and cartilage erosion.
Macrophages express a lot of molecules on their surface, such as
Fc-gamma receptors (FcγRs), TLR, and the major histocompatibility
complex class II (MHCII), which in turn, regulate their own
activities, activate other cells in the local microenvironment, or
attract immune cells outside the joint. TNF-α, IL-6, IL-1β, IL-23, and
a wide range of CXCL and CCL chemokines promote and maintain

FIGURE 1
Pathological mechanisms of RA with FLS (In RA, the proliferation of FLS resulting from synovial hyperplasia releases various anti-inflammatory
cytokines and growth factors. Meanwhile, the interaction between FLS and immune cells causes a transformation of regular FLS into an aggressive
phenotype, resulting in an abnormal situation of T-cell and B-cell functions related to immune inflammation. Furthermore, FLS secretes pro-
inflammatory cytokines into the joint space and invades the adjacent bone tissue through migration, inducing bone erosion and joint destruction.
Macrophages also differentiate directly into mature osteoclasts).
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inflammation by recruiting and activating polymorphonuclear
leukocytes, T cells, B cells, or monocytes.

2.3.1 FLS and B cells
There is a bidirectional signaling between FLS and B cells. On

one hand, FLS affects the maturation and growth of B cells by
secreting cytokines. The etiology of autoimmune disorders involves
both humoral immunity and B lymphocytes as significant
contributors. The preservation of the B-cell pool and humoral
immunity depend on the B-cell-activating factor of the TNF
family (BAFF, also known as BLYS) and a proliferation-inducing
ligand (APRIL). Taking TLR-3 as an example, TLR-3 triggers not
only B-cell-activating BAFF but also APRIL. Both of them
participate in the stimulation of B cells, thus prolonging B-cell
survival (Bombardieri et al., 2011; Leah, 2011). On the other
hand, B cells in turn induce the FLS inflammatory phenotype. In
the FLS co-culture experiments with age-associated B cells (ABCs),
ABCs induce FLS phenotype excitation through TNF-α inducing the
activation of ERK1/2 and JAK-STAT1 signaling pathways,
consequently promoting the persistence of RA (Qin et al., 2022).

2.3.2 FLS and T cells
T-cell infiltration and excessive proliferation of FLS are

significantly upregulated in RA patients. Both interact during RA
inflammation to perpetuate inflammation. RA-FLS can present
peptides of inflammatory antigens to antigen-specific T cells,
contributing to the auto-reactive immune response in RA (Tran
et al., 2007). Then, FLS expresses adhesion molecules, transmitting
signals to CD4 T cells, such as vascular cell adhesion molecule-1
(VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1).
Finally, these adhesive molecules interact with integrins, for
instance, lymphocyte function-associated antigen 1 (LFA-1),
resulting in CD4 T-cell proliferation and IL-17 secretion and
exacerbation of the inflammatory response (Mori et al., 2017). At
the same time, macrophages express MHCII as antigen-presenting
cells, thereby participating in the activation and recruitment of
pathogenic T cells. So, there is also an interaction between
T cells and FLS (Tran et al., 2008; Tu et al., 2022).

To sum up, FLS can secrete pro-inflammatory cytokines such as
TNF-α, IL-1β, IL-6, and MMP, in the joint space of RA patients and
invade the adjacent bone tissue through migration, inducing bone
erosion and joint destruction. The interaction between FLS and
immune cells causes a transformation of regular FLS into an
aggressive phenotype, resulting in abnormal T- and B-cell
functions. Also, our body gradually loses its normal immune
regulatory and protective ability (Ding et al., 2023). It is evident
that FLS is the central effector cell in the pathogenesis. Given that
there is no effective treatment targeted at FLS, the inhibition FLS-
mediated pro-inflammatory response and subsequent tissue
destruction seems to be a feasible strategy for RA (Nygaard and
Firestein, 2020). In the next part, we summarize the results in the
recent 3 years of small molecule drugs targeted at FLS.

3 Small molecule drugs regulating FLS

In the previous sections, we have clarified that RA-FLS are
activated by multiple cytokines involved in the activation of FLS.

Targeted pathways of FLS might simultaneously block multiple
signaling of cytokine receptors, inhibiting the activation,
proliferation, and invasion of FLS and, thus, significantly
controlling RA synovial inflammation and joint damage
(Mavers et al., 2009; Wendling et al., 2010; Pan et al., 2016).
Despite significant breakthroughs in RA therapy, many people
with RA have persistent disease. The current RA therapy plans
emphasize reducing T-cell and B-cell activity as well as cytokine
signaling (Mahmoud et al., 2022). In RA, targeting signal
transduction pathways is an emerging treatment option.
According to the signaling pathway interacted with FLS, there
are mainly MAPK, NF-κB, JAK/STAT, PI3K/Akt, and Wnt
signaling pathways in Figure 2. So, we present the drugs’
research progress which regulates FLS function on the
signaling pathways, including the small molecule compounds
and natural products. It is aimed to explore promising novel
drug development directions and broaden the path of novel
targeted FLS.

3.1 Small molecule drugs targeting MAPK
regulating FLS

The MAPK signaling pathway is associated with various
kinases, such as P38, c-Jun N-terminal kinase (JNK), and
extracellular regulated protein kinases (ERKs), which are
involved in the proliferation, apoptosis, and migration of FLS,
with the addition of cytokine secretion (Harigai et al., 2004; Tang
et al., 2019). ERK is involved in the secretion of certain cytokines
and cell proliferation and differentiation through the regulation
of B-cell lymphoma 2 (Bcl-2). JNK decreases proteoglycan
synthesis and enhances MMP-13 synthesis, which are
necessary for bone deterioration and joint inflammation.
p38 is associated with the cytokine secretion of MMP.
Through inhibiting p38, MMP reduces cartilage degradation
and inhibits osteoclast formation. Additionally, the MAPK
pathway contributes to the FLS’s increase in TNF-α
expression, amplifying inflammatory signals, inducing FLS
proliferation, aggravating inflammation, and damaging joints
(Zuo et al., 2015; Kadkhoda et al., 2016). An increasing number
of studies have shown that the MAPK pathway is activated in
immune and autoimmune response conditions, regulating the
cell responses of division, differentiation, apoptosis,
inflammation, and stress and also participating in the
activation of FLS (Müller-Ladner et al., 2007; Bustamante
et al., 2017). In addition, MAPK activates downstream
transcription factors that promote synovial cell proliferation
and chondrocyte apoptosis. It also leads to high expression of
multiple MMPs in synovial cells and chondrocytes and
overhydrolysis of the extracellular matrix, resulting in joint
damage. Therefore, MAPK is one of the most studied targets
to inhibit RA-FLS (Wang et al., 2010).

Here, we review the synthetic small molecule compounds
and natural products in the recent 3 years targeted to MAPK for
FLS in Table 1, and the natural products regulating MAPK are
shown in Figure 3. It is important to note that the majority of
drugs affected numerous signaling pathways and multiple
targets. As an MAPK downstream effector, p38 is considered
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a possible target for RA, but only few p38 inhibitors have been
tested in humans. Tacrolimus as a macrolide calcineurin
inhibitor immunosuppressant drug decreased the production
of angiopoietin-1 (Ang1), tyrosine-protein kinase receptor (Tie-
2), and VEGF in human FLS by preventing the activation of the
IL-1β-mediated JNK and p38 MAPK pathways. Sugiura et al.’s
(2020) study was very interesting. They found that glycogen
synthase kinase 3 (GSK-3) inhibitors significantly reduced
synovial fibroblast migration after 72 h and decreased Akt
phosphorylation [Ser (473)] after 48 h in vitro, which might
have therapeutic efficacy targeting the invasion and migration of
synovial fibroblasts. Also, 3′3-diindolylmethane exhibited the
possibility of anti-RA-FLS activitiy in vivo and in vitro (Du et al.,
2019). The small molecule compounds reported in recent years
that could alter FLS in vivo and in vitro were elutriated extirpate,
dasatinib, 4-phenylbutyric acid, and 3-(4-hydroxy-3-methoxy-
phenyl)-1-3-[1]-phenyl-propenone. Unfortunately, these
medications are still in the laboratory stage. Because of their
poor performance, p38 inhibitors have limited efficacy in RA
treatment. Also, blocking p38’s downstream had a compensatory
effect on other kinases, so alternative options for p38 have been
progressively explored (Guma et al., 2012). Regulation of MAPK
kinases upstream of p38, the human mitogen-activated protein
kinase kinase (MKK), such as MKK6 and MKK1, could
selectively block the production of MMPs and pro-

inflammatory cytokines in FLS (Hammaker et al., 2012). In
addition, ubiquitin D might be considered a possible
therapeutic target for RA-FLS (Chen et al., 2023).

In natural products in Table 1 and Figure 3, alkaloids and
flavonoids were more frequently reported and studied for their
effects on the MAPK signaling pathway of FLS. Other categories,
such as iridoids and saponins, were also found to have an impact. It is
well known that flavonoids possess anti-oxidant and anti-
inflammatory properties. Flavonoids can inhibit the inflammatory
response and reduce the symptoms of inflammation while scavenging
free radicals, reducing oxidative stress, and protecting cells from
oxidative damage. Flavonoids usually inhibit FLS proliferation,
migration, and invasion by inhibiting p38 and JNK. To our
surprise, alkaloids also showed up significantly in the treatment of
FLS. Preparations of berberine and paclitaxel were available for
clinical use, but they have no indication for the treatment of RA.

Triptolide and tetrandrine from Tripterygium wilfordiiHook
F. and Stephania tetrandra root, respectively, have anti-
rheumatic effects in the classic sense. Tripterygium glycoside
preparations have been clinically used for the treatment of RA.
As the representative, we concentrate on triptolide, which has
been studied more and has been proven to have multiple
signaling pathways. The treatment with triptolide decreased
the expression of phosphorylated JNK that TNF-α-produced,
but it had no effect on the expression of phosphorylated p38 or

FIGURE 2
Signaling pathway regulating FLS (In RA, targeting signal transduction pathways is an emerging treatment option. The small molecule compounds
and natural products interact with FLS in the different signaling pathways. There are mainly MAPK, NF-κB, JAK/STAT, PI3K/Akt, and Wnt signaling
pathways. It is important to note that the majority of drugs affected numerous signaling pathways and multiple targets).
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TABLE 1 Small molecule drugs targeting MAPK regulating FLS.

Name Source Targets/
signaling
pathways

Estimate References

The synthetic small molecule compounds

GSK-3 inhibitors (6-
bromoindirubin-3′-oxime and
thiadiazolidinone-8)

Serine/threonine protein kinase JNK, p38, NF-κB Experimental: NF-κB ↓ Kwon et al. (2014); Sugiura et al.
(2020)

The phosphorylated JNK, c-Jun,
ATF-2, p38 ↓

IL-6 ↓

IL-10 ↑

Tacrolimus Macrolide antibiotics from
Streptomyces

JNK, p38 Clinical: showed higher retention
rates combined with bDMARDs

Choe et al. (2012); Kaneko et al.
(2021); Terabe et al. (2023)

Adverse events stable in long-term
observation

Effective with acceptable safety

Experimental: the expressions of
Ang-1, Tie-2, VEGF ↓

3′3-Diindolylmethane Themain product of indole-3-carbinol
oligomerization catalyzed by acid

p38, JNK, Akt,
mTOR

Experimental: proliferation,
migration, and invasion of RA-FLS
in vitro ↓

Du et al. (2019)

MMP-2, MMP-3, MMP-8, and
MMP-9 ↓ p-p38, JNK ↓

Akt, mTOR ↓

Pro-inflammatory cytokines and
arthritis severity in mice ↓

Telotristat etiprate A tryptophan hydroxylase inhibitor MAPK Experimental: migration and
invasion of RA-FLS in vitro ↓

Zhang et al. (2023)

Targeting LGALS3

Dasatinib A Src kinase inhibitor MAPK, STATs Experimental: Src, Fyn, MAPK,
STATs ↓

Yalcin Kehribar et al. (2021); Min
et al. (2023)

MMP-1, MMP-3, MMP-13 in FLS ↓

4-Phenylbutyric acid An HDAC inhibitor MAPK, NF-κB Experimental: p-MAPK, p-NF-κB ↓ Choi et al. (2021)

MMP-1, MMP-3, COX-2 ↓

Endoplasmic reticulum stress ↓

3-(4-Hydroxy-3-methoxy-
phenyl)-1-3-[1]-phenyl-
propenone

A benzylideneacetophenone derivative MAPK Experimental: IL-8, IL-6, PGE (2) ↓ Sur et al. (2020)

Reducing the inflammation in the
knee joints in C/K-arthritic rats

The natural products

Fangchinoline A bisbenzylisoquinoline alkaloid from
Stephania tetrandra

MAPK, NF-κB Experimental: inflammatory
cytokine secretion and ROS in
human FLS ↓

Villa et al. (2020)

Phosphorylation of the MAPK and
NF-κB pathway in human FLS ↓

Berberine An alkaloid from Coptis chinensis PI3K/Akt, Wnt,
RAS/MAPK/FOXO/
HIF-1

Clinical: no indication for treatment
of RA

Wang et al. (2019); Shen et al.
(2020); Sujitha et al. (2020); Li
et al. (2023); Li et al. (2023)

Experimental: LRP5 protein ↓

β-Catenin transcription ↓ p38/
ERK ↓

Proliferation and adhesion of FLS ↓

MMP-1, MMP-3, RANKL, TNF-α ↓

(Continued on following page)
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TABLE 1 (Continued) Small molecule drugs targeting MAPK regulating FLS.

Name Source Targets/
signaling
pathways

Estimate References

Paclitaxel An alkaloid from Taxus chinensis MAPK, Akt/mTOR Clinical: no indication for treatment
of RA

Chen et al. (2021)

Experimental: FLS migration dose
dependently ↓

IL-6, IL-8, RANKL ↓

MMP-8, MMP-9 gene transcription
↓ p-ERK1/2 ↓

p-JNK ↓

Akt, p70S6K, 4EBP1, HIF-1α ↓

Peimine A steroidal alkaloid from Fritillaria ERK, JNK, p38 Experimental: TNF-α induced
destructive behaviors in MAPK
for FLS↓

Zhou et al. (2022)

RANKL-induced osteoclast
formation ↓

Bone-resorption function ↓

Tetrandrine An alkaloid from Stephania tetrandra
root

NF-κB, Ca2 (+),
PI3K/Akt, MAPK

Experimental: Rac1, Cdc42, RhoA ↓ Lv et al. (2015); Zhong et al.
(2019)

MMP-2/9, F-actin, FAK↓

RANKL-induced
osteoclastogenesis ↓

Dehydroevodiamine A quinazoline alkaloid from Evodiae
Fructus

MAPK Experimental: pro-inflammatory
factors in AIA rats ↓

Dai et al. (2022)

MMP-1, MMP-3 ↓ p-p38, p-JNK,
and p-ERK ↓

Tomatidine A steroidal alkaloid from the
Solanaceae family

MAPK, NF-κB Experimental: proliferation and
migration of FLS ↓

Yu et al. (2021)

Synovial inflammation and joint
destruction in CIA rats ↑

IL-1β, IL-6, TNF-α ↓

MMP-9, RANKL ↓

Benzoylaconitine An alkaloid from Aconitum MAPK, Akt, NF-κB Experimental: IL-6, IL-8 ↓ Yu et al. (2020)

MAPK, p-Akt ↓

Degradation of IκB α↓ p-p65 and
nuclear transposition ↓

Kaempferol A flavonoid from Kaempferol
galanga L.

ERK-1/2, p38, JNK,
NF-κB

Experimental: MAPK activation ↓,
instead of altering TNF-α receptor
activation

Yoon et al. (2013); Pan et al.
(2018)

Phosphorylation of ERK-1/2, p38,
JNK ↓

NF-κB ↓

Orientin A flavonoid from P. orientale p38, ERK Experimental: viability, migration as
well as invasion of FLS ↓

Ji and Xu (2022)

TNFα-induced inflammatory
makers ↓

(Continued on following page)
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TABLE 1 (Continued) Small molecule drugs targeting MAPK regulating FLS.

Name Source Targets/
signaling
pathways

Estimate References

Apigenin-4′-O-alpha-L-
rhamnoside

A flavonoid from apigenin derivative MAPK Experimental: migration of FLS ↓ Cao et al. (2022)

MMP-1, MMP3, RANKL, TNF-α ↓

MAPK1, HRAS, ATF-2, p38, JNK ↓

Naringin A flavonoid from citrus fruits PI3K/Akt, ERK Experimental: inflammation,
MMPs ↓

Aihaiti et al. (2021)

Apoptosis of FLS↑ the activation of
caspase-3 ↑

Bax/Bcl-2 ↑ p- Akt, p-ERK ↓

Liquiritin A flavonoid from the roots of
Glycyrrhiza uralensis

JNK, P38 Experimental: FLS proliferation ↓ Zhai et al. (2019)

DNA fragmentation in the nucleus ↑

Altering the potential of the
mitochondrial membrane

Bcl-2/Bax ratio ↓

VEGF ↓ p-JNK, p-p38 ↓

Neohesperidin A flavanone glycoside from citrus
fruits

MAPK Experimental: IL-1β, IL-6, IL-8,
TNF-α, MMP-3, MMP-9 and
MMP-13 in FLSs ↓

Wang et al. (2021)

MAPK ↓

ROS induced by TNF-α↓

Ononin An isoflavone glycoside from the fruit
of Cnidium monnieri (L.) cusson

NF-κB, MAPK Experimental: TNF-αmediated cells
viability of FLS and MH7A ↓

Meng et al. (2021)

Cell apoptosis↑

IL-1β, IL-6 ↓

Cyanidin An anthocyanidin from grapes,
bilberry, blackberry, etc.

p38, STAT-3 Experimental: IL-17A induced the
migration of monocytes from AA
rats ↓

Samarpita and Rasool (2021);
Samarpita et al. (2020)

HSP27, CCR7, CXCR4 ↓

RANKL ↓

OPG ↑ p38 MAPK ↓

Cyanidin-3-glucoside An anthocyanin from berries p38, ERK and JNK,
NF-κB

Experimental: TNF-α, IL-1β, IL-6 ↓
p65 ↓

Sun and Li (2018)

Phosphorylation of IκBα, p38, ERK,
JNK ↓

Paris saponin VII Chonglou A steroidal saponin from Trillium
tschonoskii Maxim.

JNK, p38 Experimental: FLS invasion via
managing the mitochondrial
apoptosis, MAPK pathway

Meng et al. (2021)

Improving histopathological
changes

TNF-α, IL-1β, IL-6 ↓

Modulating the expressions of
apoptosis proteins in AIA rats

(Continued on following page)
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TABLE 1 (Continued) Small molecule drugs targeting MAPK regulating FLS.

Name Source Targets/
signaling
pathways

Estimate References

Gintonin A ginseng-derived exogenous ligand of
lysophosphatidic acid

MAPK, NF-κB Experimental: iNOS, IL-6, TNF-α,
COX-2↓

Kim et al. (2021); Kim et al.
(2021)

NF-κB/p65 into the nucleus ↓

Triptolide An epoxide diterpene lactone from
Tripterygium wilfordii Hook F.

JNK, MAPK8,
PI3K/Akt

Experimental: p-JNK ↓ Yang et al. (2016); Xie et al.
(2019); Song et al. (2020)

The polymerization of F-actin ↓

The activation of MMP-9 ↓

Activating autophagy

Geniposide An iridoid glycoside from Gardenia
jasminoides Ellis fruit

JNK, ERK1/2 and
p38; PI3K; Akt

Experimental: proliferation of FLS ↓ Li et al. (2018); Bu et al. (2022)

IFN-γ, IL-17 ↓

IL-4, TGFβ1↑ p-JNK, p-ERK1/2,
p-p38 ↓

p-PI3K, p-Akt ↑

Gentiopicroside A secoiridoid glycoside from Gentiana
macrophylla Pall.

CD147, p38, NF-κB Experimental: proliferation of FLS ↓ Jia et al. (2022)

MMP secretion↓

Regulating the CD147/p38/NF-κB
pathway, p38, IkκB α, and p65 ↓

18β-Glycyrrhetinic acid A triterpene glycoside from
Glycyrrhiza

MAPK, NF-κB Experimental: IL-1β, IL-6, COX-2 in
MH7A ↓

Feng et al. (2021)

Cell viability

Cell apoptosis and G1 phase cell
cycle arrest in vitro ↑

FOXO3 ↑

Liver damage caused by collagen or
MTX in vivo↓

Inflammation and proliferation in
FLS ↓

Pristimerin A triterpenoid from Celastraceae and
Hippocrateaceae families

MAPK/Erk1/2,
PI3K/Akt

Experimental: viability and
migration of FLS ↓

Lv et al. (2022)

TNF-α, NO, p-Akt, p-ERK ↓

Echinocystic acid A pentacyclic triterpene from Gleditsia
sinensis

MAPK, NF-κB Experimental: arthritis symptoms in
SKG mice ↓

Cheng et al. (2022)

TNF-α, IL -6, IL-1β ↓

P-STAT3 ↓

MAPK, NF-κB

Osthole A coumarin from Cnidium monnieri
and Angelica pubescens

NF-κB, MAPK Experimental: IL-1β, TNF-α, IL-6 ↓ Xu et al. (2018); Lin et al. (2023)

Proliferation and migration ↓

TGM2/Myc/WTAP-positive
feedback circuit ↓

Imperatorin A coumarin from Umbelliferae p38, ERK NF-κB Experimental: proliferation and
migration of FLS ↓

Lin et al. (2022)

TNF-α, IL-6, and IL-8 ↓ p38, ERK ↓

p-IκBα ↓

(Continued on following page)
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ERK (Yang et al., 2016) and reduced FLS migration and invasion
by targeting the JNK/MAPK signaling pathway (Tang et al.,
2020). Triptolide dramatically increased the p-Akt/Akt ratio,
and inhibiting the PI3K/Akt signaling pathway in MH7A cells
caused autophagy to be triggered, indicating that triptolide
repressed autophagy via activating p-Akt/Akt (Xie et al.,
2019). Other natural products, such as Paris saponin VII/
Chonglou, geniposide, and gentiopicroside, shown in Table 1,
also have the potential to regulate FLS against RA. However, it is
currently in the experimental stage.

3.2 Small molecule drugs targeting NF-κB
regulating FLS

As a major signaling transcription factor, NF-κB contributes to
synovial inflammation, proliferation, and decay in bones in RA and
regulates inflammatory gene expression and cell proliferation. Both
innate and adaptive immune cells include NF-B, which is a key
mediator of the stimulation of pro-inflammatory genes (Liu et al.,
2017). In a normal situation, NF-κB is bound to its repressor protein
IκB and not activated. The nuclear-localization sequence (NLS) that

FIGURE 3
Natural products targeting MAPK regulating FLS.

TABLE 1 (Continued) Small molecule drugs targeting MAPK regulating FLS.

Name Source Targets/
signaling
pathways

Estimate References

Tanshinone IIA A diterpene quinone from Salvia
miltiorrhiza Bunge

MAPK, Akt/mTOR,
HIF-1, and NF-κB

Experimental: FLS proliferation,
migration, infiltration time, and
dose dependently ↓

Du et al. (2020)

MMPs, pro-inflammatory factors ↓

Piceatannol A derivative of resveratrol MAPK, NF-κB Experimental: Bax, cleaved caspase-
3 ↑

Gao et al. (2022)

PGE2, IL-6, IL-1β↓

COX-2 ↓

MMP-3, MMP-13 ↓

MAPK, NF-κB ↓

↓: suppress, downregulate, inhibit, block, prevent, reduce, decrease; ↑: promote, upregulate, active, increase. mTOR, mammalian target of rapamycin; NFATc1, c-Fos and nuclear factor of

activated T cells c1; ATF2, activating transcription factor-2; PGE2, prostaglandin E2; ROS, reactive oxygen species; HIF1, hypoxia-inducible factor 1; CIA, collagen-induced arthritis; IκB,
inhibitor of κB; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X; AA, adjuvant-induced arthritic; OPG, osteoprotegerin; MEKK, mitogen-activated protein kinase kinase; IKK, IκB kinase;

TGM2, transglutaminase 2.
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TABLE 2 Small molecule drugs targeting NF-κB regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

The synthetic small molecule compounds

TAK-242 A TLR 4 antagonist TLR4, TLR3; NF-κB Experimental: TLR4, TLR3 ↓ Samarpita et al. (2020)

The migration of NF-κB to the nucleus

IL-8, IL-1, MMP-7 ↓

CKD-506 A HDAC inhibitor NF-κB Experimental: MMP-1, MMP-3, IL-6,
IL-8 ↓

Park et al. (2020)

The proliferation of Teff ↓

Exerting a synergistic effect with MTX

Oxymatrine hydrazone Synthesized from oxidized bitter
ginseng

MEK/1/2, NF-κB Experimental: IL-1β, IL-6, IL-8 ↓ Zhang et al. (2021)

MMP-1, MMP-13 ↓

MEK/1/2 and p65 phosphorylation ↓

Paeoniflorin-6′-O-benzene
sulfonate (CP-25)

A paeoniflorin derivative NF-κB, PI3K, GRK2 Experimental: the protein membrane
expression and combination↓

Wang et al. (2020); Wang et al.
(2023)

Edaravone Synthetic: 3-methyl-1-phenyl-2-
pyrazolin-5-one

NF-κB, MAPK Clinical: no indication for the
treatment of RA

Zhang et al. (2020); Liu et al.
(2023)

Experimental: altering the antioxidant
factors, inflammatory mediators, and
pro-inflammatory cytokines [NF-κB,
COX-2, and PGE (2)]

The level of cytokines and OPN,
RANKL, and macrophage M-CSF ↓

Roflumilast An inhibitor of phosphodiesterase-4 NF-κB Clinical: no indication for the
treatment of RA

Zhong et al. (2021)

Experimental: ROS and MDA in
MH7A cells ↓

IL-6, IL-8, TNF-α↓

CCL5, CXCL9, CXCL10 ↓

MMP-1, MMP-13 ↓

Sorafenib A kinase inhibitor NF-κB, c-Jun Clinical: no indication for treatment
of RA

Wang et al. (2020)

Experimental: apoptosis in AA FLSs ↓

Fas, caspase-3, Mcl-1 ↑

NF-κB, C-Jun ↓

Dexmedetomidine A specific and selective alpha-2
adrenoceptor agonist

NF-κB Clinical: no indication for treatment
of RA

Ji et al. (2020)

Experimental: IL-1β, IL-6, IL-17A,
TNF-α, and P-P65↓

NLRC5 ↓

Alogliptin An important selective dipeptidyl
peptidase-4 inhibitor

NF-κB Clinical: no indication for the
treatment of RA

Guo et al. (2020)

Experimental: MMP-3, MMP-13, IL-6,
IL-8, and TNF-α p- Jun, p-IκBβ,
nuclear translocation of NF-κB p65 ↓

(Continued on following page)
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TABLE 2 (Continued) Small molecule drugs targeting NF-κB regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

The natural products

Diosmetin A flavonoid from Rutaceae NF-κB Experimental: proliferation of MH7A
cells ↓

Chen et al. (2020)

IL-1β, IL-6, IL-8, MMP-1 ↓

and NF-κB pathways activation ↓

Mangiferin A flavonoid of the bisphenirone
family from mango leaves

ERK2, p38, NF-κB Experimental: MAPKs (ERK2 and
p38), NF-κB ↓

Luczkiewicz et al. (2014); Wang
et al. (2021)

Icariin A flavonoid glycoside from
Epimedii Herba

NF-κB Experimental: TRIB1 ↑ by promoting
Nrf2 expression regulating the TRIB1/
TLR2/NF-κB pathway

Wu et al. (2022)

Isoginkgetin A biflavonoid from the leaves of the
Ginkgo biloba tree

IκBβ, p65 Experimental: IL-1β, IL-6, IL-8 ↓ Shao et al. (2022)

Migration and invasion of FLS↓
p-IκBα, p-p65, MMP9↓

Tectoridin An isoflavone from dry rhizome of
iris

TLR4/NLRP3/NF-κB
MAPK

Experimental: proliferation of FLS ↓ Huang et al. (2022); Niu et al.
(2022)

Cleaved caspase-3, Bax ↑

Bcl-2 ↓

Pro-inflammatory cytokines ↓

TLR4/NLRP3/NF-κB ↓

ERK, JNK, p38 ↓

Celastrol A quinone-methylated triterpenoid
from Tripterygium wilfordii

NF-κB, Notch1, ERK,
PI3K/Akt/mTOR

Experimental: NF-lB pathway ↓ Gan et al. (2015); Yu et al. (2015);
Doss et al. (2016); Fang et al.
(2017); An et al. (2020); Yang
et al. (2022)

NLRP3 inflammasome activation↓

ROS ↓

Changing some chemokine genes
expression (CCL2, CXCL10, CXCL12,
CCR2 and CXCR4)

SYK-MEK-ERK-NF-κB signaling
cascade↓

Autophagy ↑

PI3K/Akt/mTOR↓

Aucubin A monoterpenoid from asterids NF-κB Experimental: inflammatory factors ↓ Zhang et al. (2022)

Bone metabolism factors ↓ p-Iκκ α/β,
p-IκBα, p-p65 ↓

Heilaohuacid G A triterpenoid from Kadsura
coccinea/heilaohu

NF-κB Experimental: apoptosis and
inflammatory reactions of FLS↓

Yang et al. (2021); Yang et al.
(2022)

Sinomenine An alkaloid from Sinomenium
acutum

NF-κB Experimental: adenosine receptor ↑ Zhou et al. (2017); Yi et al. (2021);
Chen et al. (2011); Li et al. (2013);
Zhou et al. (2015); Yao et al.
(2017)

NF-κB activation via α7nAChR↓

Selective mPGES-1 expression ↓

TLR4/MyD88/NF-κB signaling
cascade↓

(Continued on following page)
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TABLE 2 (Continued) Small molecule drugs targeting NF-κB regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

Magnoflorine An alkaloid from Clematis
manshurica Rupr.

PI3K/Akt/NF-κB,
Keap1-Nrf2/HO-1

Experimental: proliferation, migration,
invasion, and reactive oxygen species
levels of MH7A cells ↓

Shen et al. (2022)

Bax ↑

Bcl-2↓ iNOS, COX-2, IL-6, IL-8,
MMPs ↓

PI3K/Akt/NF-κB ↓

Keap1-Nrf2/HO-1 ↑

Curcumin A polyphenol from turmeric,
curcuma longa

NF-κB, AP-1, and p38 Experimental: function of pro-
inflammatory mediators↓

Buhrmann et al. (2010); Shang
et al. (2016); Mohammadian
Haftcheshmeh et al. (2021); Xu
et al. (2022)Osteoclastogenic potential

ERK1/2, p38, JNK ↓

RANK, c-Fos, NFATc1 levels↓

Punicalagin A polyphenol from pomegranate
juice

NF-κB Experimental: IL-1beta, IL-6, IL-8 and
IL-17A ↓

Huang et al. (2021)

MMP-1 and MMP-13 ↓

Proliferation and migration of RA
FLSs ↓ phosphorylation of IKK and
IkBα ↓

Corilagin A tannic acid from Geranium
wilfordii Maxim.

NF-κB p65, ERK, p38,
JNK, IκBα

Experimental: Bcl-2, IL-6, IL-8, MMP-
1, MMP-2, MMP-3, MMP-9, COX-2,
iNOS ↓

Shen et al. (2022)

Bax ↑

P-p65/p65, P-IκBα/IκBα, P-ERK/ERK,
P-JNK/JNK, and P-p38/p38 ↓

NF-κB p65 nuclear translocation ↓

Proliferation, migration, and invasion
of FLS ↓

Eugenol A phenylpropanoid from a variety
of aromatic herbal plants such as
clove and tulsi

NF-κB Experimental: proliferation, migration,
invasion, angiogenesis, and
inflammatory response of FLS ↓

Wang et al. (2022)

NF-κB, COX-2 ↓

Resveratrol A phenol from grape SIRT1, NF-κB Experimental: SIRT1 and downstream
paths ↑

Wang et al. (2020); Sheng et al.
(2022)

The striking interplay between the
SIRT1 and NF-κB

Plumbagin A naphthoquinone from Plumbago
zeylanica L.

p65 Experimental: viability of human FLS Shu et al. (2022)

Inflammatory cytokines, MMPs ↓

IκB, NF-κB, p65 into the nucleus↓

Emodin An anthraquinone from rhubarb,
buckthorn, etc.

MAPK, NF-κB Experimental: proliferation of the
MH7A cell ↓

Cao et al. (2022)

MAPK, PTGS2 ↓

CASP3↑

Aucubin An iridoid glycoside from
Eucommia ulmoides Oliv.

NF-κB Experimental: migration and invasion
of human FLS ↓

Zhang et al. (2022)

NF-κB -p65 activity of MC3T3-E1 cells
↓ p-Iκκα β, p-Iκβ, and p-p65 proteins ↓

(Continued on following page)
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belongs to NF-κB is covered by the IκB unable to undergo nuclear
translocation. However, in RA due to the activators (TNF-α, IL-
17, etc.), IκB is phosphorylated, ubiquitinated by IκB kinase, and
eventually degraded by the enzyme, releasing NF-κB. Following
that, NF-κB p65 enters the nucleus and combines with target
genes (Aupperle et al., 1999). The production of inflammatory
mediators such as TNF-α, COX-2, and IL-1β increases as a result
of this nuclear translocation in the synovium. Those activated
sustaining states lead to massive abnormal activation of FLS
(Saravanan et al., 2014). NF-κB p65 regulates apoptosis and
inhibits protein expression, which has an antagonistic effect
on apoptosis in FLS (Kadkhoda et al., 2016), leading to
synovial hyperplasia and aggravating joint destruction (Yin
et al., 2015). In addition, p38 mediates IκB phosphorylation,
which is involved in regulating NF-κB activation (Carter et al.,
1999; Kaminska, 2005).

The small molecule drugs and natural products targeted at NF-
κB in recent 3 years are summarized in Table 2, and the classification
of the natural products is in Figure 3. There have been many studies
on small molecule compounds that modulate FLS in the NF-κB

signaling pathway, such as TAK-242 (Samarpita et al., 2020), CKD-
506 (Park et al., 2020), and synthetic derivatives from natural
products that also showed the activity of inhibiting proliferation.
For example, oxymatrine hydrazone synthesized from oxidized
bitter ginseng induced apoptosis and prevented TNF-α-mediated
enhanced viability of RA-FLS (Zhang et al., 2021). Paeoniflorin-6′-
O-benzene sulfonate (CP-25), a paeoniflorin derivative, had the
ability to decrease membrane expression and the combination of
these proteins (Wang et al., 2020; Wang et al., 2023). Edaravone,
roflumilast, sorafenib, dexmedetomidine, and alogliptin have been
used clinically, without the indication for the treatment of RA. The
existing experiments showed that they have the anti-proliferation
ability of FLS and were worthy of inclusion in the secondary
development of drugs. In the natural products in Figure 4,
flavonoids still predominated, such as diosmetin, icariin,
isoginkgetin, and tectoridin. In a similar situation with the
MAPK inhibitions for RA-FLS, these natural products were in
the experimental stage. In addition, some inhibitors modulated
both NF-κB and MAPK pathways to regulate FLS activity, such
as tectoridin and corilagin.

FIGURE 4
Natural products targeting NF-κB regulating FLS.

TABLE 2 (Continued) Small molecule drugs targeting NF-κB regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

Cantleyoside An iridoid glycoside from
Pterocephalus hookeri (C. B. Clarke)
Hoeck

AMPK/Sirt 1/NF-κB Experimental: proliferation of human
FLS ↓

Bai et al. (2022)

NO, TNF-α, IL-1β/6, MCP-1 and
MMP-1/3/9 ↓

OCR, ECAR and real-time ATP
generation rate p-NF-κB and
translocation ↓

↓: suppress, downregulate, inhibit, block, prevent, reduce, decrease; ↑: promote, upregulate, active, increase. HDAC, histone deacetylase; PGE (2), prostaglandin E (2); GRK2, G protein-coupled

receptor kinase 2; M-CSF, macrophage colony stimulating factor; MDA, malondialdehyde; TRIB1, Tribbles pseudokinase 1; NFATc1, nuclear factor of activated T cells; NLRP3, NOD-like

receptor protein 3; HO-1, heme oxygenase; SIRT1, silent information regulator 1; MCP-1, monocyte chemotactic protein-1; OPN, osteopontin; ATP, adenosine triphosphate; α7nAChR,
α7 nicotinic acetylcholine receptor; mPGES-1, microsomal prostaglandin E synthase 1; AP-1, activated protein-1.
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TABLE 3 Small molecule drugs targeting JAK/STAT regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

The synthetic small molecule compounds

Peficitinib A JAK inhibitor JAK1, JAK2, JAK3, and Tyk2;
STAT3

Clinical: phase II and III clinical trials
and extension studies completed

Emori et al. (2020); Gutierrez-Urena
et al. (2020); Kitanaga et al. (2020)

Showed efficacy, safety, and tolerability
in monotherapy or csDMARDs

Experimental: STAT3 phosphorylation
by diversified cytokine concentration-
dependently ↓

Growth factor-A, MMPs, IL-6,
TNFSF11 ↓

Filgotinib A selective JAK1 inhibitor JAK1 Clinical: under clinical trial pending
approval for use in RA

Shimizu et al. (2023); Westhovens
(2023)

Dose-related effect was not observed for
safety excepting for herpes zoster and the
increases of lipids and creatine
phosphokinase

Takinib A selective TAK1 inhibitor TAK1, TAK3, JNK, NF-κB Clinical: JAK-STAT pathways in RA
patients ↓

Palmroth et al. (2021); Panipinto
et al. (2021); Mardani et al. (2023)

One case of liver failure

Experimental: p-TAK1, no effect for the
TAK1 downstream factors ↑

Baricitinib A JAK 1 and 2 inhibitor STAT1, JAK Clinical: monocyte frequency and
p-STAT1 in circulating monocytes
served as potential early response
markers to baricitinib treatment

Tucci et al. (2022); Weston et al.
(2022); Taylor et al. (2023)

Low-risk-related AESI

Low incidence with the dermatologic
indications

Experimental: OSM-induced JAK
signaling ↓

IL-6, MCP-1, IP-10 expression in the
following stages ↓

Upadacitinib A selective JAK 1 inhibitor JAK 1 Clinical: combination with MTX Panchal et al. (2023); Taldaev et al.
(2021)

Maximum adverse events were reported
at 12 mg twice daily

Tofacitinib A JAK/STAT inhibitor STAT6/miR-425-5p/IGF1 Clinical: treatment of RA Di Benedetto et al. (2021); Palmroth
et al. (2021); Panipinto et al. (2021);
Liu et al. (2022); Vomero et al.
(2022); Ruscitti et al. (2022)

Beneficial for RA patients who don’t
respond to TNF-inhibitors or
methotrexate

Modulate autophagy of FLS

Experimental: pro-inflammatory
cytokines ↓ collagen I and α-SMA of RA-
FLS ↓

Momelotinib A competitive JAK1/JAK2 inhibitor IL-6/JAK1/STAT3 Clinical: no indication for treatment
of RA.

Srivastava et al. (2022)

Experimental: proliferative, migratory
of FLS↓

PRMT, survivin, HIF-1α ↓

JAK1 and STAT3 by IL-6/sIL-6R
activation↓

SOCS3 ↑

(Continued on following page)
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3.3 Small molecule drugs targeting JAK/
STAT regulating FLS

JAK/STAT signaling has been instrumental in regulating immune
and inflammatory responses. The JAK/STAT pathway can be
segmented into three components: receptor-associated tyrosine
kinase, JAK tyrosine kinase, and STAT transcription factor. The
JAK kinase activates JAK upon receptor binding, leading to JAK-
mediated phosphorylation of STAT. Among the STAT family,
STAT1 and STAT3 serve as the primary activators (Kim et al.,
2011). The expression and activity of STAT1 are elevated in the
initial synovial tissue of RA, while STAT3 facilitates the survival of
synovial fibroblasts. Elevated STAT3 expression contributes to the
inhibition of programmed cell death-induced anti-apoptotic molecule
expression, blocks apoptosis in RA-FLS, and promotes RA synovial
thickening (Yang et al., 2017). The JAK/STAT pathway is also
involved in regulating the response of RA-FLS to pro-
inflammatory cytokines and plays an essential role in the pro-
inflammatory response and invasive behavior of FLS (Diller et al.,
2019).

Inhibitors of JAKs could block the activation of STATs in RA-
LS in the synthesis of various drugs and in the study of natural
products. We included the synthetic small molecule compounds
and natural products in the last 3 years in Table 3. Tofacitinib is a
Food and Drug Administration (FDA)- and European Medicines
Agency (EMA)-approved JAK inhibitor that effectively treats RA
(Vomero et al., 2022). The synthetic small molecule compounds of
peficitinib, fingolitinib, takinib, tolvamycin, baricitinib, and
abatinib all demonstrated monotherapy effectiveness in clinical
trials in RA. The synthetic JAK inhibitors appeared to be an
important treatment choice for difficult-to-treat RA patients
and researchers (Kubo et al., 2023). Momelotinib had no
indication for the treatment of RA in the clinic, but could
inhibit the proliferation and migration of FLS (Srivastava et al.,
2022). On the contrary, there are few research reports on the
natural products in the JAK/STAT signal pathway.

3.4 Small molecule drugs targeting PI3k/Akt
regulating FLS

The PI3K/Akt signaling pathway is involved in regulating cell
growth, proliferation, differentiation, and survival and is associated
with the production of pro-inflammatory cytokines, degrading
enzymes of the extracellular matrix, and other factors in FLS. The
activation of PI3K induces the phosphorylation of Akt and p-Akt. As a
downstream effector, it can be involved in FLS invasion by regulating the
transcriptional levels of MMPs. The Akt phosphorylation also activates
downstreammTORcomplex 1 (mTORC1).mTORC1 translatesmRNA
into proteins to regulate the cell activities of metabolism, growth, and
differentiation and is involved in RA-FLS proliferation and survival
(Wendel et al., 2004; Malemud, 2013).

Table 4 is a summary of the synthetic small molecules and natural
drugs that have been developed recently that target PI3k/Akt.
Metformin, a drug used to treat type 2 diabetes, has been shown to
have a protective effect against the development of RA (Liang et al.,
2023), and RA-FLS proliferation is inhibited by metformin in a dose-
and time-dependent manner (Chen et al., 2019). The natural products
targeted at PI3k/Akt regulating FLS came from a variety of sources.
Against the development of inflammatory arthritis, ginger is a
preventive substance. There was evidence that ginger helped reduce
RA-related joint pain (Al-Nahain et al., 2014). The active ingredients of
ginger, 6-shogaol, and 8-shogaol reduced the production of TNF-α, IL-
1β, IL-6, etc., preventedmigration, invasion, and population growth, and
ameliorated joint destruction in mice (N. Li et al., 2023; Jo et al., 2022).

3.5 Wnt signaling pathway and relevant
drugs regulating FLS

TheWnt signaling cascade participates in regulating the growth,
differentiation, production, and apoptosis of osteoblasts. The
conventional Wnt/β-catenin cascade, Wnt/Ca2

+ signaling cascade,
and Wnt/JNK signaling cascade coordinate with each other to

TABLE 3 (Continued) Small molecule drugs targeting JAK/STAT regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

The natural products

Matrine An alkaloid from genus Sophora JAK/STAT; PI3K/Akt/mTOR;
TGF-β/Smad; Wnt

Experimental: Bcl-2 ↓ Yang et al. (2017); Ao et al. (2022);
Lin et al. (2022)

Bax, caspase-3↑

JAK2, STAT1, STAT3 phosphorylation ↓

Vitexin An apigenin flavone glycoside from
passion flower, bamboo leaves, and
pearl millet

JAK/STAT Experimental: inflammatory enzyme
markers ↓ iNOS ↓

Zhang et al. (2022)

JAK/STAT expressions ↓

SOCS↑

Isobavachalcone A chalcone from Psoralea corylifolia
Linn.

PI3K/Akt, JAK/STAT Experimental: proliferation, migration,
and invasion and promoted apoptosis of
MH7A cells ↓ p-PI3K, p-STAT3, p-JAK1
SOCS3, p- Akt ↓

Wang et al. (2022)

↓: suppress, downregulate, inhibit, block, prevent, reduce, decrease; ↑: promote, upregulate, active, increase. csDMARDs, conventional synthetic disease-modifying anti-rheumatic drugs; TNFSF11,

TNF SuperfamilyMember 11; AESI, adverse events of special interest; OSM, oncostatinM; α-SMA, smoothmuscle alpha-actin; SOCS, suppressor of cytokine signaling; TAK, TGF β-activated kinase.
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regulate the dynamic balance between osteoclasts and osteoblasts.
Once the balance is disturbed, it might lead to bone erosion and
bone destruction (Walsh et al., 2009; De, 2011; Deal, 2012). Studies

had shown that the growth Wnt3a/5a proteins could activate the
Wnt signaling cascade as well as downstream genes, thus increasing
fibronectin expression and promoting FLS function. The

TABLE 4 Small molecule drugs targeting PI3k/Akt regulating FLS.

Name Source Targets/signaling
pathways

Estimate References

The synthetic small molecule compounds

Metformin The biguanide hypoglycemic agents IGF-IR/PI3K/Akt/m-TOR Clinical: preventing RA Liang et al. (2023); Chen et al. (2019);
Gharib et al. (2021)

Inflammation, disease severity, and
quality of life with high safety ↑

Experimental: G2/M cell cycle phase
arrest ↓

mTOR phosphorylation ↓

Adjusting the p70s6k and
4EBP1 phosphorylation

The natural products

Baicalein A flavone from Scutellaria baicalensis PI3K/Akt/mTOR Experimental: apoptotic proteins ↑ Zhang et al. (2022)

EMT-related proteins ↓

Cell apoptosis ↑

Cell migration phosphorylation ↓

The phosphorylation of PI3K, Akt, and
mTOR dose dependently ↓

Nobiletin A polymethoxylated flavonoid from
citrus peels

PI3K/Akt/HIF-1α Experimental: enhanced the performance
in synovial tissue combined with MTX

Liu et al. (2022)

P-gp expression ↓

Contribute to MTX resistance

Artemisitene A derivatives of artemisinin from
Artemisia annua L.

METTL3/ICAM2/PI3K/
Akt/p300

Experimental: progression of FLS↓ Chen et al. (2022)

N6-methyladenosine modification of
ICAM2 mRNA ↓

Shikonin A naphthoquinone pigment from the
root of Lithospermum erythrorhizon

PI3K- Akt -mTOR, MAPK Experimental: migration, adhesion, and
invasion of MH7A cells↓

Lian-Hua et al. (2020); Li et al. (2021)

The phosphorylation levels of Akt, JNK,
p38, ERK ↓

Cinnamaldehyde An aldehyde from the bark of
Cinnamomum cassia

PI3K/Akt Experimental: proliferation and
metastasis ↓

Li and Wang (2020)

Daphnetin A coumarin derivative from Daphne
odora

PI3K/Akt/mTOR Experimental: inflammatory response ↓ Deng et al. (2020)

Cytokine expression ↓

IL-10 ↑

6-Shogaol An alkylphenol from ginger PI3K/AKT/NF-κB Experimental: proliferation, migration,
and invasion of FLS and MH7A cells ↓

Li et al. (2023)

IL-1β, IL-6, IL-8↓

MMP-2, MMP-9 ↓

PPAR-γ ↑

8-Shogaol TAK1, Akt, MAPK Experimental: TAK1 activity selectively ↓ Jo et al. (2022)

IKK, Akt, MAPK ↓

Reversing pathologies of joint structure

↓: suppress, downregulate, inhibit, block, prevent, reduce, decrease; ↑: promote, upregulate, active, increase. METTL3, methyltransferase-like 3.
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aforementioned processes also promoted the proliferation of RA
synovial tissue without pro-inflammatory factors (Kim et al., 2010;
Rabelo Fde et al., 2010; Maeda et al., 2013). Researchers (Cici et al.,
2019) suggested that the inflammatory activation of the Wnt
pathway might inhibit T-cell function and exacerbate the
immune response [181]. In the recent 3 years, we inquired
natural products, including paeoniflorin (Yang et al., 2022), 7-
hydroxycoumarin (Umbelliferone) (Cai et al., 2022; Cai et al.,
2022), and penta-acetyl geniposide (Cai et al., 2021).

4 Conclusion

In this review, we summarized as much as possible the
involvement of FLS, covering the RA-FLS pathogenesis,
synthetic small molecular compounds, and natural products
targeting primary signaling pathways in the last 3 years.
Natural products comprise a range of substances derived from
diverse natural sources, such as plants, animals, and
microorganism. These sources provided valuable resources for
the design and development of drugs. From the results, the
content of this paper could be continuously extended in the
following aspects. 1) For the synthetic small molecule
compounds, the popular targeting signaling pathways are still
MAPK and NF-κB in the current research stage. We cannot
ignore that JAK/STAT has great potential for research studies,
due to the fact that several drugs have appeared in the clinic.
Moreover, modulation of Wnt signaling might not only repair
articular bone damage but also inhibit the production of pro-
inflammatory cytokines, showing a new strategy for RA
treatment (Miao et al., 2013; Liu et al., 2019). Typically, these
signaling pathways interacted with each other. A small molecule
could act through multiple pathways. 2) For the natural products,
there was great potential. Researchers have tried to explore drugs
targeted to activate FLS to treat RA using traditional human
experience and herbs. For example, triptolide has been a hot area
of research for several years. Most of the results are currently in
the experimental stage, not the clinical trial stage. Fortunately,
the source plants of these natural products have been used for RA
in clinical studies. 3) The natural products derived from herbal
medicine that can regulate RA-FLS abnormalities are mainly

alkaloids, flavonoids, saponins, phenols, and quinones (Smolen
et al., 2018). 4) In addition, we have found many reports on the
mechanisms of herbal extract, Chinese herbal compound
prescription, and traditional Chinese patent medicines in RA
that were worthy of further research.
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Glossary

RA Rheumatoid arthritis

NFATc1 c-Fos and nuclear factor of activated T cells c1

FLS Fibroblast-like synoviocyte

ATF2 Activating transcription factor-2

NSAIDs Non-steroidal anti-inflammatory drugs

PGE (2) Prostaglandin E (2)

DMARDs Disease-modifying anti-rheumatic drugs

ROS Reactive oxygen species

MTX Methotrexate

HIF1 Hypoxia-inducible factor 1

bDMARDs Biologic disease-modifying anti-rheumatic drugs

CIA Collagen-induced arthritis

ECM Extracellular matrix

IκB Inhibitor of κB

MAPK Mitogen-activated protein kinase

Bcl-2 B-cell lymphoma-2

NF-κB Nuclear factor kappa-B

Bax Bcl-2-associated X

JAK Janus kinase

AA Adjuvant-induced arthritic

STAT Signal transducers and activators of transcription

OPG Osteoprotegerin

TNF Tumor necrosis factor

MEKK Mitogen-activated protein kinase kinase

IL Interleukin

IKK IκB kinase

NOS Nitric oxide synthase

TGM2 Transglutaminase 2

COX-2 Cyclooxygenase-2

NLS Nuclear-localization sequence

RANK Receptor activator of NF-κB

HDAC Histone deacetylases

RANKL Receptor activator of NF-κB ligand

GRK2 G protein-coupled receptor kinase 2

VEGF Vascular endothelial growth factor

M-CSF Macrophage colony stimulating factor

MMPs Matrix metalloproteinases

MDA Malondialdehyde

PDGF Platelet-derived growth factor

TRIB1 Tribbles pseudokinase 1

TGF-β Transforming growth factor-β

NFATc1 Nuclear factor of activated T cells

FLIP Anti-apoptotic molecule FLICE inhibitory protein

NLRP3 NOD-like receptor protein 3

TLRs Toll-like receptors

HO-1 Heme oxygenase

DKK-1 Dickkopf-1

SIRT1 Silent information regulator 1

CXCL-8 CXC motif chemokine 8

MCP-1 Monocyte chemotactic protein-1

CCL2 CC motif chemokine ligand 2

OPN Osteopontin

MHCII Major histocompatibility complex class II

ATP Adenosine triphosphate

FcγRs Fc-gamma receptors

α7nAChR α7-nicotinic acetylcholine receptor

APRIL A proliferation-inducing ligand

mPGES-1 Microsomal prostaglandin E synthase 1

ABCs Age-associated B cells

AP-1 Activated protein-1

VCAM-1 Vascular cell adhesion molecule-1

FDA Food and Drug Administration

ICAM-1 Intercellular cell adhesion molecule-1

EMA European Medicines Agency

LFA-1 Lymphocyte function-associated antigen

csDMARDs Conventional synthetic disease-modifying anti-rheumatic drugs

JNK c-Jun N-terminal kinase

TNFSF11 TNF Superfamily Member 11

ERK Extracellular regulated protein kinase

AESI Adverse events of special interest

Bcl-2 B-cell lymphoma 2

OSM Oncostatin M

Ang1 Angiopoietin-1

α-SMA Smooth muscle alpha-actin

Tie-2 Tyrosine-protein kinase receptor

SOCS Suppressor of cytokine signaling

GSK-3 Glycogen synthase kinase 3

TAK TGF β-activated kinase

MKK Mitogen-activated protein kinase kinase

mTORC1 mTOR complex 1

mTOR Mammalian target of rapamycin
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