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Non-alcoholic fatty liver disease (NAFLD) is a progressive metabolic disease
characterized by hepatic steatosis, inflammation, and fibrosis that seriously
endangers global public health. Epidemiological studies have shown that the
incidence of non-alcoholic fatty liver disease in postmenopausal women has
significantly increased. Studies have shown that estrogen deficiency is the main
reason for this situation, and supplementing estrogen has become a new direction
for preventing the occurrence of postmenopausal fatty liver. However, although
classical estrogen replacement therapy can reduce the incidence of postmenopausal
NAFLD, it has the risk of increasing stroke and cardiovascular diseases, so it is not
suitable for the treatment of postmenopausal NAFLD. More and more recent studies
have provided evidence that phytoestrogens are a promising method for the
treatment of postmenopausal NAFLD. However, the mechanism of
phytoestrogens in preventing and treating postmenopausal NAFLD is still unclear.
This paper summarizes the clinical and basic research evidence of phytoestrogens
and reviews the potential therapeutic effects of phytoestrogens in postmenopausal
NAFLD from six angles: enhancing lipid metabolism in liver and adipose tissue,
enhancing glucose metabolism, reducing oxidative stress, reducing the
inflammatory response, regulating intestinal flora, and blocking liver fibrosis
(Graphical Abstract).
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a major health problem with rising
incidence of obesity and diabetes in many countries, and the prevalence rate is as high as
25% in the general population (Cotter and Rinella, 2020). NAFLD is a progressive liver
disease with a wide spectrum of diseases. It begins with simple steatosis, can progress to
nonalcoholic steatohepatitis (NASH), and even further develop into liver fibrosis or
hepatocellular carcinoma (HCC) (Sheka et al., 2020). Epidemiological data have
indicated a higher rate of NAFLD in postmenopausal women. For example, in some
clinical investigations, the prevalence of NAFLD was lower in premenopausal women
than in men (12.7% vs. 26%), but considerably higher in postmenopausal women than in
males of the same age (19.4% vs. 14.9%) (Lonardo et al., 2019; DiStefano, 2020).
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Furthermore, Trembling et al. and Sumida et al. confirmed that
long-term estrogen deficiency may increase the risk of NAFLD
fibrosis in postmenopausal women (Sumida et al., 2020;
Trembling et al., 2020). Similarly, the ovariectomized (OVX)
rodent models suggest a causal relationship between estrogen
deficiency and increased susceptibility to NAFLD (Li et al., 2013;
Jeong et al., 2018; Chang et al., 2020). Estrogen deficiency plays
an important role in NAFLD pathogenesis in postmenopausal
women. Several studies have reported the benefits of estrogen
replacement therapy (ERT), reducing the prevalence of
postmenopausal NAFLD (Yang et al., 2017; Polyzos et al.,
2022). In contrast, some investigators have proposed that ERT
may increase the risk of cardiovascular disease, stroke, and breast
cancer (Santen et al., 2020; Yoshida et al., 2022). Plant-derived
phytoestrogens have a similar chemical structure and biological
activity to human estrogens. Phytoestrogens have weak
estrogenic activity by binding to estrogen receptors α or β
(Sirotkin and Harrath, 2014). In this review, we systematically
summarize the potential mechanisms of phytoestrogens in
postmenopausal NAFLD, such as improving the lipid
metabolism in the liver and adipose tissue, improving glucose
metabolism, alleviating oxidative stress, reducing the
inflammatory response, regulating intestinal microbiota, and
stemming liver fibrosis.

A brief introduction of phytoestrogens

Phytoestrogens are a class of heterocyclic polyphenols existing
in plants whose composition includes two hydroxyl groups and

one phenolic ring (Figure 1). The phenolic ring controls how
tightly phytoestrogens bind to receptors. Because phytoestrogens
function as both estrogen agonists and antagonists, they are often
referred to as selective estrogen receptor modulators (SERMs)
(Brzezinski and Debi, 1999). As an estrogen agonist,
phytoestrogens can combine with estrogen receptor (ER) to
play a weak estrogen effect (Rietjens et al., 2017). As estrogen
antagonists, they can block estrogen receptors and inhibit estrogen
activity, causing anti-estrogen effect. The bioavailability of
phytoestrogens depends on the form of action, dosage,
individual metabolism, other drug intake factors, target tissue
concentration dependence, and whether endogenous estrogen
exists or not (Joannou et al., 1995; Xu et al., 1995; Wiseman,
1999; Glazier and Bowman, 2001).

The reported phytoestrogens include isoflavones, coumarins,
lignans, anthracenes, chalcones, and saponins (Matsuda et al.,

FIGURE 1
Molecular structure of phytoestrogens.
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2001; Chan et al., 2002; Rietjens et al., 2017). According to the
structure of phytoestrogens, they are mainly divided into
flavonoids, stilbenes, lignans, coumarins, and mycoestrogens. (i)
Flavonoids, such as daidzein, genistein, calycosin, and so on,
mainly exist in Leguminosae. They usually exist in the
conjugate forms of genistein, daidzein, puerarin, daidzein,
sandalwoodin, and sissotrin (Rietjens et al., 2017). (ii) Stilbenes,
such as 6-isoprenyl naringenin, 6-vanillyl naringenin, 8-isoprenyl
naringenin and isoflavones, 8-isoprenyl naringenin is the
phytoestrogen with the most obvious estrogenic effect. They
mainly exist in higher plants such as pine, mulberry, Gnetaceae,
Cyperaceae, Fabaceae, Dipterocarpaceae, and Vitaceae (Tanwar
et al., 2021). (iii) Lignans, including intestinal diols and
enterolactones, are converted from lignan precursors under the
action of intestinal flora (Lampe, 2003). Other intestinal lipid
precursors identified include Arctigenin, 7-hydroxy lycopene,
lariciresinol, pinoresinol and syringaresinol (Meagher et al.,
1999; Heinonen et al., 2001). Lignans are abundant in flaxseed,
whole wheat bread, fruits, vegetables, sesame, tea and other foods
(Rietjens et al., 2017; Tanwar et al., 2021). (iv) Coumarins include
psoralen, coumarins, 4’ -methoxycoumarin, angelica visfatin,
repensol, trifoliate phenol, etc. They mainly exist in legumes,
especially in edible plants, such as peas, mung bean sprouts,
alfalfa, clover sprouts (Rietjens et al., 2017). (v) Mycoestrogens,
a natural estrogen produced by fungi, is harmful to animals when
eating contaminated feed. Zearalenone (ZEA) is a fungal estrogen
that has been studied extensively. ZEA is widely found in
contaminated foods. Due to its strong estrogenic activity, ZEA
is considered to be a reason for female reproductive changes (Xu
et al., 2018).

Regulation of lipid metabolism in liver

Liver lipid metabolism includes lipid uptake and production,
output and oxidation. Breaking one or more balance can promotes
liver steatosis (Jones, 2016; Ipsen et al., 2018). In addition,
postmenopausal women are prone to systemic fat redistribution
due to estrogen deficiency. The risk of abdominal obesity in
postmenopausal women is significantly higher than that in
premenopausal women (5 times) (Donato et al., 2006). Therefore,
restoring the lipid metabolism balance is a crucial link in the
prevention and treatment of postmenopausal NAFLD (Figure 2).

Genistein is the most abundant phytoestrogen in soybean and is
one of the most studied phytoestrogens. Several studies have found that
genstein can reduce the body weight, liver weight, serum and liver lipid
levels (triglyceride, cholesterol, serum free fatty acids) of ApoE (−/−)
(Jeon et al., 2014), C57BL6J mice (Kim et al., 2010), Sprague-Dawley
(SD) rats (Liu H. et al., 2017) and SD-ovariectomized rats
(Witayavanitkul et al., 2020) by the following mechanisms: (i)
Reducing free fatty acid (FFA) intake and liver lipid source (Jeon
et al., 2014). Genstein reduced hepatic TG and FFA by inhibiting
scavenger receptor, CD36 and scavenger receptor A uptake by oxidized
low density lipoprotein. (ii) Inhibition of lipid synthesis related gene
expression (LiuH. et al., 2017; Seidemann et al., 2021). On the one hand,
genstein could downregulate the expression of AMP-activated protein
kinase/acetyl-coenzyme A carboxylase (AMPK/ACC) signaling
pathway, inhibited the expression of downstream fatty acid synthase
and 3-phosphate glyceryl transferase (GPAT), and reduced liver lipid
synthesis. On the other hand, Genstein inhibited the expression of sterol
regulatory element binding protein 1 (SREBP1), thereby reducing the
hepatic de novo adipogenesis (DNL) pathway. (iii) Reducing lipid

FIGURE 2
The mechanism of phytoestrogens regulating liver lipid metabolism.
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peroxidation and promoting gene expression related to FFA oxidative
decomposition (Kim et al., 2010; Zhong et al., 2017; Seidemann et al.,
2021). Genstein promoted the expression of peroxisome proliferator-
activated receptor α (PPARα), carnitine palmitoyl transferase-1 (CPT-
1) and acyl-CoA oxidase (ACO), thereby accelerating the β-oxidation of
FFA, and ultimately reducing liver lipid accumulation and lipid toxicity.
Amanat et al. (Amanat et al., 2018) randomly divided 82 NAFLD
subjects into treatment group and placebo group. The treatment group
was supplemented with 250 mg genistein daily for 8 weeks. At the end
of the experiment, it was found that the waist-to-hip ratio, body fat
percentage and TG of NAFLD subjects supplemented with genistein
were significantly lower than those of the placebo group. Another cross-
sectional study of 6786 adults in China (Wang et al., 2022) found that
dietary isoflavone intake was negatively correlated with the prevalence
of NAFLD, hyperlipidemia and hypertension.

Regulation of lipid metabolism in adipose
tissue

In Ji-Hye Jung study (Jung and Kim, 2013), mice were fed
with a high cholesterol/fat diet (HCD) and treated with different
concentrations of black soybean powder, showing different
effects on improving liver and adipose tissue lipid metabolism.
The levels of total cholesterol (TC) and TG and the expression of
SREBP2 in the liver of mice treated with 4% black soybean
powder were significantly lower than those in the model
group. Black soybean powder could stimulate the secretion of
adiponectin, activate the expression of pAMPK and eliminate
FFA in the liver. Similarly, daidzein treatment (Cao et al., 2013)
increased serum adiponectin levels and decreased body weight
gain, visceral fat gain and HOMA-IR index in OVX rats. Naoki
Nanashima et al. (Nanashima et al., 2020) used 3% blackcurrant
to treat OVX rats for 3 months. At the end of the experiment, it
was found that 3% blackcurrant significantly reduced the body
weight, visceral fat weight, TG, TC and low-density lipoprotein
(LDL) of rats. More importantly, hematoxylin and eosin staining
(HE) showed that blackcurrant (Ribes nigrum L.) extract (BCE)
reduced the diameter of adipocytes and the score of NAFLD
activity. C57BL/6J mice fed with genistein (Kim et al., 2010)
showed a dose-dependent decrease in body weight and lipid
levels. Genistein also inhibited adipocyte hypertrophy and
adipogenesis by down-regulating the expression of LXRα,
SREBP1c and PPARγ. In Narrerat study (Sutjarit et al., 2018),
it also was found that comosa Roxb could inhibit adipocyte size
and regulate adipokine secretion in OVX rats. Panneerselvam
et al. (2016)found that soy isoflavones (150 mg/kg body weight/
day, 8 weeks) improved hepatic steatosis in HFD-fed
ovariectomized Wistar rats by down-regulating insulin-
inducible gene 2 (insig2) and PPARα expression in adipose
tissue, inhibiting adipocyte differentiation and reducing fat
formation. Kim et al. (2020) found that coumarin (100 μg/20g
body weight/day, 2 weeks) can activate brown adipose tissue
(BAT) in HFD-fed C57BL/6J mice, increase BAT
mitochondria, and accelerate BAT energy metabolism. The
Shen et al. (2019); Kang et al. (2020)have proved that
Genstein and Secoisolariciresinol diglucoside (SDG) can
upregulate the expression of peroxisome proliferator-activated

receptor gamma coactivator 1α (PGC1α), promote white fat
browning, and increase body heat production and reduce fat
accumulation through AMPK pathway. These basic studies
provide evidence for phytoestrogens to prevent lipid
metabolism disorders and NAFLD in postmenopausal women.
Table 1 lists other studies on phytoestrogens improving lipid
metabolism in ovariectomized models (Dai et al., 2004; Böttner
et al., 2008; Pakalapati et al., 2009; Miller et al., 2015; Cross et al.,
2017; Chen et al., 2018; Zheng et al., 2018; Zingue et al., 2018;
Huang et al., 2020; Tang et al., 2021).

Improving glucose metabolism

Insulin resistance (IR) is a decline in insulin sensitivity or
responsiveness in target organs (such as liver, adipose tissue,
skeletal muscle, etc.) (Lebovitz, 2001). IR is the key link in the
occurrence of NAFLD. As the initiating factor of “first hit”, IR
is closely related to “second hit” factors such as lipid
peroxidation, oxidative stress and inflammatory response
(Day, 2002; Fang et al., 2018; Bessone et al., 2019). Due to
estrogen deficiency in postmenopausal women, the expression
of insulin receptor and insulin receptor substrate-1/2 (IRS-1/2)
is reduced, and the insulin signal transduction is weakened,
resulting in IR and eventually inducing NAFLD (Mauvais-
Jarvis et al., 2017).

Genistein could reduce the serum insulin level in NASH model
of SD rats and improve HOMA-IR in a dose-dependent manner
(Yin et al., 2019). Similarly, in the OVX model of SD rats,
supplementation of daidzein (50 mg/kg body weight/day,
12 weeks) could also reduce body weight, HOMA-IR and fasting
insulin level (Cao et al., 2013). Another study showed that genistein
alone or in combination with metformin significantly reduced
fasting blood glucose (FBS) in HFD mice by reducing glucose 6-
phosphatase (G6Pase) and increasing glycogen synthase kinase 3β
(GSK-3β) phosphorylation, thereby inhibiting gluconeogenesis
(Zamani-Garmsiri et al., 2021). In vitro studies by Tomasz et al.
(Charytoniuk et al., 2019) found that enterolactone could reduce the
phosphorylation levels of Serine/threonine kinases (AKT) and
AMPK in HepG2 cells induced by palmitic acid, and ultimately
improve liver insulin sensitivity.

In addition, clinical studies have yielded encouraging findings. In a
randomized double-blind controlled trial (Amanat et al., 2018),
compared with placebo, genistein supplementation (250 mg/day,
8 weeks) could reduce insulin levels and HOMA-IR in NAFLD
patients. In another randomized double-blind control experiment
involving 54 postmenopausal patients with type 2 diabetes,
compared with placebo, genistein supplementation (108 mg/day,
12 weeks) could significantly reduce the subjects’ FBS, glycosylated
hemoglobin, TG and malondialdehyde (MDA) (Braxas et al., 2019).
However, the dose and time of genistein used in these two studies are
different, whichmay be related to different dosage forms and subjects of
genistein. A meta-analysis (Liu Y. et al., 2017) concluded that genistein
significantly improved blood glucose levels and insulin sensitivity in
postmenopausal women and that long-term treatment may be more
effective than short-term use. Therefore, more clinical trials are still
needed to determine the optimal dose and course of treatment of
phytoestrogens for different diseases.
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TABLE 1 Effects of phytoestrogens on lipid metabolism in ovariectomized models.

Phytoestrogen Models Period Dosage Main results Ref

Bazi Bushen capsule
(BZBS)

HFD-fed
ovariectomized
C57BL/6J ApoE−/−

mice

12 weeks 1.4/2.8 g/kg 1.Serum TG↓, TC↓,LDL↓,HDL↑ Huang et al.
(2020)

2.Serum DHA↑,
Lysophosphatidylethano-lamine ↓

C.athayensis (CCE) HFD-fed
ovariectomized SD
rats

8 weeks 50/100/200 mg/kg 1.Body weight↓, abdominal fat
coefficients↓

Tang et al.
(2021)

2.Serum FFA↓, TG↓, TC↓, lipid
droplets in liver cells↓

3.Serum leptin↓, adiponectin↓

4.Diameter of abdominal fat cells↓

Zearalanol (ZEN) Cholesterol-fed
ovariectomized
rabbits

12 weeks 0.1/0.5/2.5 mg/kg 1.Serum TC↓, TG↓,HDL↑, LDL↓ Dai et al.
(2004)

2.ApoA1↓,ApoB↓

Soy Ovariectomized LCR
rats

28 weeks 585 mg/kg 1.Body weight↓, fat↓, WAT weight↓ Cross et al.
(2017)

2.Hepatic TG↓

3.Insulin sensitivity↑

4.Adipose tissue mRNA levels:
CD11c↓,IL6↓,TNFα↓

5.Abundance of Firmicutes↓,
abundance of Bacteroidetes↑, F/B↓

8preny -lnaringenin
(8-PN)

Ovariectomized rats 3 months 6.8/68.4 mg/kg 1.Body weight↓ Böttner et al.
(2008)

2.Serum TC↓, LDL↓, HDL↑

equol/isoliquiritigenin/
glabridin/genistein

Ovariectomized SD
rats/LO2 cells

50 days Equol:10 mg/kg; isoliquiritigenin/glabridin/genistein:
50 mg/kg

1.Body weight↓ Chen et al.
(2018)

2.Blood Glucose↓, Hepatic TG↓

3.Gene expression related to lipid
metabolism: SREBP1↓, ACC1↓,
FAS↓,SCD1↓

4.HE staining: liver steatosis↓

Mixture:genistein(G)/
resveratrol (R)/
quercetin(Q)

AIN-93M-fed
ovariectomized
Fischer rats

16 weeks Diet1:1000 mg/kg (G); Diet2:
500 Mg/kg(G)+200 mg/kg(R)+1000 mg/kg(Q); Diet3:
1000 mg/kg(G)+400 mg/kg(R)+2000 mg/kg(Q)

1.All three diets: retroperitoneal lipid
content ↓

(Miller et al.,
2015)

2.All three diets: blood Glucose↓

3.Diet1: Serum FFA↓,ALT↓, DGAT1↓

4.Diet1 and Diet3:SCD1↓,XBP1↓

Millettia macrophylla Ovariectomized
Wistar rats

28 days 10 mg/kg 1.Body weight↓, abdominal fat↓ Zingue et al.
(2018)

2.Dyslipidemia↓, glucose intolerance↓

Isoflavone and exercise Ovariectomized
Wistar rats

61 days 4 mg/kg 1.visceral fat mass↓, adipocyte size↓ Zheng et al.
(2018)

2.Serum leptin↓

3.SREBP-
1c↓,FAS↓,PPARδ↑,PGC-1α↑

Trifolium pratense Ovariectomized SD
rats

4 days 450 mg/kg 1.Serum TC↓, LDL↓, HDL↑ Pakalapati
et al. (2009)

2.Changes in protein-coding genes
expression in lipid metabolism,
antioxidant and xenobiotic
metabolism

↑: Increased; ↓: Decrease.
BZBS, bazi bushen capsule; TG, triglyceride; TC, cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein; DHA, docasa-hexaenoic-acid; CCE, C. athayensis; SD, Sprague-

Dawley; FFA, free fatty acid; ZEN, zearalanol; ApoA1, serum apolipoprotein a1; ApoB, serum apolipoprotein B; WAT, white adipose tissue; CD11c, a specific marker of M1 macrophages; IL6,

interleukin-6; TNFα, tumor necrosis factor-α; F/B, M. intestinalis/Bacteroides; 8-PN, 8prenylnaringenin; SREBP1, sterol regulatory element binding protein 1; ACC1, acetyl coenzyme A

carboxylase 1; FAS, fatty acid synthetase; SCD1, stearoyl-coenzyme a desaturase 1; HE, hematoxylin and eosin staining; G, Mixture:genistein; R, resveratrol; Q, quercetin; ALT, alanine

transaminase; DGAT1, Diacylglycerol O-acyltransferase 1; XBP1, X-box binding protein 1; PPARδ, peroxisome proliferator-activated receptor δ; PGC-1α, Peroxisome proliferator-activated

receptor γ coactivator-1α.
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Reducing oxidative stress

Oxidative stress occurs when the production of oxidative
molecules (such as superoxide, hydrogen peroxide) exceeds the
scavenging capacity of antioxidant molecules (such as catalase
(CAT), glutathione peroxidase (GSH-Px), superoxide dismutase
(SOD)) (Sies, 2015). When oxidation and antioxidant imbalance
occurs, it will cause lipid and protein peroxidation, nucleic acid
oxidative modification, and other metabolic diseases such as
NAFLD.

Phytoestrogens have been proved to have antioxidant effects
in various models. In OVX-NASH rat model, compared with
OVX model group, genistein supplementation could
significantly reduce liver MDA and increase reduced
glutathione (GSH) levels (Witayavanitkul et al., 2020). In
OVX-LDLR (−/−) atherosclerosis model mice and HAEC cell
model, dioscin could reduce the levels of MDA and reactive
oxygen species (ROS), and increase the levels of GSH and
nicotinamide adenine dinucleotide phosphate oxidase 4
(NOX4), which was related to the activation of PGC-1α/ERα
pathway (Yang et al., 2019). In the aging rat model, compared
with the control group, the supplementation of Fructus Corni
extract increased liver SOD, CAT and GPX, and decreased liver
lipid peroxidation, suggesting that Fructus Corni extract may be
a ROS scavenger (Hamden et al., 2009). Similarly, in the
Granulosa cells model, genistein significantly increased
mitochondrial membrane potential and enhanced the
expression of SOD, GPX, CAT and adenosine-3′, 5′-cyclic
monophosphate (cAMP), which was related to cAMP-PKA
signaling pathway (Luo et al., 2020). In clinical studies, it is
also found that phytoestrogens have antioxidant effects.
Compared with placebo, genistein supplementation could
reduce the serum MDA levels in NAFLD patients and
postmenopausal type 2 diabetes (T2DM) patients (Amanat
et al., 2018; Braxas et al., 2019). In summary, phytoestrogens
maintain the balance of oxidation/antioxidant system directly
or indirectly to achieve antioxidant effect in vivo and in vitro

models. Table 2 summarizes the basic research of other
phytoestrogens on improving oxidative stress in
ovariectomized models (Baeza et al., 2010; Chulikhit et al.,
2021; Jdidi et al., 2021; Ltaif et al., 2021).

Anti-inflammatory effect

Estrogen at physiological concentration can inhibit the release of
tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and
interleukin-1β (IL-1β). A cross-sectional study (Rodrigues et al.,
2014) found that serum IL-6 and TNFα levels in postmenopausal
NAFLD patients with metabolic syndrome were higher than those in
the control group, suggesting that estrogen deficiency would
promote or aggravate the development of NAFLD.
Phytoestrogens have a good inhibitory effect on liver
inflammation in NAFLD. In patients with NAFLD, Amanat’s
study (Amanat et al., 2018) demonstrated that genistein 250 mg
daily for 8 weeks could lower TNFα and IL-6 levels and alleviate liver
inflammation.

A study from author Cao YK (Cao et al., 2013) has shown that
supplementation of daidzein (50 mg/kg) could reduce serum
inflammatory factors in OVX rats, such as TNFα, IL-6.
Another study from author Nanashima N (Nanashima et al.,
2020) showed that dietary supplementation of 3% Ribes nigrum
could reduce TNFα, IL-6 and IL-1β in OVX rats and improve the
pathological state of liver inflammation. Similarly, the
supplementation of 500 mg/kg flavonoids quercetin
(Quercitrin) could increase the serum estrogen level in OVX
mice with NAFLD and reduce the expressions of TNFα, IL-6 and
IL-1β (Hur et al., 2020). In the studies about the beneficial effects
of genistein in the C57BL/6 mouse NASH model, Zamani-GF
et al.and Gan M et al.found the anti-inflammatory pathway of
genistein. On the one hand, genistein promoted the
transformation of macrophages into M2-type anti-
inflammatory phenotype, reduced the infiltration of M1-type
pro-inflammatory macrophages, thereby reduced the secretion

TABLE 2 Effects of phytoestrogens on oxidative stress in ovariectomized models.

Phytoestrogen Models Period Dosage Main results Ref

A. sativa Ovariectomized Swiss mice 60 days 200 mg/kg 1.Serum TG↓,VLDL↓,ALT↓ Ltaif et al. (2021)

AST↓,ALP↓, LDH↓

2.Hepatic AOPP↓

3.Hepatic GPx↓, GSH↓, SOD↑

Medicago sativa Ovariectomized white Swiss
mice

8 weeks 0.75 g/kg 1.Serum TG↓,TC↓,HDL↑ Jdidi et al. (2021)

2.Hepatic GPX↓,GSH↓

SOD↑

soybean aged ovariectomized Wistar rats 10 weeks 300 mg/kg 1.liver, heart, kidney, spleen homogenates: GSSG/
GSH↓, MDA↓

Baeza et al. (2010)

Pueraria mirifica (PM) Ovariectomized mice 8 weeks 2.5/
25 mg/kg

1.CAT↑,SOD↑,IL6↓,TNF-α↓ Chulikhit et al.
(2021)

↑: Increased; ↓: Decrease.
VLDL, very low density lipoprotein; AST, glutamic-oxalacetic transaminase; ALP, alkaline phosphatase; LDH, lactic dehydrogenase; AOPP, advanced oxidation protein products; GPx,

glutathione peroxidase; GSH, glutathione; SOD, superoxide dismutase; GSSG/GSH, oxidized glutathione/glutathione; MDA, malondialdehyde; PM, pueraria mirifica; CAT, catalase.
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of pro-inflammatory factors and ultimately suppressed
expression of NF-κB (Zamani-Garmsiri et al., 2021). On the
other hand, genistein directly inhibited the secretion of
inflammatory factors and achieved anti-inflammatory effect by
up-regulating the expression of miR-451 in liver (Gan et al.,
2019). Many other studies have confirmed that genistein exerts
anti-inflammatory effects by inhibiting the expression of Toll-
like receptor 4 (TLR4) and reducing the levels of downstream
TNFα, IL-6, endotoxin and 8—isoprostaglandin (Yalniz et al.,
2007; Ji et al., 2011; Incir et al., 2016; Yin et al., 2019). Xu et al. (Xu
et al., 2021) found that genistein regulated (CD68 + CD163)/
(CD68 + CD206) protein expression through JAK2/STAT3/
SOCS3 signaling pathway, thereby regulating the proportion
of liver M1/M2 macrophages, reducing the level of IL-1β, IL-
6, TNF-α and monocyte chemotactic protein 1 (MCP-1), and
playing an anti-inflammatory role. (Figure 3).

Regulation of intestinal flora

With the development of ‘gut-liver axis’ theory and gene
sequencing technology, the role of intestinal flora in the
pathogenesis of NAFLD has received extensive attention,
which provides a new target for the treatment of NAFLD.
Clinical studies (Zhao et al., 2019) have shown that compared
with premenopausal women, the ratio of M. intestinalis/
Bacteroides (F/B) in postmenopausal women increases, and
higher F/B is related to obesity. This may be due to decreased
estrogen levels in postmenopausal women causing fat
redistribution, mainly abdominal fat increase. Therefore,
maintaining intestinal microecological balance in

postmenopausal women may become a new strategy for the
treatment of postmenopausal NAFLD.

There is an interaction between phytoestrogens and intestinal
flora. Phytoestrogens are mainly converted into compounds with
estrogenic activity by intestinal microorganisms in vivo. For
example, intestinal microorganisms can convert daidzein and
genistein into equol derivatives (Zhao et al., 2019; Á et al., 2020),
so the composition of intestinal flora will affect the metabolism of
phytoestrogens. On the other hand, studies have confirmed that
phytoestrogens and their metabolites can also regulate and reshape
the composition of intestinal microorganisms. A study (Naudhani
et al., 2021) found that formononetin regulated intestinal microbial
balance by increasing the number of Clostridium aldenense,
Clostridaceae unclassified, cluster true bacteria, acetate and
butyrate-producing bacteria, and maintained the integrity of the
intestinal membrane by up-regulating the expression of Muc-2 and
occludin. Consistent with previous studies, another study (Cardona
et al., 2013) found that genistein reduced serum endotoxin levels by
selectively increasing Akkermansia muciniphila to alter intestinal
microflora in mice, thereby achieving anti-obese effects. In addition,
berberine could increase the abundance of beneficial bacteria in
OVX rats, such as Bacteroides, Bifidobacterium, Lactobacillus and
Akmania (Fang et al., 2021). Moreover, genistein, daidzein and
Humulus lupulus L. extract could improve intestinal mucosal barrier
function, increase intestinal microbial diversity and reduce the
abundance of pathogenic bacteria (Hamm et al., 2019; Ou et al.,
2019; Ortega-Santos et al., 2020). A clinical study (Ou et al., 2019)
found that compared with placebo, genistein (50 mg/day) treatment
for 2 months could increase the number of intestinal
Verrucomicrobia in obese patients, reduce serum endotoxin level
and improve IR.

FIGURE 3
The mechanism of phytoestrogens in alleviating liver inflammatory response.
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Anti-hepatic fibrosis

Ko SH’s study found that postmenopausal women had a higher
incidence of NAFLD than premenopausal women (Ko and Kim, 2020).
Importantly, studies found that the longer estrogen deficiency, the
higher the risk of liver fibrosis in postmenopausal NAFLD patients
(Klair et al., 2016). A number of studies have found that estrogen can
inhibit the activation of hepatic stellate cells and prevent the progression
of fibrosis. (Li et al., 2021; Lin et al., 2021; Šisl et al., 2022).

In vivo and in vitro studies have confirmed that phytoestrogens
have antifibrotic effects. Many studies have confirmed that calycosin
can improve the C57BL/6 liver fibrosis mouse model induced by
carbon tetrachloride (CCL4). Studies by Zhang et al. (Zhang et al.,
2021) and Deng et al. (Deng et al., 2018) confirmed that calycosin
could improve liver fibrosis in C57BL/6 mice induced by CCL4.
Zhang et al.and Deng et al.confirmed that calycosin can improve
CCL4-induced liver fibrosis in C57BL/6 mice.

They reported a variety of mechanisms. Firstly, calycosin could
increase matrix metalloproteinase-1 (MMP-1) expression, inhibit tissue
inhibitors of metalloproteinases-1 (TIMP-1) expression, increase
MMP-1/TIMP-1 ratio, inhibit collagen synthesis, and balance MMP-
1/TIMP-1 system (Zhang et al., 2021). Secondly, calycosin inhibited
fibrosis by increasing ERβ expression and activating JAK2-STAT3
pathway. Thirdly, calycosin significantly inhibited the proliferation
and migration of activated hepatic stellate cells (HSCs) (Deng et al.,
2018). Ganai et al. (Ganai and Husain, 2017) induced liver fibrosis in
rats with d-galactosamine (D-GalN) and supplemented them with
genistein (5 mg/kg body weight) for 12 weeks. At the end of the
experiment, it was found that genistein could inhibit the

accumulation of α smooth muscle actin (αSMA), which is a marker
of HSC cell activation. TGF-β/Smad signaling pathway is a star pathway
in the process of liver fibrosis. Ganai et al. (Ganai and Husain, 2017)
found that genistein could play an anti-fibrosis role by blocking TGF-β/
Smad signaling pathway. Xu et al. (Xu et al., 2021) confirmed through in
vivo experiments that the supplementation of genistein also improved
liver fibrosis in rats induced by dimethylnitrosamine (DMN). Genistein
could inhibit the expression of αSMA and type I collagen α1 in rat liver
and improve liver pathological injury. At the same time, in vitro
experiments performed with genistein on HSC cell line LX2 cells
confirmed that genistein could inhibit the viability and proliferation
of LX2 cells, and it was important to induce LX2 cell cycle arrest in G0/
G1 phase. Although Ganai et al. and Xu et al. used different methods to
induce liver fibrosis, they all clarified the anti-hepatic fibrosis effect of
genistein.

Conclusion and future perspectives

The risk of metabolic diseases such as NAFLD, T2DM,
hyperlipidemia, metabolic syndrome, obesity and cardiovascular
disease in postmenopausal women has increased significantly
(Eghbali-Babadi et al., 2021; Harraqui et al., 2022; Mishra et al.,
2022; Saigo et al., 2022; Tang et al., 2022), which has attracted more
and more attention from clinical and researchers. Estrogen deficiency
may be the main culprit for accelerating blood lipids, glucose metabolic
disorders, IR, imbalance of oxidation and antioxidant systems, and
intestinal flora imbalance (Ko and Jung, 2021; Liu et al., 2022).
However, there is an increasing risk of adverse events in clinical

FIGURE 4
Role of phytoestrogens in postmenopausal NAFLD.
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estrogen supplementation, so finding safe and alternative estrogen
supplementation drugs is a difficult problem to be solved in clinic.
Phytoestrogens are common in diet and can exert many biological
effects observed in cells, animals and humans. The research on
phytoestrogens has increased dramatically in the past few years,
especially in animal and cell experiments. In this paper, we
summarize the mechanism of phytoestrogens improving
postmenopausal NAFLD through multiple pathways, multiple
targets and multiple organs (see Figure 4).

Conclusion

Although most studies have confirmed that phytoestrogens can
improve the metabolic problems of NAFLD in postmenopausal
women, such as weight gain, abdominal obesity, elevated blood
glucose, and elevated blood pressure. However, there are still many
limitations. Currently phytoestrogen-related clinical studies are less
than basic studies. There is a lack of observation or evaluation
methods for liver histopathology in clinical studies. It is necessary to
conduct additional studies to evaluate the long-term efficacy and
side effects of phytoestrogens on human beings. The safety of drugs
is one of the important concerns in clinical research. The dosage,
dosage form and course of treatment of phytoestrogens are not
uniform in the reported experiments. It is still necessary to evaluate
the beneficial and harmful doses of phytoestrogens to the human
body, and the effects of phytoestrogens on other drugs or dietary
products. Phytoestrogens and their activities are complex and
species-specific. It is still necessary to carry out research to assess
the gender differences in human responses to phytoestrogens, so as
to better provide clinical reference for postmenopausal NAFLD
patients. Although there are many kinds of phytoestrogens, the
clinical reports of phytoestrogens are mainly about genistein.
Therefore, it is necessary to further explore and study the efficacy
of other phytoestrogens on human body, and provide data for
clinical research of new drugs.

At present, most of the current research on phytoestrogens
focuses on postmenopausal women. What is the effect of
phytoestrogens on adult males ? Different studies have come to

the controversial conclusion. Rashid Rdeng et al. (Rashid et al., 2022)
found that Genistein reduced male testosterone levels, reduced
sperm quality, and lowered fertility. In contrast, Reed KE et al.
(Reed et al., 2021) found that regardless of dose and study duration,
neither soy protein nor isoflavone exposure affects TT, FT, E2 or
E1 levels in men. There is a clear need for further carefully designed
studies to elucidate the effects of phytoestrogen consumption on
adult males.
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