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Objective: Aloe-emodin (AE) is an anthraquinone compound extracted from the
rhizome of the natural plant rhubarb. Initially, it was shown that AE exerts an anti-
inflammatory effect. Further studies revealed its antitumor activity against various
types of cancer. However, the mechanisms underlying these properties remain
unclear. Based on network pharmacology and molecular docking, this study
investigated the molecular mechanism of AE in the treatment of hepatocellular
carcinoma (HCC), and evaluated its therapeutic effect through in vitro
experiments.

Methods: CTD, Pharmmapper, SuperPred and TargetNet were the databases to
obtain potential drug-related targets. DisGenet, GeneCards, OMIM and TTD were
used to identify potential disease-related targets. Intersection genes for drugs and
diseases were obtained through the Venn diagram. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of
intersecting genes were conducted by the website of Bioinformatics.
Intersection genes were introduced into STRING to construct a protein-protein
interaction network, while the Cytoscape3.9.1 software was used to visualize and
analyze the core targets. AutoDock4.2.6 was utilized to achieve molecular
docking between drug and core targets. In vitro experiments investigated the
therapeutic effects and related mechanisms of AE.

Results: 63 overlapped genes were obtained and GO analysis generated
3,646 entries by these 63 intersecting genes. KEGG analysis mainly involved
apoptosis, proteoglycans in cancer, TNF signaling pathway, TP53 signaling
pathway, PI3K-AKT signaling pathway, etc. AKT1, EGFR, ESR1, TP53, and SRC
have been identified as core targets because the binding energies of them
between aloe-emodin were less than -5 kcal/Mol.The mRNA and protein
expression, prognosis, mutation status, and immune infiltration related to core
targets were further revealed. The involvement of AKT1 and EGFR, as well as the
key target of the PI3K-AKT signaling pathway, indicated the importance of this
signaling pathway in the treatment of HCC using AE. The results of the Cell
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Counting Kit-8 assay and flow analysis demonstrated the therapeutic effect of AE.
The downregulation of EGFR, PI3KR1, AKT1, and BCL2 in mRNA expression and
PI3KR1, AKT,p-AKT in protein expression confirmed our hypothesis.

Conclusion: Based on network pharmacology and molecular docking, our study
initially showed that AE exerted a therapeutic effect onHCCbymodulatingmultiple
signaling pathways. Various analyses confirmed the antiproliferative activity and
pro-apoptotic effect of AE on HCC through the PI3K-AKT signaling pathway. This
study revealed the therapeutic mechanism of AE in the treatment of HCC through a
novel approach, providing a theoretical basis for the clinical application of AE.

KEYWORDS

molecular docking, network pharmacology, aloe-emodin, hepatocellular carcinoma,
molecular mechanism, apoptosis

1 Introduction

Liver cancer is one of the leading causes of cancer-related death
worldwide, with a gradually increasing incidence annually (Siegel et al.,
2019). In 2018, based on data from 185 countries and territories, liver
cancer ranked sixth and third in incidence and mortality, respectively
(Sung et al., 2021). Hepatitis viruses, smoking, obesity, diabetes, and
certain dietary habits are risk factors of liver cancer (Yu, 1995). Despite a
clear etiology, the pathogenesis and molecular mechanisms of liver
cancer remain unclear. Liver cancer consists of two main
histopathological types, namely, hepatocellular carcinoma (HCC) and
intrahepatic cholangiocarcinoma. HCC accounts for 83.9%–92.3% of all
liver cancer cases in China. Approximately 1 million patients are
diagnosed with HCC worldwide on an annual basis. The prognosis
for patients with liver cancer is extremely poor. Surgery is only
appropriate in early-stage disease; consequently, surgical resection is
possible in <15% of patients. Treatment options for patients with
advanced cancer are relatively limited. Transarterial
chemoembolization is a typical surgical option for such patients,
increasing 2-year survival by 23% versus that of patients with
intermediate-stage HCC who receive conservative treatment.
Sorafenib, a molecularly targeted agent with good efficacy against
liver cancer, is another treatment option. This drug can inhibit the
proliferation of cancer cells, and is indicated for the treatment of patients
with advanced liver cancer. Nevertheless, an increasing number of
patients develop tolerance to chemotherapeutic drugs, and only a
minority of patients with HCC benefit from continued chemotherapy
(El-Serag et al., 2008). In addition, drug toxicity and/or ineffectiveness
after long-term use cannot be ignored. Current radiofrequency ablation
and chemotherapy regimens cannot completely cure this catastrophic
disease. Thus, further research studies are warranted to discover a more
effective treatment for liver cancer.

Traditional Chinese herbal medicines have attracted the attention of
researchers owing to their low rates of side effects, low toxicity, and cost-
effectiveness compared with conventional chemotherapeutic drugs.
Aloe-emodin (AE) is an anthraquinone compound extracted from
the roots, stems, and leaves of aloe vera, rhubarb, cassia, and other
plants. It exerts a broad range of antibacterial, antiviral, and anti-
inflammatory effects. Previous study has demonstrated that AE could
restrain the lipopolysaccharide-induced production of proinflammatory
cytokines in RAW264.7 macrophages via downregulation of nuclear
factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and
phosphatidylinositol 3 kinase (PI3K) (Hu et al., 2014). AE also

inhibits the formation of Staphylococcus aureus by reducing the
production of extracellular proteins (Xiang et al., 2017). Studies on
Japanese encephalitis virus and enterovirus 71 revealed the antiviral
activity of AE (Lin et al., 2008). Further research on AE discovered its
anticancer effects. At present, AE has been utilized for the treatment of
lung cancer (Wu et al., 2017a), gastric cancer (Guo et al., 2008), colon
cancer (Suboj et al., 2012), liver cancer (Lu et al., 2007), and other types of
cancer. However, the mechanism underlying the effects of AE in HCC
remains unknown.

Network pharmacology is an emerging method which not only
combines network biology and poly-pharmacology to validate
drug-actionable targets through computational software, but
also explores potential mechanisms of drug therapeutic actions
(Hopkins, 2008). Network pharmacology also provides a way of
thinking about drug discovery while being able to understand the
side effects and toxicity of drugs. This method has completely
altered the approach to the definition, diagnosis, and treatment of
diseases (Nogales et al., 2022). The 3D modeling of the drug and
protein receptor can be constructed by computer software, which
can screen the optimal sites on the protein receptor for amino acid-
ligand docking. In turn, these genetic proteins are inextricably
linked to disease, and thus a web of relationships between drugs
and disease has been established. Furthermore, the strength of the
association between pivotal genes and drugs can be confirmed by
molecular docking. Therefore, in this study, we used network
pharmacology and molecular docking to explore the specific
molecular mechanisms of AE for the treatment of HCC and
validate its antitumor effects through cell experiments.

2 Materials and methods

2.1 Network pharmacology

2.1.1 Target prediction for AE
The workflow of this analysis is shown in Figure 1. Isomeric

SMILES of AE was obtained from PubChem, the world’s largest
chemical information base where we could get chemical structures,
chemical properties, biological activities of small molecules gratis
(Kim et al., 2023). The Comparative Toxicogenomics Database
(CTD), Pharmmapper, Superpred, and TargetNet databases were
screened to identify potential target genes. These four databases were
designed to predict drug-related genes (Nickel et al., 2014; Yao et al.,
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2016; Wang et al., 2017; Davis et al., 2023). “Human Species” was set
as a requirement for this analysis. Following the removal of
duplicates, the selected targets were standardized using the
UniProt database. The genes screened from these four databases

under certain conditions were the genes associated with the
therapeutic effects of aloe-emodin. Aloe-emodin may exert its
therapeutic effects towards diseases through interactions between
these genes.

FIGURE 1
A detailed graphic summary of network-pharmacology. (Network pharmacology process, molecular docking, external validation of core targets and
experimental verification in vitro).
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2.1.2 Identification of potential targets in HCC and
intersection genes

Liver cancer-related genes were recognized using four genetic
databases, namely, DisGenet (Pinero et al., 2021), GeneCards
(Stelzer et al., 2016), Online Mendelian Inheritance in Man (OMIM)
(Amberger et al., 2015), and Therapeutic Target Database (Zhou et al.,
2022). Based on the rankings, we searched for mutated genes that are
more likely to be involved in the development and progression of HCC,
and usedUniProt to normalize these disease-associated genes. The drug
and disease genes were subsequently mapped, and the mapping results
were imported into the jvenn website (Bardou et al., 2014) to obtain
intersection genes. Therapeutic effects of aloe-emodin on hepatocellular
carcinoma were likely to be mediated by modulation of these
intersecting genes.

2.1.3 Gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG) enrichment analysis

GO is a biological system used for studying the effects of individual
genes on an organism at different biological levels. KEGG provides
evidence indicating the potential involvement of individual genes in
biological signaling pathways (Kanehisa et al., 2022). GO and KEGG
online analysis module in the Bioinformatics website were used to

conduct the enrichment analysis. When the list of intersecting genes
were imported, selected the species as “human”, ran the program until
the results of the enrichment analysis and related images were exported.

2.1.4 Drug-target-pathway network construction
The drug-target-pathway network was established by introducing

intersection genes and KEGG signaling pathway items into Cytoscape
3.9.1. Cytoscape is a platform that integrates complex network
structures with data and presents them in graphical form (Shannon
et al., 2003). The cellular nodes represent AE, intersection genes, or
pathways, while the connecting lines between different nodes represent
genes involved in different pathways.

2.1.5 Protein-protein interaction (PPI) network
construction and visualization

PPI is a method utilized to study the mechanism through which
proteins function harmoniously in cells (Ding and Kihara, 2019).
Using the STRING database (version 11.5), we constructed the PPI
network with the species limited to “Homo sapiens” and a medium
confidence score of 0.4 to ensure more protein-protein information
would be included. The PPI network was updated after removing
disconnected nodes. The tab-separated values (tsv) format file was

TABLE 1 Details of the protein targets in the PDB database.

Targets PDB ID Method Resolution R-Value free R-Value work R-Value observed

AKT1 7NH5 X-RAY DIFFRACTION 1.90 Å 0.228 0.200 0.201

TP53 8DC6 X-RAY DIFFRACTION 1.60 Å 0.202 0.181 0.182

ALB 6YG9 X-RAY DIFFRACTION 1.89A 0.313 0.239 0.243

ESR1 5FQV X-RAY DIFFRACTION 1.74 Å 0.234 0.193 0.195

TNF 1EXT X-RAY DIFFRACTION 1.85 Å 0.243 0.203 0.203

STAT3 6NUQ X-RAY DIFFRACTION 3.15 Å 0.260 0.233 0.234

CASP3 1NMS X-RAY DIFFRACTION 1.70 Å 0.183 0.151 0.153

EGFR 3POZ X-RAY DIFFRACTION 1.50 Å 0.243 0.219 0.219

SRC 1O43 X-RAY DIFFRACTION 1.50 Å - 0.1986 0.196

TABLE 2 Grid docking parameters in molecular docking.

Targets PDB ID Spacing (angstrom)
Center grid box

X center Y center Z center

AKT1 7NH5 0.642 13.893 −11.833 −15.603

TP53 8DC6 0.975 39.591 −6.574 −12.787

ALB 6YG9 0.875 28.936 0.178 18.993

ESR1 5FQV 0.531 12.653 33.952 69.296

TNF 1EXT 0.847 −0.382 32.548 −4.553

STAT3 6NUQ 1.000 −2.205 19.287 24.548

CASP3 1NMS 0.703 11.911 0.021 14.823

EGFR 3POZ 0.636 19.556 24.903 15.074

SRC 1O43 0.458 10.597 19.284 19.914
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downloaded and imported into Cytoscape 3.9.1 for subsequent
visualization. The strength of interactions between proteins in
Cytoscape would be calculated in order to screen for core targets.

2.1.6 Screening of core targets
Using the “CytoNCA” plug-in in Cytoscape 3.9.1, we determined

the core targets according to their degree values. “CytoNCA” was a
plug-in for calculating the strength of interactions between proteins,
some proteins with higher interaction strengths with other proteins
could be screened out as core targets (Tang et al., 2015). Severalmethods
for calculating the strength of protein associations were included in this
plug-in and one of them-degree has been chosen as our method for
screening core targets. The intersecting genes with degree values more
than two-fold higher than the median were selected as core targets. The
genes were imported into the plug-in of MCODE for hub gene
visualization.

2.1.7Molecular docking between AE and hub genes
We sought to further understand the relationship between

candidate proteins and AE, as well as their mechanism of action.
Therefore, molecular docking was performed to determine the strength
of the interaction between receptors and ligands. The SDF (Structural
Data File) of AEwas downloaded fromPubChem, and the ProteinData
Bank (PDB) database was used to obtain the SDF format file of the
original ligand. Moreover, the pdb format files of receptor proteins were
obtained from the PDB database (Table 1). The SDF format files of AE

and the original ligand were transformed into mol2 format via
OpenBabel-3.1.1 (O’Boyle et al., 2011). The receptor proteins were
introduced into PyMOL 2.5 (Seeliger and de Groot, 2010) for
dehydrating and deligand. Thereafter, we modified the receptor
proteins with hydrogenation in AutoDockTools 1.5.6 (Morris et al.,
2009) and extracted the files in pdbqt format for further operation.
Setting torsion for ligand and outputting ligand as pdbqt format. The
qdbqt format files of receptor proteins and ligands were re-imported
into AutoDockTools for analysis using AutoGrid. In AutoGrid, all
branches of the receptor proteins were entirely covered byGridBox. The
parameters of the GridBox were recorded (Table 2). Next, AutoGrid
was used to generate files in gpf format. After setting the parameters of
docking, the gpf format file was imported into AutoDock, and the
docking process was initiated. At the end of the process, the binding
energy of each receptor protein and ligand was recorded and saved in
pdbqt format. The results of molecular docking were visualized though
PyMOL. All websites used in this analysis are shown in Table 3.

2.1.8 External validation of core targets
2.1.8.1mRNA, protein expression levels and survival analysis
of core targets

We analyzed the transcript and protein levels of five core targets
in HCC cells versus normal hepatocytes using the Gene Expression
Profiling Interactive Analysis (GEPIA) database (Tang et al., 2017)
and the Human Protein Atlas database (Uhlen et al., 2015).
Pathological stage analysis of core targets in HCC was performed
to verify the change in mRNA expression at different stages of the
disease. The correlation between the mRNA and protein levels of
core targets was also analyzed using cBioPortal database (Cerami
et al., 2012). Next, we explored the role of core target mutations in
the prognosis of patients with HCC. Thus, we used the Kaplan-
Meier plotter database (Gyorffy, 2023) to analyze the odds of
survival in HCC patients with inconsistent core target expression.

2.1.8.2 Immune cell infiltration and genetic alteration of
core targets

When cancer occurs, it is especially prominent to know about gene
mutations and changes in the immune system (Abbott and Ustoyev,
2019; Paul et al., 2019). The Tumor Immune Estimation Resource
(TIMER) database (Li et al., 2017) was used to observe the relevance
between the expression of hub genes and immune cell infiltration in
HCC. The abundance of six immune infiltrates (i.e., B cells, CD4+

T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) was
calculated using TIMER. And genetic alterations and genetic mutation
sites of core targets were detected using cBioPortal database.

2.2 Biological testing

2.2.1 Test compound and cell culture
AE (100 mg) was purchased from TCI Chemicals (Shanghai,

China), dissolved in dimethyl sulfoxide (60 mg: 1 mL), and stored
at −20°C. The final concentrations of AE used in different
experiments were reached with Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma Chemical). HepG2 cells (Institute of
Biochemistry and Cell Biology, CAS; SCSP-526,Shanghai, China)
were maintained in DMEM supplemented with 10% fetal bovine
serum (Gibco), 1% penicillin and streptomycin (100 U/mL), 1%

TABLE 3 Basic information of the database used for the screening of aloe-
emodin in the treatment of liver cancer.

Database Website

PubChem https://pubchem.ncbi.nlm.nih.gov

CTD https://ctdbase.org

PharmMapper http://lilab-ecust.cn/pharmmapper/index.html

SuperPred https://prediction.charite.de

TargetNet http://targetnet.scbdd.com/

Uniprot https://www.uniprot.org/

DisGeNET https://www.disgenet.org/

GeneCards https://www.genecards.org/

OMIM https://www.omim.org/

TTD https://db.idrblab.net/ttd/

jvenn https://jvenn.toulouse.inra.fr/app/index.html

Cytoscape https://cytoscape.org/

STRING https://cn.string-db.org/

PDB https://www.rcsb.org/

GEPIA http://gepia.cancer-pku.cn/

HPA https://www.proteinatlas.org/

Kaplan-Meier plotter https://kmplot.com/

cBioPortal https://www.cbioportal.org/

TIMER https://cistrome.shinyapps.io/timer/
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glutamax, and 1% sodium pyruvate 100 mM solution at 37°C in a
humidified incubator with 5% CO2.

2.2.2 Cell viability assay
Cell Counting Kit-8 (CCK8; Beyotime, Shanghai, China) assay

was used to analyze cell viability according to the instructions
provided by the manufacturer. Cells were seeded into 96-well
microplates (3 × 103cells/well in 100 μL of medium) and
cultured. AE (0, 50, 100, and 200 μM) was used to treat
HepG2 cells cells for 0, 12, 24, 48, 72 h. Subsequently,
CCK8 reagent (10 μL) was added to each well containing DMEM
(90 μL). CCK8 and DMEM were also added to one well not
containing cells (blank controls). Thereafter, a microplate reader
was used to measure the optical density (OD) at 415 nm wavelength.
Percentage viability was calculated using the following formula: %

Viability = (OD of treated cells − OD of blank control)/(OD of
negative control − OD of blank control) ×100.

2.2.3 Flow cytometry for the detection of cell
apoptosis

The Annexin V-fluorescein isothiocyanate/propidium iodide
(Annexin V-FITC/PI) Apoptosis detection Kit (Meilunbio, Shanghai,
China) was used to verify the effect of AE on HCC cell apoptosis.
Briefly, HepG2 cells were seeded into six-well plates (2 × 105cells/well)
and cultured overnight. Following adhesion, the cells were exposed to
different concentrations (0, 50, 100, and 200 μM) of AE for 24 h.
Subsequently, the cells were collected and incubated with Annexin
V-FITC/PI at room temperature in the dark for 15 min according to the
user manual. The proportion of apoptotic cells was determined using
BDAccuri™ C6Plus flow cytometry (Biosciences, United States).

FIGURE 2
Venn diagram displays the intersection genes of aloe-emodin and hepatocellular carcinoma. (The green circle represents a total of 306 aloe-
emodin-related genes screened from several databases, the blue portion represents a total of 1,143 liver cancer-related genes screened from databases,
and the cross section in the middle represents the 63 intersecting genes).
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2.2.4 mRNA expression of core targets in PI3K-AKT
pathway

We also evaluated the effect of AE on the transcription of
core genes in the PI3K-AKT signaling pathway. Cells were
seeded into six-well plates (2 × 105cells/well in 1 mL of
DMEM medium) and cultured. Previous studies have shown
that AE exerted its greatest inhibitory effect on HCC at the
concentration of 100 μM(Jeon et al., 2012). Therefore, when the
cells reached their logarithmic growth phase, 100 μM AE was
added to the wells. After 24 h of intervention, the cells were
collected, and TRIzol reagent (1 mL) was added to extract RNA
according to the instructions provided by the manufacturer. The
concentration of extracted RNA was measured using a BioDrop
spectrophotometer (Biochrom Ltd., United Kingdom).
Subsequently, the reverse transcription system (10 μL) was

constructed using a reverse transcription kit (Bio-Toyobo,
Japan). PowerCycler Gradient polymerase chain reaction
(PCR) (Analytik Jena, Germany) was used to run the
transcription reaction based on the following parameters:
37°C for 15 min, 98°C for 5 min, and 4°C for 60 min. After
transforming RNA into cDNA, the ChamQ Universal SYBR
qPCR Master Mix (Vazyme, Nanjing, China) was utilized to
perform quantitative PCR. The LightCycler®480 II (Roche,
Switzerland) was used to conduct the DNA amplification.

2.2.5 Western blot analysis of core targets in
PI3K-AKT pathway

HepG2 cells were spread evenly in 6-well plates at 2 × 105 per
well, and after the cells were adhered to the wall, 50 μM and
100 μM of aloe-emodin was used to intervene with for 24 h, and

FIGURE 3
Pie charts of GO functional enrichment analysis of aloe-emodin in hepatocellular carcinoma. [Red represents genes and brown represents
biological processes. The connecting lines between genes and biology represent the genes involved in each biological process. The size of the brown
circle represents the number of genes involved in the biological process. (A) Biological process of aloe-emodin in HCC. (B) Cellular component of aloe-
emodin in HCC. (C) Molecular function of aloe-emodin in HCC)].

FIGURE 4
Bubble plot of KEGG enrichment analysis. [(A) KEGG pathway enrichment analysis of aloe-emodin in hepatocellular carcinoma. The redder color of
the circle represents a smaller p-value, indicating a regulatory pathway that these intersecting genes aremore likely to be involved in. The size of the circle
represents the number of genes involved in regulating this pathway (B). Drug-target-pathway network diagram. The blue circles represent targets, the
green diamonds are pathways, and the red triangles is aloe-emodin. This figure suggests that aloe-emodin may exert its therapeutic effects on
hepatocellular carcinoma by modulating multi-targets and multi-pathways].
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then the cells were lysed with high-strength RIPA lysing solution
(1%Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1%
protease inhibitor and 1%phosphatase inhibitor) at 150 ul per
well for 20 min. The lysed cells were subsequently transferred to
1.5 mL centrifuge tubes, followed centrifugation (14,000 x g) at
4°C for 10 min. Then the centrifuged supernatant was extracted
and mixed with 20% loading buffer for Agarose Gel
Electrophoresis. Protein samples were then separated on the
10% PAGE gel and transferred to a nitrocellulose membrane.
The membrane was incubated with a blocking solution of 5% skim
milk powder and Tris-buffered saline with Tween-20 (TBST) for
2 hours at room temperature to block non-specific antibody
binding, and then washed three times with TBST for 10 min.
Then the membrane was incubated overnight at 4°C using primary
antibodies with dilutions of 1:5000. PI3KR1 antibody (60225-1-
Ig), AKT1 antibody (30203-2-Ig),p-AKT1 antibody (66444-1-Ig)
and GAPDH antibody (60004-1-Ig) were purchased from

Proteintech Group (Chicago, United States). The primary
antibody was washed 3 times with TBST at the end of the
incubation, followed by incubation with the secondary
antibody conjugated to horseradish peroxidase (Abways
Technology, Shanghai,China) with dilution of 1:10000 for 1 h
at room temperature. Then the protein bands was added with ECL
luminescence reagent (Meilunbio, Shanghai,China) for
visualization by ChemiDoc XRS + System (Bio-
Rad,California,United States). The Western blot results were
quantified using Fiji (2.14.0) software (Schindelin et al., 2012).

2.2.6 Statistical analysis
Statistical significance between two or multiple groups was

assessed using Student’s t-test and one-way analysis of variance
(ANOVA), respectively. The mean ± standard deviation was used to
plot the data. p-values < 0.05 indicate statistically significant
differences. The analysis was performed using the GraphPad
Prism software version 9.0 (GraphPad Software Inc., San Diego,
CA, United States of America) (Berkman et al., 2019).

3 Results

3.1 Network pharmacology based-analysis

3.1.1 Identification of targets and intersection
genes

A total of 127 geneswere identified fromPharmmapper according to
a norm fit score ≥0.4. In addition, 109 and 52 genes were selected from
SuperPred and TargetNet, respectively, based on a probability ≥0.5.
Moreover, 47 genes were selected from the Comparative
Toxicogenomics Database. Following the removal of duplicates, a
total of 306 drug-related genes were obtained.1143 disease-related
genes were identified from Disgenet, Genecards, OMIM, and

FIGURE 5
PPI network diagram. [(A) PPI network of potential targets for aloe-emodin therapy of hepatocellular carcinoma. (B)Core targets selected by degree
value. The color shade represents the size of the degree value].

TABLE 4 10 Hub genes identified using degree value by CytoNCA in Cytoscape.

Target name Full name Degree

AKT1 AKT serine/threonine kinase 1 106

TP53 Tumor protein p53 100

ALB Albumin 94

ESR1 Estrogen receptor 1 86

TNF Tumor necrosis factor 82

STAT3 Signal transducer and activator of transcription 3 82

CASP3 Caspase 3 80

EGFR Epidermal growth factor receptor 78

SRC SRC proto-oncogene 76
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Therapeutic Target Database. As shown in the Venn diagram (Figure 2),
63 genes were matched. Some intersecting targets could be present on
pathways associated with hepatocellular carcinoma development and
play important regulatory roles. Therefore, we next performed KEGG
enrichment analysis to understand the cancer pathways enriched by
these intersecting genes, which were the regulatory mechanisms of aloe-
emodin on hepatocellular carcinoma.

3.1.2 GO or KEGG enrichment analysis
These data were input into the Bioinformatics website for further

GO and KEGG enrichment analyses. GO analysis generated
3,646 entries which were classified in biological process (n = 3,116),
cellular component (n = 194), and molecular function (n = 336). The
top 10 entries of each type were filtered based on the p-value, and the
genes contained in each type are shown (Figure 3). Red nodes represent
genes; brown nodes represent diverse categories of GO; and the size of
brown nodes represents numbers of genes. The genes corresponding to
each category were connected with lines of different colors. The
biological process ontology mainly included cellular response to
chemical stress, negative regulation of apoptotic signaling pathway,
regulation of apoptotic signaling pathway, response to drug, etc. The
cellular component ontology was constituted by membrane raft,
membrane microdomain, membrane region, transcription regulator
complex, etc. The molecular function ontology included nuclear
receptor activity, ligand-activated transcription factor activity,
transcription co-factor binding, protein phosphatase binding,
transcription coactivator binding, etc. KEGG enrichment analysis
yielded 227 entries; the first 30 KEGG signaling pathways were

identified according to the p-value (Figure 4A). The main cancer
pathways which were enriched included apoptosis, proteoglycans in
cancer, the tumor necrosis factor (TNF) signaling pathway, tumor
protein p53 (TP53) signaling pathway, PI3K-AKT signaling pathway,
and prolactin signaling pathway. The genes involved in each signaling
pathway were visualized using Cytoscape, indicating that the activation
of multiple signals might play a role in the regulation of HCC after
treatment with AE (Figure 4B). Thus, aloe-emodin may exert its
therapeutic effects on hepatocellular carcinoma by modulating these
pathways enriched by these 63 intersecting genes. Aloe-emodin
inhibited the proliferation of liver cancer cells by modulating one or
some of the targets on these cancer pathways.

3.1.3 PPI network construction and selection of
core targets

The PPI network included a total of 63 nodes and 628 edges. The
average node degree and PPI enrichment p-value remained
19.9 and <1.0e-16, respectively, suggesting that these proteins were
at least biologically related. Thereafter, Cytoscape was used for PPI
visualization (Figure 5A). We used“Degree”algorithms in the plug-in
“CytoNCA” to calculate the levels of each protein. Degree represents the
number of lines in the protein node, and the more lines a protein has,
the more important role it has in protein interactions. (Table 4). The
size of the circle in the Figure represents the levels; moreover, the color
intensity of the circle increase in parallel with the levels of expression
(Figure 5B). The results showed that AKT serine/threonine kinase 1
(AKT1), TP53, albumin (ALB), estrogen receptor 1 (ESR1), TNF, signal
transducer and activator of transcription 3 (STAT3), caspase 3

TABLE 5 Basic information on the molecular docking of aloe-emodin and target proteins.

Ligand Targets Residues Hydrogen bond length Bindig energy (kcal/Mol)

Aloe-emodin AKT1 ASN-204; SER-205; LYS-268 2.6,2.4; 2.0,1.9; 2.3 −5.94

Aloe-emodin TP53 SER-227; GLU-221 2.2,2.8,2.4; 2.2 −5.08

Aloe-emodin ALB GLU-465; THR-478 2.6; 1.9 −4.46

Aloe-emodin ESR1 TRP-383; GLU-380 1.8; 2.1 −5.28

Aloe-emodin TNF EU-145; PHE-143; HIS-140 2.3; 2.5,2.2; 2.6,2.2 −4.33

Aloe-emodin STAT3 GLY-541; GLB-543; LYS-548 1.9; 2.5; 2.3 −3.03

Aloe-emodin CASP3 THR-77; LYS-224; ASP-228 2.5; 2.5; 2.2 −4.80

Aloe-emodin EGFR ASP-800; CYS-797; ARG-841; ASN-842 2.5; 1.8; 2.1; 1.9 −5.24

Aloe-emodin SRC ESR-36; GLU-37 2.3; 2.2 −5.14

UC8 AKT1 GLU-242 1.9 −4.54

R4F TP53 ALA-159; SER-227 1.9; 1.8 −4.48

MYR ALB GLN-417; LYS-534; TYR-497 2.4; 2.6; 2.1 −2.47

VQI ESR1 ASP-369; ALA-307; LEU-308 2.1; 2.0; 1.8 −5.07

SO4 TNF - - −5.43

KQV STAT3 - - 0.56

161 CASP3 ARG-101; LYS-105; ASP-146; ARG-149 1.7; 1.9; 3.0; 2.1 −2.72

03P EGFR ASP-984; GLN-812 2.1; 2.1 −3.43

821 SRC THR-106 2.2 −5.43
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(CASP3), epidermal growth factor receptor (EGFR), and SRC proto-
oncogene (SRC) may be the key factors in the treatment of HCC
using AE.

3.1.4 Molecular docking validation of AE and core
targets

The results of molecular docking showed that the values of the
docking energy of AE and candidate proteins were <0 (Table 5),
indicating that AE could spontaneously bind to the amino acids of
target proteins without external assistance (He et al., 2023).
Among them, AKT1, TP53, ALB, ESR1, STAT3, CASP3, and
EGFR had higher binding energy compared with their original
ligands. SRC had similar binding energy to that of its original
ligand. AKT1, TP53, ESR1, SRC, and EGFR had energy <−5 kcal/
Mol, demonstrating that these five core targets of AE play an
important role in the treatment of HCC(Li et al., 2021; Liu et al.,

2021; Li T. et al., 2022). The docking results were visualized
through PyMOL (Figures 6, 7). Dysfunction of a variety of
signaling pathways is associated with the occurrence and
progression of cancer. Previous studies have shown that AE
could exert its therapeutic effect on HCC by upregulating the
expression of TP53. The PI3K-AKT signaling pathway is a classical
dysregulated pathway involved in the pathogenesis of HCC, and
half of HCC patients present with mutations in PI3K-AKT.
Consistently, key targets of this signaling pathway were also
detected through our KEGG enrichment analysis (Figure 8). A
previous study demonstrated AE could suppress the proliferation
of lung cancer cells via the PI3K-AKT pathway (Wu et al., 2017b).
Therefore, we hypothesized that AE might suppress the
proliferation of HCC cells and promote apoptosis via the PI3K-
AKT signaling pathway. External validation of core targets and cell
experiments were conducted to confirm our hypothesis.

FIGURE 6
Molecular docking pattern of aloe-emodin and core target protein. [The gray portion on the left represents the surface location of aloe-emodin on
the protein receptor, and the right represents the name of the specific amino acid that aloe-emodin binds to each protein, and the length and number of
hydrogen bonds (A) Aloe-emodin-AKT1, (B) Aloe-emodin-TP53, (C) Aloe-emodin-ALB, (D) Aloe-emodin-ESR1, (E) Aloe-emodin-TNF, (F) Aloe-emodin-
STAT3, (G) Aloe-emodin-CASP3, (H) Aloe-emodin-EGFR, (I) Aloe-emodin-SRC)].
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3.1.5 External validation of core targets
3.1.5.1mRNA, protein expression levels and survival analysis
of core targets

The boxplot revealed the expression of five core targets in HCC
comparedwith normal hepatocytes. ThemRNA expression of ESR1was
lower in HCC cells versus normal hepatocytes; in contrast, the mRNA
levels of SRC were higher in HCC cells (p < 0.05). In addition, we also
performed a correlation analysis of themRNA expression of core targets
with the progression ofHCC.We found that the expression of ESR1was
markedly changed with the development of HCC (Figure 9).
Immunohistochemical staining images in the HPA database were
used to determine the protein expression of core targets. We found
elevated expression levels of ESR1, TP53, SRC, and EGFR. However, the
expression profile regarding SRC proteomics was not discovered
(Figure 10). Meanwhile, we found that the mRNA and protein
expression levels of EGFR, AKT1, SRC, and ESR1 were positively

correlated, while those of TP53 had a negative correlation
(Figure 11). The curve obtained from the Kaplan-Meier plotter
reflected the survival prognosis of HCC patients with high and low
expression of the core targets. Patients with high expression of EGFR,
ESR1, and TP53 were linked to a better prognosis versus those with low
expression. This finding indicated that high expression of these three
genes was a beneficial factor for the survival of patients with HCC.
Patients with high expression of SRC had poorer prognosis than those
with low expression. This evidence suggested that high expression of
SRC was a detrimental factor for patients with HCC (Figure 12).

3.1.5.2 Immune cell infiltration and genetic alteration of
core targets

The relationship between core targets and immune cell infiltration
in HCC was analyzed. CD4+ T cells, macrophages, neutrophils, and
dendritic cells showed a positive correlation, whereas CD8+ T cells,

FIGURE 7
Molecular docking pattern of original ligand and core target protein. [The gray portion on the left represents the surface location of their original
ligands on the protein receptor, and the right represents the name of the specific amino acid that their original ligands bind to each protein, and the length
and number of hydrogen bonds (A)UC8-AKT1, (B) R4F-TP53, (C)MYR-ALB, (D) VQI-ESR1, (E) SO4-TNF, (F) KQV-STAT3, (G) 161-CASP3, (H) 03P-EGFR, (I)
821-SRC)].
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B cells, and purity showed a negative correlation with the expression
of EGFR in HCC. The abnormal activation of PI3K was positively
associated with neutrophils and purity, while dysregulation of PI3K
was negatively associated with immune infiltration of CD4+ T cells,
CD8+ T cells, B cells, macrophages, and dendritic cells.
ESR1 expression was positively correlated with B-cell infiltration
and negatively correlated with the remaining five types of immune
cells. ESR1 and TP53 were positively correlated with these six types of
immune cells (Supplementary Figure S1A). Then, the mutation sites
of the core genes in hepatocellular carcinoma were demonstrated
(Supplementary Figure S1B). Mutation ratio and mutation types of
core targets were further recorded. Of the 348 patients with HCC, 270
(60%) presented with mutations in core targets (Supplementary
Figure S1C).

3.2 Experimental validation

3.2.1 AE inhibited hepatic cancer cell growth
in vitro

The chemical structure of AE is presented in Figure13A. Cell
viability was evaluated using the CCK8 assay to assess the anticancer
effects of AE on HepG2 cells. The results revealed that AE inhibited

the growth of HepG2 cells. Cell viability tended to decrease with the
increasing duration of treatment and concentration of AE (Figures
13B,C). These data confirmed the antiproliferative effect of AE
(p < 0.05).

3.2.2 AE induced apoptosis of HCC cells
Annexin V-FITC and PI were designed to detect apoptosis in the

early and late stages respectively. Cells in the lower right corner of
the cross door were early apoptotic cells stained by FITC. Those in
the upper right corner of the cross door were late apoptotic cells
stained by PI (Figure 13D). The proportions of early and late
apoptotic HCC cells increased in a concentration-dependent
manner (p < 0.05) (Figure 13E).

3.2.3 AE inhibited the mRNA expression of the
PI3K-AKT signaling pathway

The sequences of primers used in this study are shown in Table 6.
AE had a significant inhibitory effect on EGFR, PI3K, AKT1, and B-cell
lymphoma 2 (BCL2) (Figure 13F). Abnormal activation of PI3K-AKT
signal transduction in HCC is an important factor that inhibits
apoptosis and promotes the growth and proliferation of tumor cells.
This result demonstrated that AE could induce apoptosis in HCC cells
via the PI3K-AKT signaling pathway (p < 0.05).

FIGURE 8
PI3K-AKT signaling pathway (pink marks represent potential targets for aloe-emodin intervention).
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FIGURE 9
Hub gene expression in the GEPIA database. [(A) Box plot of hub gene mRNA expression levels in the GEPIA database. Red represents tumor tissues
and gray represents normal tissues. Through the images we can find that SRC is highly expressed in hepatocellular carcinoma tissues compared with
normal liver tissues and ESR1 is lowly expressed in hepatocellular carcinoma tissues compared with normal liver tissues. (B) Stage diagram of hub gene
mRNA expression levels and pathological stages in the GEPIA database. There is a statistically significant difference of the expression level of
ESR1 with its pathological stages (p < 0.05)].

FIGURE 10
Immunohistochemical images of hub gene protein expression levels in the HPA database. (100 μmon the lower left quarter means all images were
magnified 40 times under amicroscope. The protein levels of EGFR, AKT1, TP53, and ESR1 were higher in hepatocellular carcinoma tissues than in normal
liver tissues).
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3.2.4 AE inhibited the protein expression of the
PI3K-AKT signaling pathway

Western blot was carried out to further confirm the role of the
PI3K-AKT pathway in the treatment of hepatocellular carcinoma with
aloe-emodin. The protein expression level of PI3KR1, AKT and
phospho-AKT were attenuated by AE intervention compared with
HepG2 cancer cells without AE intervention (p < 0.05) (Figure 13G).
Together with qPCR results, our findings clearly illustrated the
inhibitory effects of AE onHCC through PI3K-AKT signaling pathway.

4 Discussion

HCC is the most common type of liver cancer and associated with
an extremely high mortality rate (Villanueva, 2019). The management
of HCC can be divided into two aspects, namely, drug therapy and
operative treatment. Nevertheless, after a long period of clinical
application, these two treatments have been dwarfed, especially for
patients with advanced liver cancer, so new anti-liver cancer methods
need to be urgently investigated. AE, a natural anthraquinone
derivative, has exhibited powerful antitumor effect against various
types of cancer (e.g., lung, gastric, colon, and liver). Our research
focused on the molecular mechanism underlying the effects of AE.
And network pharmacology has been applied to elucidate potential
mechanism involved in the treatment of HCC by AE. In vitro
experiments were also utilized to confirm the therapeutic effect and
mechanism of aloe-emodin.

First, we identified 63 overlapped targets presented in genes related
to AE and HCC. These genes might be the key to the therapeutic effects

of AE onHCC.GO analysis results of these 63 intersecting genes showed
that AE may exert its therapeutic effect on HCC via negative regulation
of the apoptotic process, response to drug, and positive regulation of the
apoptotic process. Previous studies have illuminated the pro-apoptotic
effect of aloe-emodin on HeLa cells (Li X. et al., 2022). It appears that
apoptosis happens to be the main pathway through which AE affects
HCC. The CCK8 assay and flow cytometry experiments further
demonstrated that AE could inhibit the proliferation and promote
the apoptosis of HepG2 cells in a concentration- and time-dependent
manner. Numerous signaling pathways can be involved in the
development of disease and drug action by acting on different
genetic targets. Some signaling pathways detected through the KEGG
analysis were related to inflammation and infection, which were
consistent with previous evidence on AE. The pathways involved in
cancermainly included the PI3K-AKT signaling pathway, TNF signaling
pathway, TP53 signaling pathway, and apoptosis. Hyperactivation of
PI3K-AKT is present in various cancer types and regulates a broad
spectrum of cellular mechanisms, including growth, apoptosis,
proliferation and cycle (Fruman and Rommel, 2014). Mutations of
multiple gene receptors in the cell membrane can activate the PI3K-AKT
signaling pathway. PI3K catalyzes the conversion of PIP2 into PIP3,
thereby phosphorylating the AKT serine/threonine kinase and
promoting activation of the PI3K-AKT signaling pathway.
Downstream members of the AKT pathway are associated with the
cell cycle, apoptosis, survival, proliferation, glucose metabolism, etc
(Khan et al., 2013). Dysregulation of the PI3K-AKT signaling
pathway is common in patients with HCC (Sun et al., 2021). Our
in vitro experiments directly demonstrated that AE could its inhibitory
effects onHCC by downregulation of PI3KR1, AKT1, p-AKT. The TNF

FIGURE 11
The diagram shows the correlation between the mRNA and protein levels of (A) EGFR, (B) AKT1, (C) TP53, (D) SRC, (E) ESR1 in hepatocellular
carcinoma. (From the figure, it can be seen that the mRNA expression of EGFR, AKT1, SRC, and ESR1 were expressed consistently with the protein
expression, while the mRNA expression of TP53 were expressed inversely with the protein expression).
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signaling pathway includes two types of receptors (i.e., TNFR1 and
TNFR2) that play different roles by binding to TNF. TNFR1 binds to
TNF to form a complex that can directly recruit CASP8 and initiate a
protease cascade reaction. In addition, the receptor-interacting protein
(RIP) in this complex induces the activation of NF-κB, which plays an
important role in cell survival, proliferation, inflammation, and immune
regulation (Chen and Goeddel, 2002). Binding of TNFR2 to TNF
generates a completely opposite effect compared with that of TNFR1.
TNFR2 significantly promotes cell migration and proliferation (Yang
et al., 2018). The tumor suppressor TP53 can be activated in response to
endogenous or exogenous stimulation (Kruiswijk et al., 2015). Activation
of TP53 is closely connected with cell cycle arrest, metabolism, apoptosis,
autophagy, senescence, etc. (Levine, 1997). Cancer patients with
TP53 mutations are less sensitive to anti-tumor therapy and have a
poorer prognosis versus those without mutations (Olivier et al., 2010).
The apoptosis signaling pathway has an indispensable relationship with
the occurrence of HCC. The activation of various signaling pathways
ultimately plays a role in cell death or survival by influencing the
apoptotic phenotype.

The top nine core targets (i.e., AKT1, TP53, ALB, ESR1, TNF,
STAT3, CASP3, EGFR, SRC) were selected by protein-protein network.
Proteins do not function as single substances, but as whole groups in
biological processes (Zhao and Jiao, 2022). Protein interactions play a
crucial role in biological signaling transduction and the transmission of

biological information is the essence for cells to perform their functions
(Mazandu et al., 2021) This signaling information is instrumental for us
to study the mechanisms of disease (Moustakas and Heldin, 2009).
Through PPI we were able to predict that these proteins with higher
interaction strengths were more likely to be the targets of aloe-emodin
therapeutic effect on hepatocellular carcinoma. Next, we conducted
molecular docking to further validate the interaction strength
between aloe-emodin and these nine proteins. Molecular docking
results further revealed that AKT1, TP53, ESR1, EGFR, and SRC had
energy <−5 kcal/Mol and more intense or similar binding energy than
their original ligands. The data suggested that these five genes might be
therapeutic targets. TP53 (p53) is a tumor suppressor protein. Under
stressful conditions, p53 tightly regulates cell growth by promoting
apoptosis and DNA repair. When cancer occurs, the p53 protein is
mutated and loses its regulatory capacity (Luo et al., 2017). Previous
studies have confirmed that AE triggers the accumulation of TP53,
thereby inducing apoptosis in HepG2 cells (Kuo et al., 2002). Our
survival analysis showed that hepatocellular carcinoma patients with
concomitant p53 gene activation have a higher likelihood of survival.
The discovery of the SRC gene arose from research on a chicken tumor
virus called Rous sarcoma virus (Martin, 2001). SRC is a member of the
tyrosine protein kinase family, which can regulate the apoptosis,
proliferation, migration, invasion, and metastasis of tumor cells (Kim
et al., 2009; Zhang et al., 2011; Dai and Siemann, 2019). Further research

FIGURE 12
Relationship between high and low expression of core targets and survival prognosis in patients with hepatocellular carcinoma. [High expression of
TP53 and ESR1 is beneficial to the survival of liver cancer patients, while high expression of SRC is harmful to patients (p < 0.05)].
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studies revealed that SRC was highly expressed in HCC (Yang et al.,
2021), which was consistent with our result of SRC mRNA expression
level in liver cancer. ESR1 has been established as a promoter of cancer in
breast and the female reproductive system. Several clinical investigations

have substantiated that mutation of ESR1 was associated with metastasis
in breast cancer (Fuqua et al., 2014). Nevertheless, ESR1 can be a
protective factor in HCC, and the progression of liver cancer is inhibited
by ESR1 signaling in vivo (O’Brien et al., 2021). Patients with high

FIGURE 13
Inhibition of hepatocellular carcinoma cell proliferation, promotion of apoptosis, and inhibition of PI3K-AKT pathway by aloe-emodin. [(A)Chemical
structure of Aloe-emodin. (B) Aloe-emodin inhibits HepG2 proliferation in a time-dependent manner. (C) Aloe-emodin inhibits HepG2 proliferation in a
concentration-dependent manner. (D) Aloe-emodin promotes HepG2 apoptosis. (E) Proportion of apoptotic cells under different concentration
treatments. (F) Aloe-emodin inhibits PI3K-AKT pathway at transcription expression level. (G) Aloe-emodin inhibits PI3K-AKT pathway at protein
expression level (p < 0.05)].
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ESR1 expression has higher survival rate compared with low
ESR1 expression according to our results.

Our study confirmed the inhibitory effects of AE on HCC and
the aberrant activation of PI3K-AKT was also affirmed in our
in vitro experiments. Through the decreased expression of
PI3KR1, AKT1, and BCL2 mRNA levels compared with control
group, we demonstrated that the inhibition of hepatocellular
carcinoma by aloe-emodin could be mediated through the PI3K-
AKT signaling pathway. The downregulation of PI3KR1, AKT and
phospho-AKT in protein levels further reinforced our findings. And
through network pharmacology, we also verified the involvement of
AE in other signaling pathways for the treatment of HCC.
Meanwhile, our article has some limitations. Our utilization of
the database is incomplete to the extent which leads to reduced
credibility of the selected genes. The signaling downstream of the
PI3K-AKT signaling pathway need to be further explored. Still and
all, our research affirms the therapeutic role of aloe-emodin on
hepatocellular carcinoma through the regulation of PI3K-AKT
signaling pathway.

5 Conclusion

This study elucidated the regulatory mechanism of AE in the
treatment of HCC through network pharmacology and cell
experiments. The results demonstrated that multiple signaling
pathways are involved in this process. AE could exert its
therapeutic effect by binding to EGFR, SRC, AKT1, TP53, and
ESR1. Our findings also verified the importance of the PI3K-AKT
signaling pathway through which AE might exert its therapeutic
effect on HCC. However, the regulatory effects of AE on signaling
targets downstream of the PI3K-AKT pathway remain unknown,
and more scientific practice needs to be engaged to improve the
understanding of the therapeutic effects of AE. In conclusion, our
study provides a more solid theoretical basis for the clinical
application and exploration of the mechanism of AE in the
treatment of HCC.
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TABLE 6 Basic information of primer sequences.

Oligo name Sequence (5′ to 3′) Length %GC TM

EGFR-F AGGCACGAGTAACAAGCTCAC 21 52.4 57.6

EGFR-R ATGAGGACATAACCAGCCACC 21 52.4 57.2

PIK3R1-F TGGACGGCGAAGTAAAGCATT 21 47.6 57.0

PIK3R1-R AGTGTGACATTGAGGGAGTCG 21 52.4 56.9

AKT1-F GTCATCGAACGCACCTTCCAT 21 52.4 57.9

AKT1-R AGCTTCAGGTACTCAAACTCGT 22 45.5 55.6

BCL2-F GGTGGGGTCATGTGTGTGG 19 63.2 59.5

BCL2-R CGGTTCAGGTACTCAGTCATCC 22 54.5 57.4

GAPDH-F GGAGCGAGATCCCTCCAAAAT 21 52.4 57.2

GAPDH-R GGCTGTTGTCATACTTCTCATGG 23 47.8 55.7
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