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Background:Osteoporosis is a prevalent bone metabolism disease characterized
by a reduction in bone density, leading to several complications that significantly
affect patients’ quality of life. The Achyranthes bidentata–Dipsacus asper (AB–DA)
herb pair is commonly used in Traditional Chinese Medicine (TCM) to treat
osteoporosis. This study aimed to investigate the therapeutic compounds and
potential mechanisms of AB–DA using network pharmacology, molecular
docking, molecular dynamics simulation, and experimental verification.

Methods: Identified compounds of AB–DA were collected from the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis Platform
(TCMSP), Traditional Chinese Medicine Information Database (TCM-ID), TCM@
Taiwan Database, BATMAN-TCM, and relevant literature. The main bioactive
ingredients were screened based on the criteria of “OB (oral bioavailability) ≥
30, DL (drug-likeness) ≥ 0.18.” Potential targets were predicted using the
PharmMapper and SwissTargetPrediction websites, while disease
(osteoporosis)-related targets were obtained from the GeneCards, DisGeNET,
and OMIM databases. The PPI network and KEGG/GO enrichment analysis were
utilized for core targets and pathway screening in the STRING and Metascape
databases, respectively. A drug–compound–target–pathway–disease network
was constructed using Cytoscape software to display core regulatory
mechanisms. Molecular docking and dynamics simulation techniques explored
the binding reliability and stability between core compounds and targets. In vitro
and in vivo validation experiments were utilized to explore the anti-osteoporosis
efficiency and mechanism of sitogluside.

Results: A total of 31 compounds with 83 potential targets for AB–DA against
osteoporosis were obtained. The PPI analysis revealed several hub targets,
including AKT1, CASP3, EGFR, IGF1, MAPK1, MAPK8, and MAPK14. GO/KEGG
analysis indicated that the MAPK cascade (ERK/JNK/p38) is the main pathway
involved in treating osteoporosis. The D–C–T–P–T network demonstrated
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therapeutic compounds that mainly consisted of iridoids, steroids, and flavonoids,
such as sitogluside, loganic acid, and β-ecdysterone. Molecular docking and
dynamics simulation analyses confirmed strong binding affinity and stability
between core compounds and targets. Additionally, the validation experiments
showed preliminary evidence of antiosteoporosis effects.

Conclusion: This study identified iridoids, steroids, and flavonoids as the main
therapeutic compounds of AB–DA in treating osteoporosis. The underlying
mechanisms may involve targeting core MAPK cascade (ERK/JNK/p38) targets,
such asMAPK1, MAPK8, andMAPK14. In vivo experiments preliminarily validated the
anti-osteoporosis effect of sitogluside. Further in-depth experimental studies are
required to validate the therapeutic value of AB–DA for treating osteoporosis in
clinical practice.

KEYWORDS

osteoporosis, Achyranthes bidentata, Dipsacus asper, network pharmacology, MAPK

1 Introduction

Osteoporosis is a prevalent bone metabolism disease that affects
over 200 million people worldwide (McDonald et al., 2021; Grewe
et al., 2022). It is characterized by a reduction in bone density, which

greatly increases the risk of fractures (NIH Consensus Development
Panel on Osteoporosis Prevention et al., 2001). Osteoporotic
fractures and associated complications can have a significant and
lasting impact on patients’ quality of life, sometimes even
threatening their lives, and place a considerable cost on society

FIGURE 1
Study flow chart to investigate the potential underlying mechanisms for AB–DA treatment of osteoporosis.
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and individuals (Compston et al., 2019; Liang et al., 2022). With the
aging of the global population, osteoporosis has become a pressing
health problem (Jiang et al., 2020).

Anti-osteoporosis drugs such as estrogen, raloxifene,
bisphosphonates, calcitonin, and parathyroid hormone (PTH)
are commonly used in clinical practice (Chen et al., 2022). These

medications, however, have side effects and severe responses
that restrict their long-term usage. For example,
bisphosphonates may cause jaw osteonecrosis and renal
impairment (Li et al., 2021). There is, therefore, an urgent
need to identify potential anti-osteoporosis drugs that are
both more effective and safer.

FIGURE 2
Chemical structure of 31 screened bioactive compounds. (A) Chemical structure of 19 bioactive compounds derived from AB. (B) Chemical
structure of 12 bioactive compounds derived from DA; sitosterol is common to both.

FIGURE 3
Data collection and hub gene screening for AB–DA against osteoporosis. (A) Venn diagram of the identified compounds of AB; data derived from
TCMSP, TCM@Taiwan, BATMAN-TCM, and TCM-ID databases. (B) Venn diagram of the identified compounds of DA; data derived from the TCMSP, TCM-
ID, and BATMAN-TCM databases and relevant literature. (C)Overlapping targets of AB–DA and osteoporosis, representing potential therapeutic targets.
(D) PPI network analysis applied in the STRING database. (E) Plug-ins MCODE and CytoHubba of Cytoscape software to screen hub genes. (F)
Degree value of top 10 hub genes.
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Traditional Chinese Medicine (TCM) has a rich history and has
been widely used in Asia to treat various diseases, including
osteoporosis (Huang et al., 2022). TCM is cost-effective and has
fewer side effects than chemosynthetic drugs, making it more
suitable for long-term use (Mukwaya et al., 2014). The
application of TCM in modern society provides a new pathway
for complementary and alternative medicine (CAM) treatment
(Chu et al., 2022). Over the years, many TCM treatments and
prescriptions have been used to treat various orthopedic diseases,

especially osteoporosis and fractures, with great success (Suvarna
et al., 2018; Peng et al., 2022). TCM’s prescription to treat
osteoporosis can also play a comprehensive role in regulating
body function and relieving pain (Feng et al., 2022). A Chinese
herb pair, generally composed of two kinds of herbal medicine, is the
essence of TCM prescriptions. Compared with all herbs in
prescriptions, studying and elucidating the complex
pharmacological mechanism of herb pairs is simpler and more
beneficial (Liu et al., 2020).

FIGURE 4
GO/KEGG enrichment analysis and D–C–T–P–Dnetwork of AB–DA in the treatment of osteoporosis. (A) Top 10 enriched GO items; left to right are
biological process (BP), cellular compound (CC), and molecular function (MF), respectively. (B) Bubble diagram of top 20 enriched KEGG pathways. (C)
GOchord chart presenting the corresponding relationship between core targets and pathways. (D)D–C–T networkmap; dark green diamond represents
drugs (AB and DA), light green hexagon represents 31 bioactive compounds of AB–DA, and circles colored orange to red represent targets with low
to high degrees. (E)MAPK signaling pathway mapped and colored by KEGG Mapper database; therapeutic targets of AB–DA are shown in red, targets of
AB–DA but without therapeutic effect on osteoporosis are shown in blue, and other targets of osteoporosis are shown in yellow. (F) D–C–T–P–D
network exhibits the regulatory mechanisms for AB–DA in the treatment of osteoporosis; dark green diamond represents drugs (AB and DA), light green
hexagon represents compounds of AB–DA, circles colored orange to red represent targets with low to high degrees, blue V icon represents enriched
core pathways, and yellow rectangle indicates the disease (osteoporosis). (G) the degree values of top 12 bioactive compounds.
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Achyranthes bidentata (AB), also known as Niu Xi, is included in
the Chinese, Japanese, and Korean pharmacopoeia (He et al., 2017).
Additionally, its dried roots are regularly used in TCM for
osteoporosis (Yan et al., 2019). A number of biological activities,
including anti-osteoporosis (He et al., 2010; Zhang et al., 2012; Jiang
et al., 2014; Suh et al., 2014; Zhang M. et al., 2018; Zhang S. et al.,
2018), anti-tumor (Jin et al., 2007), and anti-oxidant (Huang et al.,
2015), have been demonstrated by contemporary pharmacological
research on AB extracts. Dipsacus asper (DA), also known in
Chinese as Xu Duan —meaning “to rebuild fractures and unite
bones”—is discussed in Shennong’s Classic of Material Medicine,
which is the earliest source (Tao et al., 2020). DA can be used to treat
muscle pain and bone repair, golden sores, and collapses (Wu et al.,
2022). According to modern pharmacological investigations,
numerous disorders, including osteoporosis and osteoarthritis,
have been successfully treated with DA (Liu et al., 2019; Yu
et al., 2019; Zhang et al., 2019). Jiegudan capsules, which contain
AB and DA, are a common traditional Chinese medicine
prescription to treat osteoporosis. Although many compounds

have been isolated from AB and DA, the potential
pharmacological mechanisms of AB–DA herb pairs and their
interactions with osteoporosis-related targets and pathways
remain unclear and need further exploration.

In recent years, the use of network pharmacology has
become increasingly popular for exploring the interaction
network of TCM therapy (Shuai et al., 2020). Molecular
docking, a virtual screening technology that simulates the
behavior of small-molecule ligands at the binding sites of
receptor proteins, has also gained popularity for developing
novel drugs (Pagadala et al., 2017). This research aims to
elucidate the potential mechanism in TCM of the AB–DA
herb pair for treating osteoporosis, bioinformatics prediction
by network pharmacology, molecular docking, and molecular
dynamics simulation, and verify these via alkaline phosphatase
(ALP) activity, osteoblast mineralization assays, Western blot,
q-PCR, and an ovariectomy (OVX) osteoporosis mouse model.
A flow chart outlining the study’s approach is presented in
Figure 1.

FIGURE 5
Molecular docking between bioactive compounds and core targets. (A) Binding affinity heatmap of compound ligand–protein receptor complexes,
showing stronger binding affinity. (B) Binding details of the sitogluside–IGF1 complex (3D). (C) Binding details of the sitogluside–IGF1 complex (spatial
structure). (D) Binding details of intermolecular force types of the sitogluside–IGF1 complex (2D).
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FIGURE 6
The molecular dynamic simulations to calculate the binding stability of sitogluside–IGF1 complex. (A), The total energy (a) and potential energy (b)
curves of the whole ensemble in 300 ps simulation, showed the stability. (B), The temperature alteration of whole ensemble is controllable in 300 ps
simulation. (C), The RMSD curve present the conformational alternation of receptor made by ligand. (D), The RMSF curve showed the conformational
alternation of amino acid residues. (E), The hydrogen bond heat map of sitogluside–IGF1 complex.
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2 Materials and methods

2.1 Screening of bioactive compounds of
AB–DA

The TCM@Taiwan (http://tcm.cmu.edu.tw/zh-tw/) Database
(Chen, 2011), Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP
http://lsp.nwu.edu.cn/tcmsp.php) (Ru et al., 2014), BATMAN-
TCM (L et al., 2016) (a bioinformatics analytical tool for the
molecular mechanisms of TCM: http://bionet.ncpsb.org.cn/),
Traditional Chinese Medicine Information Database (Kang et al.,
2013) (TCM-ID http://bidd.group), and relevant literature were
utilized to acquire all identified AB–DA compounds. ADME
(absorption, distribution, metabolism, and excretion) properties
were applied to screen bioactive ingredients, and the screening

criteria were set as “oral bioavailability (OB)≥ 30, drug-likeness
(DL)≥ 0.18” (Gao et al., 2022) to screen the compounds from the
TCMSP database. Similarly, compounds from different sources were
screened in the SwissADME (Daina et al., 2017) database using their
pharmacokinetic properties (http://www.swissadme.ch).

2.2 Relevant targets of AB–DA compound
and osteoporosis

To predict potential targets based on their spatial configuration,
the compounds generated in the previous step were imported into
the SwissTargetPrediction (Daina et al., 2019) (http://www.
swisstargetprediction.ch/) and PharmMapper databases (Liu et al.,
2010) (http://www.lilab-ecust.cn/pharmmapper/). The UniProt ID of
the target was converted into a standardized gene name using the

FIGURE 7
In vivo OVX model and q-PCR experiments to validate the potential anti-OP effect of sitogluside. (A) μCT scanning of mice tibia showing the bone
loss alleviated by sitogluside’s efficiency. (B) Statistical results of osteoporosis phenotype parameters of OVXmice, including BMD, Tb. Th, BV/TV, and Tb.
N. (C) q-PCR results of osteogenic biomarker, which is shown to promote the osteogenic effect of sitogluside. (D) q-PCR results of OSX, which, treated
with sitogluside or combined with the specific inhibitor of JNK (SP600125) and p38 (SB203580), indicates that sitogluside could target the JNK
pathway to promote osteogenic genes in the treatment of OP.
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UniProt database (Holzhüter and Geertsma, 2022) (https://www.
uniprot.org). The keyword “osteoporosis” was searched in the
GeneCards (Barshir et al., 2021) (https://www.genecards.org/),
DisGeNET (Piñero et al., 2020) (https://www.disgenet.org), and
Online Mendelian Inheritance in Man (Li et al., 2012) (OMIM,
https://omim.org) databases to obtain relevant targets. Then, the
overlapping targets identified by Venn diagram were considered as
targets of AB–DA for the treatment of osteoporosis after merging and
removing duplicates.

2.3 PPI network for core target selection

To identify potential hub genes, a protein–protein interaction
(PPI) network was established in the STRING (Szklarczyk et al.,
2021) (http://string-db.org, Version 11.5) database, with a focus on
the anti-osteoporosis efficacy of AB–DA in Homo sapiens and an
interaction score threshold of 0.4. Topological analysis was
performed, and the core targets of AB–DA for treating
osteoporosis were accurately selected by using the Cytoscape
plug-ins MCODE (molecular complex detection) and CytoHubba
(Ye et al., 2022).

2.4 GO and KEGG pathway enrichment
analyses for the core pathways

Analysis of Gene Ontology (GO) functions, including cellular
component (CC), molecular function (MF), and biological process
(BP), and Kyoto Encyclopedia of Genome and Genome (KEGG)
pathway enrichment analysis, was utilized to clarify the key anti-
osteoporosis mechanism of the AB–DA herb pair. When entering
the targets into the Metascape database (http://www.metascape.org/),
the cut-off p-value, minimum overlap value, and concentration value
wereset to0.01,3,and1.5,respectively(Zhouetal.,2019).False-positive
rate (FPR) analysis was eliminated using the Benjamini–Hochberg
method with a q-value of 0.05 or lower (Zou et al., 2016). The enriched
findings were displayed as bar and bubble plots on the bioinformatics
website using the R package (http://www.bioinformatics.com.cn/).
Comprehensive information on the most significantly enriched
pathway was then extracted and colored (Kanehisa and Sato, 2020).
Finally, a herb–compound–target–pathway–disease network was
created using Cytoscape software (v.3.9.1, https://cytoscape.org/) to
present the complicated network of the AB–DA herb pair in the
treatment of osteoporosis.

2.5 Molecular docking to validate binding
affinity

The SwissDock platform (Grosdidier et al., 2011) (http://www.
swissdock.ch/) is an online molecular docking (MD) tool to
determine the binding affinity from each binding site between
small molecule ligands and receptor proteins. The X-ray
diffraction of the protein crystal structure of key targets were
downloaded from the Protein Data Bank (PDB) database (www.
rcsb.org) (Nakamura et al., 2022). The binding sites were ranked
based on their binding affinity scores, with the site having the

smallest score considered the best binding site. Discovery Studio
2019 software (https://www.3ds.com) was used to visualize the
binding details (Sultana et al., 2022).

2.6 Molecular dynamics simulation to
validate binding stability

To investigate the stability of the complexes between small-
molecule ligands and proteins, molecular dynamics simulations
(MDS) were performed using the Standard Dynamics Cascade
subunit of the Discovery Studio 2019 software. The
ligand–protein complex with the lowest binding affinity score
according to molecular docking analysis was selected (Hu et al.,
2022). In this simulation system, water molecules are used to fill the
solvent chamber, and Cl and Na+ ions are used to maintain an
electrically neutral state. The simulation time was set as 300 ps, and
the heating, balancing, and manufacturing phases were carried out
after the system was balanced by an NPT ensemble, which fixed the
pressure, temperature, and particle number. The analysis of the
locus was performed using root mean square fluctuation (RMSF),
root mean square deviation (RMSD), and hydrogen bond properties
to produce the results.

2.7 Reagent and cell culture

Sitogluside, identified as one of the most promising bioactive
compounds in the AB–DA herb pair, was further investigated for its
anti-osteoporotic effects and associated mechanisms. Sitogluside
was procured from the Dalian Meilunbio company and
solubilized in dimethyl sulfoxide (DMSO). Human fetal
osteoblast (hFOB) cells were obtained from the American Type
Culture Collection (ATCC) and cultured in six-well plates using
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% fetal bovine serum (FBS, Gibco, United States), 1%
penicillin–streptomycin (P/S), and 0.3 mg/mL Geneticin (G418).
The JNK-specific inhibitor (SP600125) and p38-specific inhibitor
(SB203580) were acquired from Absin (Shanghai). The cells were
maintained in a humidified sterile atmosphere at 34 °C. They were
subsequently treated with sitogluside when they reached a
confluence of 60%–80% per well.

2.8 Alkaline phosphatase activity, Alizarin red
staining mineralization, and osteoclast
differentiation assays

For alkaline phosphatase (ALP) activity analysis, the BCIP/NBT
Alkaline Phosphatase color development kit (Beyotime Institute of
Biotechnology, Shanghai, China) was used according to the
manufacturer’s procedure. Briefly, osteoblast precursor cells were
seeded at 3 × 104 cells/well in 24-well plates and grown for 14 days in
osteogenic media (DMEM +10% FBS +1% P/S +100M ascorbic acid
+2 mM 2-glycerophosphate +10 nM dexamethasone). The stained
culture plates were photographed using a microscope (Leica image
analysis system, Q500MC) and quantified using ImageJ software
(National Institutes of Health, Bethesda, MD, United States). In
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addition, a 2% ARS reagent (Beyotime Institute of Biotechnology)
was used to detect matrix mineralization, with the same protocol as
ALP assay except the dye. In addition, we also investigated the effect
of sitogluside on the osteoclast to fully illustrate the anti-OP effects.
The RAW264.7 (osteoclast precursor) cells were treated with a
different concentration of sitogluside and supplemented with
50 ng/mL receptor activator of NF-κB ligand (RANKL) as an
osteoclast formation stimulator. Cells were then fixed in
paraformaldehyde and stained with tartrate-resistant acid
phosphatase (TRAP) after the intervention.

2.9 Ovariectomized mouse model

This study received ethical approval from the Animal Care
Committee of the Second Xiangya Hospital of Central South
University. A total of 30 10-week-old female C57BL/6 mice were
procured from SLAC Laboratory Animal Co. Ltd. (SLACCAS,
Shanghai, China). They were acclimatized in specific pathogen-
free (SPF) cages for 1 week, during which measures were taken to
minimize animal suffering through the use of anesthesia and sterile
techniques during the surgical procedures. Bilateral ovariectomy
(OVX) or sham surgery (retroperitoneal incision without
ovariectomy) was performed based on group assignment, as
described in the following paragraph.

Following the surgical procedures, the mice were randomly
assigned to one of three groups: sham group (non-OVX mice,
n = 10), vehicle group (OVX mice, n = 10), and sitogluside
group (OVX mice intraperitoneally injected with sitogluside at a
dose of 10 mg/kg/day, n = 10).

After 12 weeks, all mice were euthanized by cervical dislocation,
and the right femurs were dissected and fixed in 4%
paraformaldehyde (PFA) for 48 h. High-resolution micro-
computed tomography (μCT40, Scanco, Zurich, Switzerland) was
employed for bone analysis at the following parameters: scanning
voltage = 80 kV, electric current = 80 μA, and resolution = 10 μm.
The relevant trabecular bone volume fractions (BV/TV), trabecular
number (Tb. N), trabecular thickness (Tb. Th), and trabecular
separation (Tb. Sp) were subsequently calculated to assess the
protective efficacy of sitogluside in OVX mice. In addition, to
investigate the biosafety of sitogluside in the OVX model, the
main organs were also obtained and detected using hematoxylin-
eosin (H&E) staining. The heart, liver, spleen, lung, and kidney were
hence fixed with formalin and embedded in paraffin cut to a 4 μm
section. They were dewaxed in xylene, rehydrated with
concentration gradient ethanol, and then stained with H&E for
histological examinations and morphometric analysis. The serum of
the mice was also collected to examine the biomarkers of alanine
aminotransferase (ALT), creatine kinase (CK), and blood urea
nitrogen (BUN).

2.10 Quantitative real-time PCR analysis

Human osteoblast (hFOB) cells were treated with 40 μM
sitogluside or combined with the specific inhibitor of JNK and
p38, depending on the groups, with ascorbic acid added in the
osteogenic media. The cells were then harvested using the RNeasy

Mini kit (QIAGEN, CA, United States) to extract total RNA
following the manufacturer’s protocol. Subsequently, cDNA
synthesis was performed using the reverse transcriptase kit
(Takara Biotechnology, Japan). Real-time PCR analysis was
performed using the SYBR Premix Ex Taq kit (Takara
Biotechnology, Japan). The PCR parameters were set as follows:
40 cycles (denaturation at 95 °C for 10 s and amplification at 60 °C
for 30 s). The resultant data were recorded as cycle threshold (Ct)
values, and the 2−ΔΔCT method was employed for further analysis of
RNA expression. In addition, to determine the modulated effect of
sitogluside with JNK and osteogenic genes, the knockdown and
activation of JNK expression were applied. ShRNA (shGnai3) was
thus used to downregulate the expression level of JNK, and ASM
was used as an activator to increase the p-JNK level (Meng et al.,
2021). The alterations of osteogenic biomarkers were detected via
q-PCR.

2.11 Western blot analysis

The hFOB cells were harvested by trypsin and then lysed in
RIPA for 30 min on ice. Cell lysates were centrifuged at 12,000 g for
15 min at 4 C; the supernatant was collected, and protein content
was quantified via the BSA protein assay kit following the
manufacturer’s instruction. Proteins were separated by
electrophoresis on 10%–12% SDS-PAGE at 100 V for 1.5 h and
transferred onto a 0.45 μm polyvinylidene difluoride (PVDF)
membrane at 250 mA for 1 h. The PVDF membrane was blocked
with 5% non-fat milk in TBST buffer for 1 h at room temperature
and incubated with primary antibody at 4 °C overnight. They were
then incubated with secondary antibody for 1 h at room temperature
and detected using the Chemiluminescence Kit.

2.12 Statistical analysis

Statistical analyses were conducted using GraphPad Prism
8.0.2 software (San Diego, United States). The data are presented
as means ± standard deviation (SD). Data comparisons were
performed using one-way analysis of variance (ANOVA), and
statistical significance was determined by a p-value of less than 0.05.

3 Results

3.1 Relevant targets of AB–DA compound
and osteoporosis

According to TCM databases, 185 components of AB and
82 compounds of DA were obtained in this work (Figures 3A,
B). After filtration by screening criteria, 19 potential bioactive
compounds of AB were obtained: arjunolic acid, baicalein,
baicalin, berberine, chondrillasterol, coptisine, delta-7-
stigmastenol, epiberberine, inophyllum E, kaempferol, oleanol,
palmatine, quercetin, sitogluside, spinasterol, spinoside A,
stigmasterol, wogonin, and β-ecdysterone. The 12 compounds
from DA were 2,6-dihydroxycinnamic acid, caffeate, cauloside A,
gentisin, isochlorogenic acid A, japonine, loganetin, loganic acid,
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loganin, sweroside, and sylvestroside III. Sitosterol is a common
compound of both AB and DA (details shown in Supplementary
Table S1; structures shown in Figure 2).

After merging and duplicating results, 413 potential targets
associated with 31 bioactive compounds were obtained, and
827 relevant targets of osteoporosis were acquired. Some
83 overlapped genes on Venn between AB–DA ingredients and
osteoporosis were regarded as potential therapeutic targets
(Figure 3C; details shown in Supplementary Table S2).

3.2 PPI network of AB–DA against
osteoporosis

A total of 83 targets of AB–DA against osteoporosis were
imported to the STRING database; after deleting the disconnect
targets, a PPI network with 78 nodes and 702 edges was constructed.
Cytoscape software was utilized for further visualization, and
plug-ins of MCODE and CytoHubba based on the topological
parameters were applied to screen the hub genes, including
AKT1, IGF1, CASP3, MMP9, EGFR, PPARG, ESR1, MAPK1,
MAPK8, and MAPK14 (Figures 3D–F).

3.3 GO and KEGG pathway enrichment
analyses of AB–DA against osteoporosis

GO and KEGG pathway enrichment analyses were performed in
the Metascape database, and 83 targets with 875 GO items were
enriched. It contained 772 biological processes (BP), 29 cellular
components (CC), and 74 molecular functions (MF) items (p < 0.01,
adjusted q < 0.05) (details shown in Figure 4A).

A total of 135 KEGG pathways were significantly enriched,
which mainly included the MAPK signaling pathway, osteoclast
differentiation, PI3K-Akt signaling pathway, and endocrine
resistance (Figures 4B, C). We further mapped and colored the
regulation details of the MAPK cascade in the KEGG mapper
database; in that map, red objects represent targets of AB–DA
against osteoporosis, blue objects show the targets of AB–DA
without the therapeutic effects of osteoporosis, and the other
untargeted targets of osteoporosis are colored yellow (Figure 4E).

3.4 Drug–compound–target–pathway–
disease network analysis

A drug–compound–target network was constructed using
Cytoscape to illustrate core compounds and targets (Figure 4D);
the core bioactive compounds included sitogluside, arjunolic acid,
chondrillasterol, stigmasterol, spinasterol, spinoside A, cauloside A,
sylvestroside III, β-ecdysterone, sitosterol, oleanol, and baicalin
(ranked by degree value) (Figure 4G). A
drug–compound–target–pathway–disease (D–C–T–P–D) network
was then constructed to exhibit the complex molecular mechanisms
of AB–DA anti-osteoporosis with multi-compound, multi-target,
and multi-pathway characteristics. The dark green diamond
represents the drugs (AB and DA), the light green hexagon
represents the compounds of AB–DA, the circles colored orange

to red represent targets with low to high degrees, the blue V icon
represents the core enriched pathways, and the yellow rectangle
indicates the disease (osteoporosis) (Figure 4F).

3.5 Molecular docking

The binding affinity between the core compounds and core
targets are shown by heatmap (Figure 5A). According to relevant
theories of molecular docking, the results of binding
affinity < −5.0 kcal/mol suggest that there is a good spontaneous
binding activity between molecule ligands and protein receptors,
and results < −7.0 kcal/mol are stronger. Our research results
showed that all the compounds had good binding activity with
core targets, with binding affinities ranging from −5.64 kcal/mol
to −9.43 kcal/mol. Sitogluside has the highest binding activity with
IGF1. As shown in Figures 5B–D, the molecular interaction forces
between IGF1 and sitogluside include π–donor hydrogen bond,
π–alkyl bond, conventional hydrogen bond, carbon–hydrogen
bond, and alkyl bond. The distances between the sitogluside
atoms and amino acid residues of IGF1 range from 1.72 Å
(number 1133, histidine residue) to 5.43 Å (number 1154,
phenylalanine residue).

3.6 Molecular dynamics simulation

The previous analysis of molecular docking showed the strong
binding affinity between AB–DA compounds and core targets, and
molecular dynamics simulation was utilized to identify the stability
of the ligand–protein complex after docking by conformation
alternation with potential energy under Newton’s law of motion.
After the 300 ps simulation, the energy and temperature alternate
tendency of the ensemble, hydrogen bond, RMSD, and RMSF
changes of ligand–receptor interaction were calculated for
stability analysis. RMSD was used to analyze the conformational
alternation of receptors made by the ligand, and the results showed
that curves and fluctuations only occurred at the beginning of the
80 ps simulation, and then tended to be stable (Figure 6A). The
RMSF curve was utilized to monitor the conformational alternation
of amino acid residues, and results show that the whole process is
stable with only some small random fluctuations—which also
reflects the whole ensemble’s stability to some extent (Figure 6B).
The same tendency is also observed in the hydrogen bond heatmap
(Figure 6C). The energies and temperature alternation of the whole
ensemble were also stable and controlled. Therefore, the overall
results exhibited good stability between the small-molecule
ligand–protein receptor complex.

3.7 Sitogluside promotes mineralization and
ALP activity in osteoblast without any effect
on osteoclast

To further investigate the impact of sitogluside on alkaline
phosphatase (ALP) activity and mineralization in osteoblasts, we
conducted ALP activity and ARS experiments. As illustrated in
Supplementary Figure S3D, the sitogluside group exhibited
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increased ALP activity and mineralization compared to the control
group. However, when shGnai3 intervention was introduced, the
stimulatory effect of sitogluside on ALP activity and mineralization
in osteoblasts was partially diminished. Subsequently, with the
addition of the p-JNK activator ASM, the promotion of ALP
activity and mineralization was restored. Additionally, our results
indicated that sitogluside might not have a significant effect on
osteoclast formation (Supplementary Figure S2).

3.8 Sitogluside administration protects
against OVX-induced bone loss

The OVX model was employed to further investigate the anti-
osteoporotic effects of sitogluside in vivo. As depicted in Figure 7A,
the μCT scan results demonstrated a significant loss of bone in the
vehicle group (OVXmice) compared to the sham group, confirming
the successful establishment of the OVX model. Additionally, the
sitogluside-treated group exhibited a mitigating effect on bone loss
compared to the vehicle group. Specifically, the sitogluside-treated
OVX mice demonstrated increased bone mineral density (BMD),
trabecular thickness (Tb. Th), bone volume fraction (BV/TV), and
trabecular number (Tb. N), while exhibiting a decreased bone-
surface-to-bone-volume ratio (BS/BV) and trabecular separation
(Tb. Sp). These findings collectively indicate the anti-osteoporotic
efficacy of sitogluside in the OVX mouse model (Figure 7B).
Furthermore, histological examination of major organs in the
drug-treated group, including the heart, liver, spleen, lungs, and
kidneys, was conducted using (H&E) staining. Additionally, mouse
serum was analyzed to assess cardiac, hepatic, and renal functions.
As depicted in Supplementary Figure S1, the experimental results
indicate that sitogluside did not exert significant toxic effects on
mouse organs.

3.9 Effects of sitogluside on osteoblast-
related genes

To gain further insights into the underlying mechanism of
sitogluside’s anti-osteoporotic effects, we examined the expression
of osteogenic-related genes using q-PCR and Western blot. As
shown in Figure 7, treatment with sitogluside for 48 h resulted in
a significant increase in the expression of osteogenic markers, such
as Osterix (OSX) and osteocalcin (OCN). These findings suggest
that sitogluside has the potential to promote osteogenic activity.
Additionally, we investigated the core target and pathway associated
with sitogluside in the treatment of osteoporosis via blocking the
JNK and p38 cascade (Figure 7D). Our results revealed that targeting
JNK could reduce the osteogenic efficacy of sitogluside while
blocking the p38 pathway without significant expression changes
of OSX. To further investigate whether sitogluside exerts its
osteogenic effects through the JNK pathway, we employed
shRNA to silence the JNK pathway. As shown in Supplementary
Figure S3C, compared to the sitogluside group, silencing the JNK
pathway with shRNA (shGnai3) resulted in a partial reduction in the
expression levels of osteogenic markers, including Runx2, OSX,
OCN, and ALP. However, when treated with the p-JNK activator
anisomycin (ASM), these osteogenic markers increase. Moreover, as

shown in Supplementary Figures S3A, B, the phosphorylation level
of p-JNK increases with sitogluside intervention. These further
suggest that sitogluside may promote osteoblast differentiation
through the JNK signaling pathway. We also investigated the
effect of sitogluside on the Smad 1/5/8 protein in the BMP
signaling pathway, which also showed increasing expression
(Supplementary Figures S3A, B).

4 Discussion

Osteoporosis is regarded as a silent disease without clinical
symptoms before complications are apparent (Anthamatten
and Parish, 2019). Current conventional therapy mainly
focuses on symptom prevention with long-term supplements
of calcium and on intervention to regulate bone metabolism.
The curative effects depend on the individual response and have
mild or severe side effects (Ensrud and Crandall, 2017). AB and
DA have been two of the most important herbs for bone diseases
in TCM therapy for more than 2,000 years (He et al., 2017; Tao
et al., 2020), and play an important role in many classic anti-
osteoporosis drugs. Recently, researchers have isolated more
than 100 ingredients and verified numerous bioactivities (He
et al., 2017; Tao et al., 2020). Our research obtained 31 bioactive
compounds of AB–DA based on the screening criteria and
applied the main therapeutic compounds to anti-
osteoporosis. Compounds of AB–DA such as baicalin,
kaempferol, oleanol, quercetin, and sitosterol are widespread
in herbal medicine, and many studies have shown their anti-
osteoporosis activity. It has been reported that kaempferol could
ameliorate the inhibitory effects of osteogenesis by activating
JNK and p38 pathways in the glucocorticoid-induced and
ovariectomy-induced osteoporosis model (Wong et al., 2019).
Vakili et al. (2021) also constructed an OVX osteoporosis model
treated with quercetin; results showed that it might modulate
cell autophagy and apoptosis to alleviate osteoporosis; the
potential mechanisms mainly involve Wnt, NF-κB, and
MAPK cascades. Moreover, asperosaponin VI is the quality
indicator of DA and could induce the differentiation of
osteoblastic cells by increased expression of BMP2, promote
osteogenesis and angiogenesis via regulating the OPG/RANKL
signaling pathway, and inhibit the differentiation of osteoclast
(Chen et al., 2022). β-Ecdysterone is an iconic ingredient of AB
and could upregulate the activity of alkaline phosphatase in
mesenchymal stem cells by modulating the expression of
estrogen receptors (Gao et al., 2008) and could also inhibit
apoptosis and autophagy induced by the dexamethasone of
osteoblast cells in vivo and in vitro (Tang et al., 2018). This
body of evidence suggests that the numerous bioactive
compounds retrieved from AB–DA have certain anti-OP
effects and partly confirm our findings; however, more
accurate and in-depth study is still necessary to explore the
AB–DA herb pair.

After screening the core therapeutic ingredients, a PPI network
was constructed to determine core targets; our results showed that
AKT1, CASP3, EGFR, ESR1, IGF1, MAPK1, and MAPK14 are
important for AB–DA treatment of osteoporosis. It is widely
reported that RAC-alpha serine/threonine-protein kinase (AKT1)
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regulates a series of biological processes, including cell proliferation,
growth, metabolism, and angiogenesis (Heron-Milhavet et al., 2011).
A targeted knockdown AKT1 mouse model showed that
AKT1 deficiency would induce osteoclast-osteogenesis disorder
and diminish the RANKL (NF-κB ligand) and MCSF
(macrophage colony-stimulating factor) receptors on
multinucleated osteoclasts. This is evidence for AKT1 as an
intermediator to regulate osteoblast and osteoclast differentiation
(Mukherjee and Rotwein, 2012). Wang et al. (2022) also showed that
modulating the expression of AKT1 could relieve osteoporosis.
Epidermal growth factor receptor (EGFR) could activate the
downstream of MEK-ERK, PI3K-AKT, and NF-κB signaling,
transferring extracellular cues into cellular response (Runkle
et al., 2016). It was reported that promoting the phosphorylation
of EGFR and ERK1/2 could alleviate the apoptosis induced by H2O2

of MC3T3-E1 (osteoblast cell) (Yang et al., 2019), exhibiting the
potential targeted therapeutic value of EGFR on osteoporosis.
Insulin-like growth factor I (IGF1) is the most abundant growth
promotor in the bonematrix and also regulates glycogen synthesis in
osteoblasts; it plays an important role in bone homeostasis
maintenance and osteoblast differentiation by mediating the
mTOR (mammalian target of rapamycin) signaling pathway
(Xian et al., 2012). The results of molecular docking and
molecular dynamics simulation also showed a stronger binding
affinity between AB–DA compounds and IGF1. All the
aforementioned evidence shows that the hub genes regulated by
AB–DA compounds are important and meaningful in the treatment
of osteoporosis.

The GO/KEGG pathway enrichment analysis of 83 potential
therapeutic targets showed that AB–DA anti-osteoporosis mainly
involved the MAPK signaling pathway, osteoclast differentiation,
and the PI3K-Akt signaling pathway. As shown in Figure 4E, the
colored target details of the MAPK pathway—ERK (MAPK1),
JNK(MAPK8), and p38 (MAPK14)—are three classical cascades
of the MAPK pathway, all of which were involved in the potential
mechanism of AB–DA treating osteoporosis. ERK cascade mediated
cell growth and differentiation via cytoskeletal rearrangement, and
upregulating the phosphorylation of ERK (p-ERK) might promote
osteoblast differentiation (Jing et al., 2019). The JNK and
p38 cascades would be activated by extracellular stimulation,
such as pro-inflammatory and physical stress. Lee et al. (2019)
showed that downregulated osteoclast-related gene expression was
associated with JNK cascade inhibition and that suppressing the
p38 cascade would also relieve osteoporosis (Wang et al., 2018). Liu
et al. (2022) indicated that vitexin could act against osteoporosis by
promoting osteogenesis and angiogenesis in an ovariectomized rat
model; the potential underlying mechanism might upregulate the
PI3K-AKT cascade. Regulated PI3K-AKT signaling could also
mediate the biological function of osteoclast (Jiang et al., 2022).
Thus, our research mined the herb databases and screened
therapeutic compounds of AB–DA with appropriate
pharmacokinetic properties. In summary, the 31 therapeutic
compounds have different targets and regulate different signaling
pathways with a synergistic effect against osteoporosis, showing the
complex molecular mechanisms with “multi-compound,” “multi-
target,” and “multi-pathway.”

Furthermore, in vitro and in vivo experimental validation were
both employed to explore the anti-osteoporotic effects of sitogluside

(also known as daucosterol) and its underlying molecular
mechanism. Some research has indicated the regulation of both
the osteoblast and osteoclast formation of AB–DA (He et al., 2017;
Tao et al., 2020). In this present research, our findings show the
potential effects of sitogluside with osteoblast differentiation and
mineralization, but the effects on osteoclast were not significant; this
was also verified by the collaborative therapeutic effects of AB–DA
compounds. Moreover, q-PCR and Western blot analyses showed
that sitogluside might upregulate the JNK cascade to promote
osteogenics, such as Runx2, Osx, and OCN, and knockdown or
block with the inhibitor could partly reduce its efficacy. Previous
research has also reported that daucosterol could increase the p-JNK
expression to exert an anti-prostate cancer effect (Gao et al., 2019).
Huang et al. reported that the JNK kinase pathway with downstream
OSX belonged to the non-canonical Smad-independent BMP
signaling pathway to promote osteogenics. Hence, our study
illustrated that a potential mechanism for sitogluside in the
treatment of osteoporosis was to promote the JNK pathway and
non-canonical BMP signaling to regulate downstream osteogenic
genes. In addition, the OVX mouse model also showed anti-
osteoporosis efficacy in vivo without observable toxicity. Our
results therefore highlight the potential therapeutic value of
sitogluside in the treatment of osteoporosis. However, further
systematic and in-depth research is required to explore other
bioactive compounds of the AB–DA combination.

There were some limitations to our research. First, it is based
on the bioinformatic analysis of network pharmacology,
molecular docking, and molecular dynamics simulation. The
results illustrated the core therapeutic ingredients, core
targets, and core signaling pathways of AB–DA in the
treatment of osteoporosis, although we have preliminarily
verified the anti-osteoporotic effect of sitogluside. Our findings
thus need more wet experiments in vitro and in vivo for
corroboration. The second limitation is that all the bioactive
compounds were filtered by the ADME properties; the content of
specific ingredients were not considered, and the toxicological
information was ignored. Therefore, the next task for us is to
comprehensively verify our network pharmacological findings
with experiments and evaluate the biosafety of these ingredients
for optimally utilizing AB–DA treatment of osteoporosis during
clinical practice (Zou et al., 2021).

5 Conclusion

This study represents the first comprehensive investigation
into the bioactive compounds of the AB–DA herb pair. Our
findings illustrate that the primary therapeutic compounds
responsible for treating osteoporosis are iridoids, steroids, and
flavonoids. Additionally, we propose that the underlying
mechanisms of action may involve targeting key core targets,
including MAPK1, MAPK8, and MAPK14, to modulate the
MAPK cascade (ERK/JNK/p38). Furthermore, in vitro and in
vivo experiments have provided preliminary validation of the
anti-osteoporotic effect of the most potent bioactive compound,
sitogluside. Nevertheless, further in-depth experiments are
needed to fully harness the therapeutic potential of AB–DA
for treating osteoporosis in clinical practice.
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