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Background: The extremely malignant tumour known as pancreatic cancer (PC)
lacks efficient prognostic markers and treatment strategies. The microbiome is
crucial to how cancer develops and responds to treatment. Our study was
conducted in order to better understand how PC patients’ microbiomes
influence their outcome, tumour microenvironment, and responsiveness to
immunotherapy.

Methods: We integrated transcriptome and microbiome data of PC and used
univariable Cox regression and Kaplan–Meier method for screening the
prognostic microbes. Then intratumor microbiome-derived subtypes were
identified using consensus clustering. We utilized LASSO and Cox regression to
build the microbe-related model for predicting the prognosis of PC, and utilized
eight algorithms to assess the immune microenvironment feature. The
OncoPredict package was utilized to predict drug treatment response. We
utilized qRT-PCR to verify gene expression and single-cell analysis to reveal
the composition of PC tumour microenvironment.

Results:We obtained a total of 26 prognostic genera in PC. And PC samples were
divided into two microbiome-related subtypes: Mcluster A and B. Compared with
Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage
and pathological grade. Immune analysis revealed that neutrophils, regulatory
T cell, CD8+ T cell, macrophages M1 and M2, cancer associated fibroblasts,
myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated
levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A
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were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-
fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin.
Moreover, we built a microbe-derived model to assess the outcome. The ROC
curves showed that the microbe-related model has good predictive performance.
The expression of LAMA3 and LIPH was markedly increased within pancreatic
tumour tissues and was linked to advanced stage and poor prognosis. Single-cell
analysis indicated that besides cancer cells, the tumour microenvironment of PC
was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH
and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils.

Conclusion: The intratumor microbiome-derived subtypes and signature in PC
were first established, and our study provided novel perspectives on PC prognostic
indicators and treatment options.

KEYWORDS

microbiome, pancreatic cancer, prognosis, tumour microenvironment, immunotherapy,
single-cell analysis

1 Introduction

An extremely dangerous tumour of the digestive tract,
pancreatic cancer (PC) has a sneaky onset and quick progression.
Clinical practise for PC lacks efficient therapeutic medications, and
the prognosis is extremely poor (Chi et al., 2022a; Zhang B. et al.,
2023). With over 459,000 new cases and 432,000 fatalities per year,
epidemiological studies have shown that PC is the seventh greatest
cause of cancer-related deaths globally (Ryan et al., 2014; Bray et al.,
2018). Since most PCs are not discovered until they are advanced,
the probability of surviving more than 5 years is low, at only 9%
(Mizrahi et al., 2020; Siegel et al., 2020). Surgery combined with
adjuvant chemotherapy is currently the standard treatment for PC.
However, due to the complexity and heterogeneity of the tumour
microenvironment of PC, it often leads to the generation of
treatment resistance and the differential response of different
patients to treatment. Therefore, the development of indicators
for early detection as well as risk assessment is an important
clinical problem to be solved urgently. So far, many studies have
developed biomarkers for early diagnosis and risk assessment of PC
from the perspectives of subcellular organelle function, tumour
immune response, and gene modification (Romero et al., 2020;
Xiao et al., 2022; Zhuo et al., 2022). Nevertheless, clinically effective
early diagnostic markers, therapeutic targets, and risk assessment
schemes in PC are still lacking.

Recent studies have shown that microbes have been considered
to influence the occurrence, development, metastasis, as well as
therapy response of different tumours, especially closely related to
tumour microenvironment and immune response (Sepich-Poore
et al., 2021). Many basic researches revealed that intratumor
microbiome could affect the progression, metastases, prognosis,
as well as immunotherapy of cancer patients by regulating
oxidative stress, Toll-like receptors-mediated immune response,
and tumour cell metabolism, involving mTOR, STAT3, Wnt,
MAPK and other signaling pathways (Pushalkar et al., 2018;
Wang et al., 2019; Wei et al., 2019). The diversity and
composition of microbiome play crucial functions in the
prognosis of PC, and can regulate the tumour immune
microenvironment (Riquelme et al., 2019; Kartal et al., 2022).
Mao et al. (Mao et al., 2022) have constructed the intratumor

microbiome signature for breast cancer to predict the outcome.
However, the correlation of intratumor microbiome with the
clinicopathological features, prognosis, tumour microenvironment
heterogeneity, and therapeutic response in PC is still not reported.

Our study first constructed intratumor microbiome-derived
subtypes for PC by integrating microbiome and transcriptome
data, and comprehensively analyzed the important role of
microbiome in clinicopathological characteristics, prognosis,
tumour immune microenvironment, and immunotherapy
response of PC patients. Meanwhile, we also identified the
microbiome-related differentially expressed genes and utilized
them to build a prognostic model. Subsequently, we verified the
LIPH and LAMA3 mRNA expression by real-time quantitative PCR
(qRT-PCR). Finally, we used single-cell analysis to further reveal the
cell subpopulation composition in pancreatic tumour
microenvironment, as well as the relative expression of LIPH and
LAMA3 in different cell subpopulations. This study can provide
innovative ideas for the outcome assessment as well as therapy
of PC.

2 Materials and methods

2.1 Data acquisition

Transcriptome data (containing 178 PC tissues and
4 paracancerous tissues) of PC, along with clinical data
(containing 185 PC samples), were downloaded via The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). Microbiome
data of PC were obtained via the cBioPortal platform (https://www.
cbioportal.org/) (Cerami et al., 2012; Mao et al., 2022). Gene
expression data and survival information for GSE62452
(containing 69 PC tissues), GSE28735 (containing 45 PC tissues
and paracancerous tissues), and GSE57495 (containing 69 PC
tissues and paracancerous tissues) datasets were obtained via the
Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.
nih.gov/geo/). Using “sva” R package to eliminate batch effects
between different datasets (Chi et al., 2023a). Microbiomes
associated with PC prognosis were identified by univariable Cox
regression analysis as well as Kaplan-Meier (KM) method (Chi et al.,

Frontiers in Pharmacology frontiersin.org02

Zhang et al. 10.3389/fphar.2023.1244752

https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1244752


2023b). These microbes associated with PC prognosis were used in
subsequent analyses.

2.2 Clustering analysis

Consensus cluster was carried out utilizing
“ConsensusClusterPlus” R package for PC samples based on the
relative abundance of prognosis-related microbes (Zhang X. et al.,
2023). The ideal clustering number was established based on the
cumulative distribution function (CDF) curve as well as variations of
CDF curve area. Using principal component analysis (PCA) as well
as t-distributed stochastic neighbor embedding (t-SNE) analyses to
demonstrate the accuracy of our clustering findings. Then the
prognosis and clinical pathological features between different
subtypes were further compared. Additionally, the differences in
the relative abundance of prognosis-associated microbes among
different subtypes were compared.

2.3 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) was performed using the
gene sets “c2.cp.kegg.v7.5.1.symbols.gmt” as well as
“c5.go.v7.5.1.symbols.gmt” to compare the putative mechanisms
behind the variations between the different intratumor
microbiome subtypes (Subramanian et al., 2005). GSEA
enrichment analysis was conducted using the R packages
“limma”, “org.Hs.e.g.,.db”, “clusterProfiler”, and “enrichplot”. An
adjusted p-value <0.05 were considered statistically significant.

2.4 Immune analysis

To analyze the differences in tumour immune
microenvironment among different intratumor microbiome
subtypes, the stromal, immune, and ESTIMATE score of every
PC patient were evaluated utilizing “ESTIMATE” algorithm
(Yoshihara et al., 2013). For evaluating the variations in
infiltrated levels of immune cell subset between different
subtypes, the infiltration scores calculated utilizing eight
algorithms were downloaded from the Tumor Immune
Estimation Resource database (TIMER, http://timer.cistrome.org/)
(Yuan et al., 2022). The Cancer Immunome Atlas (TCIA, https://
tcia.at/) is a database developed based on the TCGA database, which
analyzes the tumour immune microenvironment and tumor antigen
genes in 20 solid tumours (Charoentong et al., 2017). The
immunophenoscore (IPS) of PC patients from TCIA database
were downloaded. Then the differences in the responsiveness to
cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell
death protein 1 (PD-1) blockers between the different intratumor
microbiome subtypes were further analyzed.

2.5 Drug sensitivity analysis

OncoPredict is an R package created via Maeser et al., which is
used to predict drug response and biomarkers in vivo or in cancer

patients based on cell line screening data (Maeser et al., 2021).
OncoPredict was employed to assess the variations of drug
sensitivity between the patients with different intratumor
microbiome subtypes.

2.6 Differential expression analysis

In order to further analyze the differences between intratumor
microbiome subtypes, we utilized “limma” package to find
differentially expressed genes (DEGs), which were defined as
intratumor microbe-related DEGs (Chi et al., 2022b). The
filtering criteria were |log2FC| > 1, the adjusted p-value <0.05.
Additionally, PC patients of TCGA, GSE28735, GSE62452, and
GSE57495 datasets were merged for identifying DEGs between
PC tissues and paracancerous tissues. The DEGs obtained from
both approaches were then combined, then we utilized Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses to assess the biological processes and
functions they participate in (Ashburner et al., 2000; Kanehisa and
Goto, 2000). For assessing the prognostic value of these DEGs in PC,
consensus clustering was carried out. Survival times of the various
subtypes were compared using KM curve.

2.7 Construction of the prognostic signature

For accurately assessing the prognosis of individual PC samples, we
employed LASSO regression and Cox regression analysis to build a
prognostic signature utilizing intratumor microbe-related DEGs.
Samples from TCGA dataset were grouped into a training cohort as
well as an internal validation cohort utilizing “caret” package in a 5:
5 ratio, while samples from GEO dataset were utilized as an external
validation cohort. The score for every sample could be computed using
risk score formula. Additionally, a comparison with themedian score of
the training cohort was used to categorise each sample into high- or
low-risk score categories or groups. Utilizing KM curve to compare the
prognosis between different risk categories. The performance of the
signature was appraised by plotting time-dependent receiver operating
characteristic (ROC) curve as well as figuring out the area under the
curve (AUC).

2.8 Correlation of clinicopathological
features, independent prognostic analysis,
and construction of nomogram prediction
model

Our study combined the clinicopathological information of PC
samples with the risk scores and grouped them based on
clinicopathological characteristics. Risk scores between different
categories were compared utilizing Wilcoxon signed-rank test and
Kruskal–Wallis rank sum test. Utilizing univariable as well as
multivariable Cox regression to identify the independent prognostic
factor of PC. Subsequently, the clinicopathological features and risk
score were utilized for building a nomogram predictionmodel by “rms”
R package (Park, 2018). Utilizing calibration curve to appraise the
predictive accuracy of the nomogram.
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2.9 Expression analysis of model genes and
single-cell analysis

The GEPIA platform (http://gepia.cancer-pku.cn/) can allow for
gene differential expression as well as survival analysis utilizing data
of TCGA and GTEx databases (Tang et al., 2017). We utilized it to
examine the expressed variations in LAMA3 and LIPH at RNA level
between pancreatic cancer and normal tissues as well as the
prognostic significance of LAMA3 and LIPH. Human Protein
Atlas database (HPA, version22, https://www.proteinatlas.org/)
aims at creating expressed patterns in protein of cells as well as
tissues (Pontén et al., 2011). We can download
immunohistochemistry images of pancreatic cancer and normal
tissues via HPA platform. The tumor immune single-cell hub
database (TISCH, http://tisch.comp-genomics.org) as a single-cell
RNA-seq platform, focuses on the tumour microenvironment. It
was utilized to reveal the composition of various cell subpopulations
in the pancreatic tumour microenvironment and the relative
expressed level of LAMA3 and LIPH within various cell
subpopulations (Sun et al., 2021).

2.10 Real-time quantitative PCR

RNAs were extracted from cell lines, including a normal
pancreatic epithelial cell line (HPDE6-C7) as well as three PC
cell lines (CF-PAC1, PANC-1, and BxPC-3). The cDNAs were
prepared using Reverse Transcription Reagent. Subsequently,
PCR was performed. GAPDH served as the reference standard.
Utilizing the ΔΔCt method to illustrate the relative expressed level of
LAMA3 and LIPH. The primer sequences for human genes,
including LAMA3 (Forward: 5′-ATTGAATTGAGCACCAGC
GATAGC-3′, Reverse: 5′-CGATGAGAAGCCGTAGTCCAGAG-
3′) as well as LIPH (Forward: 5′-TACGGGACTAAATGTGAG
GC-3′, Reverse: 5′-CCTAGACTTACTCCGATCATG-3′).

2.11 Data analysis

Data analysis was performed utilizing R (Version 4.1.2) as well
as GraphPad Prism 9. For normally distributed quantitative data,
utilizing t-test to compare the differences. For non-normally
distributed quantitative data, utilizing Wilcoxon signed-rank test
to compare the differences between two groups, and utilizing
Kruskal–Wallis rank sum test to compare the differences among
multiple groups. KM curve was utilized to compare the prognosis
between different subtypes or categories. The
p-value <0.05 represented remarkable significance.

3 Results

3.1 Identification of intratumor microbiome-
derived subtypes

The workflow of our research was depicted in Figure 1. Totally
1406 genera were obtained from the pancreatic tumour
microenvironment through the cBioPortal platform

(Supplementary Table S1). Univariate Cox regression analysis
identified 63 genera associated with the prognosis of PC, with
24 genera associated with a favorable prognosis and 39 genera
associated with a poor prognosis (Figure 2A). KM method
identified 44 genera related to PC patients’ prognosis
(Supplementary Table S2). The intersection of genera obtained
from univariate Cox regression analysis and Kaplan-Meier
analysis yielded 26 genera: Alpharetrovirus, Azohydromonas,
Bacteroides, Carlavirus, Chlamydia, Derxia, Domibacillus,
Francisella, Gemmatimonas, Halothermothrix, Histophilus,
Holospora, Hylemonella, Indibacter, Mesoplasma,
Natronolimnobius, Paucibacter, Pseudarthrobacter,
Puniceibacterium, Riemerella, Ruegeria, Runella, Silanimonas,
Starkeya, Vagococcus, and Xanthobacter (Figure 2B). Correlation
analysis revealed complicated relationships among the 26 genera.
For example, Vagococcus had positive correlations with
Puniceibacterium, Halothermothrix, Derxia, Starkeya,
Pseudarthrobacter, Domibacillus, Gemmatimonas, and
Silanimonas, while had negative correlations with Ruegeria,
Chlamydia, Francisella, Carlavirus, and Alpharetrovirus
(Supplementary Figure S1). Subsequently, consensus clustering
was carried out utilizing the abundance of 26 genera. The CDF
curve as well as the area variation under the curve were depicted in
Supplementary Figures S2, S3, which indicated the ideal k value was
2. The consensus matrix at k = 2 was shown in Figure 2C. PC
patients were divided into two intratumor microbiome-derived
subtypes: Mcluster A and Mcluster B. PCA as well as t-SNE can
clearly differentiate samples of Mcluster A and Mcluster B (Figures
2D, E). Survival analysis indicated a significantly better prognosis for
Mcluster A compared to Mcluster B (Figure 2F). Compared to
Mcluster B, a higher proportion of T1-2 stage, N0 stage, M0 stage,
Stage I, and pathological grade G1 was observed in Mcluster A
(Figures 2G–K). Furthermore, the abundance differences of
26 genera in different subtypes were analyzed. The results
showed that Azohydromonas, Derxia, Holospora, Hylemonella,
Paucibacter, Silanimonas, Starkeya, and Xanthobacter had
remarkably higher abundance in Mcluster A, while
Alpharetrovirus, Indibacter, Riemerella, and Ruegeria had
remarkably higher abundance in Mcluster B (Figure 2L).

3.2 Gene set enrichment analysis

For investigating putative molecular mechanisms between different
intratumor microbiome-derived subtypes, we performed GSEA
analysis. In “c5.go.v7.5.1.symbols.gmt” gene set, we found that
Mcluster A was mainly enriched in cell body, presynapse, gated
channel activity, as well as potassium channel activity (Figure 3A).
And Mcluster B was significantly more abundant in cytokine-mediated
signaling pathway, immune response-regulating signaling pathway,
immunoglobulin production, as well as membrane invagination
(Figure 3B). In “c2.cp.kegg.v7.5.1.symbols.gmt” gene set, Mcluster A
was found to be enriched in pathways containing oxidative
phosphorylation, Parkinson’s disease, ribosome, and steroid
hormone biosynthesis (Figure 3C). Conversely, Mcluster B was
enriched in pathways including cytokine-cytokine receptor
interaction, ECM-receptor interaction, focal adhesion, JAK-STAT
signaling pathway, etc (Figure 3D).
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3.3 Immune analysis

We evaluated the variations in immune infiltration between
distinct subtypes using various algorithms to investigate the
association between intratumor microbiome-derived subtypes and
tumour microenvironment. The “ESTIMATE” algorithm showed
that Mcluster B had higher stroma as well as ESTIMATE score

(Figures 4A, C), whereas there was no discernible difference in
immunological score between Mcluster A and Mcluster B
(Figure 4B). For investigating the infiltrated variations in
immune cell subpopulations between different subtypes, the
infiltrated scores of immune cell subpopulations were obtained
from the TIMER database. We found that neutrophils, regulatory
T cell (Treg), CD8+ T cell, macrophages M1 and M2, cancer-

FIGURE 1
The study’s general procedure.
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FIGURE 2
Identification of intratumor microbiome-derived subtypes. (A) Volcanic map of prognostic genera screened by univariable Cox regression. (B)
Intersection of prognostic genera found by univariable Cox regression and Kaplan-Meier method. (C) Heatmap of consensus matrix when the cluster
number was 2. PCA (D) and t-SNE (E) can clearly distinguish samples betweenMcluster A and B. (F) Survival curves for Mcluster A and B. The proportion of
T (G), N (H), M (I), TNM (J) stage and pathological grade (K) between Mcluster A and B. (L)Differences in genera abundance between Mcluster A and
B. (ns, no significant; *p < 0.05; **p < 0.01; ***p < 0.001).
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associated fibroblasts, myeloid dendritic cell, as well as activated
mast cell exhibited remarkably higher infiltration levels within
Mcluster B (Figure 4D). Then, we further utilized the TCIA
platform to investigate the response of PC to immune checkpoint
blockers. In the matter of overall immunophenoscore,
immunophenoscore for PD-1 blocker, and immunophenoscore for
CTLA-4 and PD-1 blocker, our investigation could not detect any
remarkable variations between the two subtypes (Figures 4E, F, H).
However, the immunophenoscore forCTLA-4 blocker had a remarkably
higher score inMcluster A (Figure 4G), suggesting that patients with PC
in Mcluster A may have a better response to CTLA-4 blockers.

3.4 Drug sensitivity analysis

Drug adjuvant therapy is an important means for enhancing PC
patients’ prognoses. Nevertheless, the emergence of primary and
secondary drug resistance often leads to treatment failure. To
enhance the curative impact, it is crucial to choose medications
with high sensitivity for various patients. Our results showed that
patients in Mcluster A were more sensitive to 5-fluorouracil,

cisplatin, gemcitabine, irinotecan, oxaliplatin, sorafenib, and
epirubicin (Figures 5A–G), while patients in Mcluster B were
more sensitive to sapitinib and osimertinib (Figures 5H, I). Thus,
intratumormicrobiome-derived subtypes can provide new strategies
for personalized therapy in PC.

3.5 Identification and analysis of
differentially expressed genes

To explore the transcriptional differences in genes among
different intratumor microbiome-derived subtypes, we identified
4716 DEGs, with 281 genes having higher expression within
Mcluster A as well as 4435 genes having higher expression
within Mcluster B (Figure 6A). Additionally, between pancreatic
tumour tissue and paracancerous tissues, we identified 230 DEGs,
with 107 genes had higher expression within tumour tissues and
123 genes had higher expression within paracancerous tissues
(Figure 6B). Further intersection analysis obtained 29 DEGs
(Figure 6C). To analyze the biological processes associated with
these 29 genes, we carried out GO as well as KEGG analyses. GO

FIGURE 3
Gene set enrichment analysis. The remarkably enriched pathways of Mcluster A (A) and B (B) in “c5.go.v7.5.1.symbols.gmt” gene set. The remarkably
enriched pathways of Mcluster A (C) and B (D) in “c2.cp.kegg.v7.5.1.symbols.gmt” gene set.
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analysis identified the enriched pathways such as cell-matrix
adhesion, endoderm development, endoderm formation,
endodermal cell differentiation, extracellular matrix organization,
formation of the primary germ layer, gastrulation, and integrin-
mediated signaling pathway (Figure 6D). KEGG analysis revealed
the enriched pathways containing amoebiasis, dilated
cardiomyopathy, ECM-receptor interaction, focal adhesion,
human papillomavirus infection, hypertrophic cardiomyopathy,
PI3K-Akt signaling pathway, and small cell lung cancer (Figure 6E).

We further carried out consensus clustering analysis to
investigate the prognostic usefulness of these 29 microbiome-
related genes in PC. Five subtypes were identified for all PC
patients: MRDEGclusters A through E (Figure 6F). PCA as well as
t-SNE analysis clearly distinguished the five subtypes (Figures
6G, H). KM curves indicated that the five subtypes’ prognoses
varied significantly, with MRDEGcluster B having the best
prognosis and MRDEGcluster D having the worst prognosis
(Figure 6I).

FIGURE 4
Immunoassay. The stroma (A), immune (B) as well as ESTIMATE (C) scores betweenMcluster A and Bwere evaluated using “ESTIMATE” algorithm. (D)
Variations in infiltrated levels of different immune cell subpopulations in Mcluster A and B. The overall immunophenoscore (E), immunophenoscore for
PD-1 blocker (F), CTLA-4 blocker (G), and immunophenoscore for CTLA-4 and PD-1 blocker (H) between Mcluster A and B.
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3.6 Building and testing a prognostic
signature

For predicting each PC patient’s prognosis more accurately, we
constructed a prognostic signature utilizing microbiome-derived
DEGs. Firstly, 21 genes linked to PC patients’ prognosis were
found using univariable Cox regression analysis Supplementary
Figure S4. Then, utilizing LASSO regression to eliminate genes
overfitting (Figures 7A, B). Finally, utilizing multivariable Cox
regression to construct the prognostic model, which included two
genes: LIPH and LAMA3 (Figure 7C). PC patients with low-risk
scores had considerably longer overall survival times than those with

high-risk scores (Figure 7D). The prognostic model’s dependability
was further attested to by the internal as well as external validation
sets (Figures 7E, F). The AUC values of 1, 3, and 5-year survival rates
were 0.726, 0.743, and 0.832 in the training set (Figure 7G), 0.713,
0.670, and 0.669 in the internal validation set (Figure 7H), and 0.568,
0.642, and 0.847 in the external validation set (Figure 7I), indicating
good predictive value. PCA and t-SNE analyses clearly distinguished
patients between high- and low-risk categories in the training
(Figure 7J), internal validation (Figure 7K), and external
validation sets (Figure 7L).

We used a Sankey diagram to illustrate the association between
the prognostic model and intratumor microbiome-derived subtypes

FIGURE 5
Drug sensitivity between Mcluster A and B. Patients with Mcluster A had high sensitivity to 5-Fluorouracil (A), Cisplatin (B), Gemcitabine (C),
Irinotecan (D), Oxaliplatin (E), Sorafenib (F), and Epirubicin (G). Patients with Mcluster B were more sensitive to Sapitinib (H) and Osimertinib (I).
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(Figure 8A). PC patients in Mcluster A had considerably lower risk
scores than those in Mcluster B (Figure 8B). Besides, it was found
that Riemerella had remarkably higher abundance in patients with
high scores, while Azohydromonas, Derxia, Hylemonella,
Paucibacter, and Silanimonas had remarkably higher abundance
in patients with low scores (Figure 8C). Subsequently, we further
investigated the association between gene expression and microbial
abundance. Results showed that the abundance of Riemerella was
remarkably related positively to the expression of LIPH and
LAMA3, while the abundance of Silanimonas and Hylemonella
was remarkably related negatively to the expression of LIPH and
LAMA3 (Figure 8D).

3.7 Correlation of clinicopathological
features, independent prognostic analysis,
and construction of nomogram prediction
model

Risk scores did not differ remarkably between groups generated
by age, gender, and M stage (Figures 9A, B, E). Patients with
N1 stage had higher risk scores compared to those with
N0 stage, which were approaching statistical significance
(Figure 9D). Patients’ risk scores were noticeably greater in those
with higher T stage, TNM stage, and pathological grade (Figures 9C,
F, G). Additionally, age and risk score were found to be independent

FIGURE 6
Identification and analysis of differentially expressed genes (DEGs). (A) Volcanic map of DEGs between Mcluster A and B. (B) Volcanic map of DEGs
between PC tissues and normal tissues. (C) Intersection of DEGs. (D) GO enrichment analysis. (E) KEGG enrichment analysis. (F) Heatmap of consensus
matrix when the cluster number was 5. PCA (G) and t-SNE (H) can clearly distinguish samples among different MRDEGclusters. (I) Survival curves among
different MRDEGclusters.
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FIGURE 7
Building and testing a prognostic signature. (A) The coefficient path graph. (B) The cross validation curves. (C) Coefficient of LAMA3 and LIPH.
Survival curve of the training (D), internal validation (E), and external GEO (F) dataset. The time-dependent ROC curve of the training (G), internal validation
(H), and external GEO (I) dataset. PCA and t-SNE for the training (J), internal validation (K), and external GEO (L) dataset.
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poor prognostic variables of PC in both the univariable and
multivariable Cox regression analyses (Figures 9H, I). Then, for
further evaluating the prognosis of PC patients, we created a
nomogram prediction model utilizing clinicopathological
variables and risk scores (Figure 9J). The calibration curve
demonstrated that our nomogram model had strong predictive
value because the predictive 1, 3, and 5-year survival rates were
relatively close to the actual 1, 3, and 5-year survival rates
(Figure 9K).

3.8 Drug sensitivity analysis in different risk
groups

For exploring the potential relationship of risk score and drug
sensitivity, the “oncoPredict” package was utilized to predict the
drug sensitivity of PC patients. The results indicated that PC with
low scores had higher sensitivity to cisplatin, epirubicin, fludarabine,
irinotecan, KRAS (G12C) Inhibitor-12, oxaliplatin, and sorafenib
(Figures 10A–G). On the other hand, PC with high scores exhibited
higher sensitivity to trametinib and sapitinib (Figures 10H, I).

3.9 Experimental validation and single-cell
analysis

Utilizing GEPIA platform, the mRNA expression of
LAMA3 and LIPH between pancreatic tumour and normal
tissues was investigated. The expression of LAMA3 was markedly
increased within pancreatic tumour tissues (Figure 11A) and was
linked to the advanced stage and poor prognosis (Figures 11B, C).
Similarly, LIPH also exhibited higher expression in pancreatic
tumour tissues (Figure 11D) and was linked to the advanced
stage and poor prognosis (Figures 11E, F). Furthermore, the
immunohistochemistry images from HPA database showed that
compared to normal pancreatic tissues, the protein expression of
LAMA3 and LIPH was higher within PC tissues (Figures 11G, H).
To further validate the reliability of our study, we performed qRT-
PCR to confirm the expression of LAMA3 and LIPH. Similarly,
LAMA3 and LIPH had higher expressed levels in PC cell lines than
normal pancreatic cell lines (Figures 12A, B). Lastly, we performed
single-cell analysis using the single-cell dataset GSE111672
(containing 3 samples and 6122 cells) to further uncover the cell
subpopulations within the tumour microenvironment of PC. In

FIGURE 8
The correlation of microbiome-derived subtypes and signature. (A) Alluvial diagram for the microbiome-derived subtypes and signature. (B)
Differences in risk score of Mcluster A and Mcluster B. (C) Variations in genera abundance between the high- and low-risk group. (D) Correlation of
LAMA3 and LIPH and different genera. (ns, no significant; *p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 9
Independent prognostic analysis and constructing nomogram prediction model. The comparison of risk score in different age (A), gender (B), T (C),
N (D), M (E), TNM (F) stage, and pathological grade (G). Forest map for univariate (H) andmultivariate (I) Cox regression. (J)Nomogram prediction model.
(K) Calibration curve of nomogram model.
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addition to cancer cells, the tumour microenvironment of PC is also
rich in monocytes/macrophages, endothelial cells, and fibroblasts
(Figures 13A–C). LIPH and LAMA3 exhibited relatively higher
expression in cancer cells and neutrophils (Figures 13D–G).

4 Discussion

PC, a highly lethal malignancy characterized by early metastasis
and resistance to anticancer treatments, has become the seventh
most common cause of cancer-related death globally. Despite the
rapid development of diagnostic and therapeutic strategies for

malignancies, patients with PC are frequently discovered at a late
stage, and current treatments have little effect (Zhu et al., 2018).
Therefore, there is significant clinical value in developing
biomarkers for PC early diagnosis and risk assessment. Recently,
the regulatory function of microbiome in cancer occurrence and
development has been intensively studied, which can influence the
occurrence, progression, metastasis as well as therapy response in
various tumours. In this study, the important role of microbiome in
the outcome, tumour microenvironment heterogeneity, and
treatment response for PC patients was investigated by
integrating microbiome and transcriptome data, and first
constructed the microbiome-related subtypes and signature in PC.

FIGURE 10
Drug sensitivity in the high- and low-risk group. Patients with low-risk scores were more sensitive to Cisplatin (A), Epirubicin (B), Fludarabine (C),
Irinotecan (D), KRAS (G12C) Inhibitor-12 (E), Oxaliplatin (F), and Sorafenib (G). Patients with high-risk scores had higher sensitivity to Trametinib (H) and
Sapitinib (I).
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We constructed the intratumor microbiome-derived
subtypes by consensus cluster analysis. Survival analysis
results suggested that Mcluster A had a remarkably better
outcome compared with Mcluster B. What’s more, compared
with Mcluster B, the proportion of T1-2 stages, N0 stages,
M0 stages, Stage I, and pathological grade G1 in Mcluster A
was higher. Next, we analyzed the abundance differences of
26 genera in the two subtypes, and found that
Azohydromonas, Derxia, Holospora, Hylemonella, Paucibacter,

Silanimonas, Starkeya, and Xanthobacter have significantly
higher abundance in Mcluster A, and Alpharetrovirus,
Indibacter, Riemerella, and Ruegeria have significantly higher
abundance in Mcluster B. It has been reported that
Alpharetrovirus can achieve almost complete elimination of
leukemia cells by enhancing the toxicity of NK cells to
leukemia cells (Suerth et al., 2016). We speculated that the
tumour cells of PC patients with Mcluster B were more
malignant. In order to enhance the killing ability of NK cells

FIGURE 11
LAMA3 and LIPH. The expressed levels of LAMA3 in PC tumour tissue was remarkably higher withinmRNA level (A), and it was linked to TNM stage (B)
and poor prognosis (C). The expression of LIPH in PC tumour tissue was significantly higher within mRNA level (D), and it was linked to TNM stage (E) and
poor prognosis (F). Immunohistochemical images indicated that the expression of LAMA3 (G) and LIPH (H) was significantly higher in pancreatic tumour
tissues. (*p < 0.05).
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to fight against tumour cells, the body upregulated the level of
Alpharetrovirus. Based on the above findings, microbiome was
tightly connected with PC patients’ outcomes.

Then, we delved into the molecular mechanisms underlying the
differences in prognosis of patients with different subtypes of PC.
GSEA revealed that signaling pathways associated with ion-gated

FIGURE 12
The validation of gene expression. LAMA3 (A) and LIPH (B) have higher expressed levels in PC cell lines than normal pancreatic cell lines. (*p < 0.05;
**p < 0.01; ***p < 0.001).

FIGURE 13
Single-cell analysis. (A)Annotation based on sample source. (B)Annotation based on cluster results. (C)Annotation based on the various cell subsets.
(D) The distribution of LAMA3 expression within various cell subsets. (E) The distribution of LIPH expression within different cell subsets. (F) The relative
expressed level of LAMA3 within various cell subsets. (G) The relative expressed level of LIPH within various cell subsets.
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channels in tumour cells in patients with Mcluster A were
remarkably enriched, while the activity of immune response
signaling pathways in patients with Mcluster B were significantly
enhanced. Ion-gated channels are responsible for tumour cell
proliferation and are key factors in PC progression and invasion
(Yee et al., 2012; Liu et al., 2018), and are also a key therapeutic
target for PC (Yee, 2016). The microbiome with high abundance in
Mcluster A patients may influence the prognosis of PC by regulating
ion-gated channels. What’s more, previous studies have revealed that
microbiome can participate in the immune response, which resulted in
the prognostic change in patients with PC. Therefore, microbiome can
influence the progression as well as outcome of PC through regulating
ion-gated channels or immune response pathways. We further
analyzed the relationship between intratumor microbiome-derived
subtypes and tumour microenvironment heterogeneity, and found
that Mcluster B had higher stromal and ESTIMATE scores.
Neutrophil, Treg, CD8+ T cell, macrophages M1 and M2, cancer
associated fibroblasts, myeloid dendritic cell, as well as activated
mast cell had remarkably higher infiltrated levels within Mcluster B.
CD8+ T cells can recognize and eliminate tumor cells through multiple
mechanisms (Borst et al., 2018; Terrén et al., 2019; Philip and
Schietinger, 2022). Studies indicated that the higher infiltrated levels
of CD8+ T cell were linked to significantly longer survival time of PC
patients (Carstens et al., 2017). Therefore, intratumor microbiome are
likely to participate in shaping the tumour immunemicroenvironment,
thereby affecting the immune response of tumor cells. The response of
different intratumor microbiome-derived subtypes to immunotherapy
was evaluated in this study.We found that the use of a CTLA-4 blocker
was found to be more likely to be beneficial for PC patients inMcluster
B. Therefore, the study of microbiome in the tumour
microenvironment of PC can help provide new strategies for the
selection of immunotherapy for patients with PC.

For accurately predicting the prognosis for every PC patient, we
utilized microbiome-related DEGs to construct and validate a
prognostic signature. KM curves indicated that the survival time of
PC patients with high-risk scores was remarkably lower, and ROC
curves also indicated that the signature had a good predictive
performance. What’s more, we explored the differences in the
abundance of microbiome between the high and low-risk categories,
and found that Riemerella had a significantly higher abundance in PC
with high-risk scores and was linked to the poor outcome of PC.
Riemerella is a Gram-negative rod-shaped bacterium that can cause
acute infectious disease as well as an inflammatory response (Afrin et al.,
2018; Li et al., 2023). However, Riemerella has not been reported in PC.
Our study provides a new therapeutic target for PC. Correlation analysis
indicated that the abundance of Riemerella was significantly linked
positively to the expression of LIPH and LAMA3. LIPH is a new
member of the triglyceride lipase family located on human
chromosomes. The protein encoded by LIPH can hydrolyze
triglycerides and phospholipids to produce fatty acids, which can
then promote intestinal absorption or serve as an energy source or
energy reserve (Jin et al., 2002). Studies indicated that LIPHhad a higher
expressed level in breast tumor tissue, and it affected the distant
metastasis of breast cancer by regulating CAPN2 and paxillin (Seki
et al., 2014; Zhang et al., 2020). According to the findings of our
investigation, LIPH can be exploited as a possible therapeutic target for
PC because it was found to be increased expression in PC tissues and to
be related to the disease’s progression and bad prognosis. The

LAMA3 gene can encode the α3 chain of laminin-5, which is an
important cell membrane component and regulates cell adhesion and
migration (Zhang et al., 2018; Xu et al., 2019). Studies indicated that
LAMA3 is a promising target for cancer therapy since it may accelerate
the growth and invasion of tumour cells (Xu et al., 2019; Shu et al.,
2023). This agrees with our research suggesting that LAMA3might be a
useful treatment target for PC.

Drug-assisted therapy is one of the main ways to treat PC and
can help improve the prognosis of patients. For example, modified
FOLFIRINOX (containing oxaliplatin, irinotecan, leucovorin, and
fluorouracil) and gemcitabine, as first-line chemotherapy regimens
for PC, could result in 5-year disease-free survival rates of 26% and
19%, respectively, for patients with PC after surgery (Conroy et al.,
2022). But the intricate PC tumour microenvironment frequently
promotes the development of treatment resistance, which ultimately
results in the failure of medication therapy. To improve treatment
efficacy and prognosis, it is crucial to determine the medications to
which each patient is sensitive. Our research assessed the
relationship between intratumor microbiome-related subtypes
and drug sensitivity. PC patients in Mcluster B or high-risk
group had higher sensitivity to sapitinib, but PC patients in
Mcluster A or low-risk group had higher sensitivity to cisplatin,
irinotecan, oxaliplatin, sorafenib, and epirubicin. These findings
provide a basis for individualized treatment of PC patients and
are of great significance for improving the efficiency of drug
treatment. The anti-tumor medication sapitinib has dual anti-
tumor actions and can act on tumour blood vessels and tumour
cells simultaneously (Gao et al., 2020; Attwa et al., 2023).Whether its
curative effect on PC will be affected by intratumor microbiome and
the specific mechanism still needs further basic research to explore.

However, our research has a few limitations that should be
acknowledged. Firstly, this study belonged to retrospective research
and was performed mainly based on data from public databases.
Therefore, the prediction capability of our prognostic model should
be validated in the prospective clinical research with large samples.
Secondly, further investigation of molecular mechanism is required
for exploring the function of intratumor microbiome in the
occurrence and development of PC.

5 Conclusion

In the present study, we first constructed intratumor
microbiome-derived subtypes in PC, and clarified the crucial role
of microbiome in the outcome, tumor microenvironment shaping,
and immunotherapy response for PC through multi-omics analysis,
providing the novel microbiome-related targets for the treatment of
PC. Meanwhile, we also built a prognostic signature utilizing
intratumor microbiome-related genes to predict PC patients’
outcomes. In conclusion, this study can provide a novel insight
for the prognosis prediction and treatment decision-making of PC.
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