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Part of the broader glycosphingolipid family, gangliosides are composed of a
ceramide bound to a sialic acid-containing glycan chain, and locate at the plasma
membrane. Gangliosides are produced through sequential steps of glycosylation
and sialylation. This diversity of composition is reflected in differences in
expression patterns and functions of the various gangliosides. Ganglioside
GD2 designates different subspecies following a basic structure containing
three carbohydrate residues and two sialic acids. GD2 expression, usually
restrained to limited tissues, is frequently altered in various neuroectoderm-
derived cancers. While GD2 is of evident interest, its glycolipid nature has
rendered research challenging. Physiological GD2 expression has been linked
to developmental processes. Passing this stage, varying levels of GD2,
physiologically expressed mainly in the central nervous system, affect
composition and formation of membrane microdomains involved in surface
receptor signaling. Overexpressed in cancer, GD2 has been shown to enhance
cell survival and invasion. Furthermore, binding of antibodies leads to immune-
independent cell death mechanisms. In addition, GD2 contributes to T-cell
dysfunction, and functions as an immune checkpoint. Given the cancer-
associated functions, GD2 has been a source of interest for immunotherapy.
As a potential biomarker, methods are being developed to quantify GD2 from
patients’ samples. In addition, various therapeutic strategies are tested. Based on
initial success with antibodies, derivates such as bispecific antibodies and
immunocytokines have been developed, engaging patient immune system.
Cytotoxic effectors or payloads may be redirected based on anti-GD2
antibodies. Finally, vaccines can be used to mount an immune response in
patients. We review here the pertinent biological information on GD2 which
may be of use for optimizing current immunotherapeutic strategies.
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1 Introduction

Although GD2-specific immunotherapies have shown clinical successes, our
understanding of the biology of GD2, both in normal development and tumorigenesis,
remains insufficient. Improving insufficient knowledge would make it easier to optimize
anti-GD2 immunotherapies in a more informed and logical manner. GD2 ganglioside is a
sialic acid-containing glycosphingolipid, whose structure is characterized by two distinct
portions with different physicochemical properties. It is composed of a hydrophobic
ceramide and a hydrophilic oligosaccharide containing one or more negatively charged
sialic acids. Thus, gangliosides are amphiphilic molecules that have the ability to establish
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both hydrophilic and hydrophobic interactions. The ceramide, a
sphingoid base linked to a fatty acid, interacts with other membrane
lipids and allows GD2 to be tightly anchored to the cell surface. This
ceramide tail is generally shared by all other gangliosides species.
The oligosaccharide head is oriented towards the extracellular
environment and interacts, via mild hydrophilic bonds, with
neighboring membrane molecules or extracellular ligands. The
term ganglioside GD2 is based on Svennerholm’s nomenclature
(Svennerholm, 1963), where G stands for ganglioside, D for the
number of sialic acid residues, and 2 corresponds to the order of its
migration on thin-layer chromatograph. According to the IUPAC-
IUBMB nomenclature, GD2 is named II3Neu5Ac2-Gg3-Cer, where
the Roman number indicates the position of the sugar residue to
which the sialic acid is linked considering the glucose in first
position, the exponent Arabic number stands for the linkage
position, the index Arabic number is for the number of sialic
acids, and Gg3 indicates the following specific ganglio
trisaccharide sequence: β-GalNAc-(1-4)β-Gal-(1-4)β-Glc-(1-1)
(Chester, 1998). Thus, the chemical structure of human GD2 is
β-GalNAc-(1–4)[α-Neu5Ac-(2-8)-α-Neu5Ac-(2–3)]β-Gal-(1-4)β-
Glc-(1-1)Ceramide (Figure 1). Interestingly, GD2 has a universal
base structure in all known species in contrast to proteins with

variable homology between human and nonhuman species.
However, the term ganglioside GD2 actually identifies a mixture
of different GD2 subspecies with either different ceramides or sialic
acids. These structural modifications impact both the biological and
immunological properties of GD2 molecules as we will review here.

2 Biological significance of
GD2 structural diversity

As described above, GD2 ganglioside is an amphiphilic
molecule that combines a hydrophobic ceramide to a
hydrophilic oligosaccharide, containing two negatively charged
sialic acids at most physiological pH values (Figure 1). Variations
in GD2’s oligosaccharide moiety mostly occur on the sialic acids,
and are detected either by classical chromatographic techniques
combined with antibody staining (Diaz et al., 2009), or, by
combination of chromatography coupled with mass
spectrometry analysis with higher sensitivity (Zarei et al.,
2010). For example, 9-O-acetylated sialic acids on GD2 have
been detected (Fleurence et al., 2017). This modification occurs
during GD2 biosynthesis. The O-acetyl group is added by an
O-acetyltransferase, possibly CASD1 (Baumann et al., 2015), to
the carbon 7 of the terminal α2-8 linked sialic acid residue. This
acetyl group further migrates to carbon 9 when exposed to higher
pH (Fleurence et al., 2017). While the addition of the O-acetyl
group on the terminal sialic acid of GD2 decreases polarity and
hydrophobicity of the gangliosides, it does not affect general
conformation: O-acetyl GD2 (OAcGD2) can be detected by most
anti-GD2 monoclonal antibodies (Ye and Cheung, 1992;
Fleurence et al., 2017). O-Acetylated gangliosides are often
found in developping tissues and are regarded as onco-fetal
antigens present on different tumors (Kohla et al., 2002),
representing amounts up to 50% that of GD2 (Fleurence et al.,
2017). As such, this GD2 subspecies, with more restricted normal
expression than GD2 (see below) is of the most therapeutical
significance.

The main sialic acid residue found in human ganglioside is
N-acetylneuraminic acid (Neu5Ac), as an exon of the CMAH gene,
encoding for the cytidine monophosphate-N-acetyl-neuraminic
acid hydroxylase, the enzyme responsible for the synthesis of
Neu5Gc is deleted in humans (Bashir et al., 2020). Another sialic
acid variant is uses N-glycolylneuramic acid (Neu5Gc), usually
observed in non-human mammals such as mice, and occasionally
incorporated in human gangliosides from the diet through the
consumption of red meat (Varki, 2009; Bashir et al., 2020). The
exogenous incorporation is particularly seen in cancer cells due to
their increased metabolism and induction of the sialin sialic acid
transporter by hypoxia (Labrada et al., 2018). The presence of
Neu5Gc leads to the development of varying levels of antibodies,
which can lead to chronic inflammation and exacerbate cancer in
mice models (Hedlund et al., 2008; Bashir et al., 2020). Noteworthy,
Neu5Gc-containing GD2 gangliosides have been described (Nishio
and Furukawa, 2004), which could affect the affinity of anti-GD2
antibodies which binds in part to the terminal sialic acid (Ahmed
et al., 2013), to limited effect due to ganglioside recycling and the
minimal proportion these modified gangliosides represent (Nishio
and Furukawa, 2004). This might represent, however, an

FIGURE 1
Structure of ganglioside GD2. (A)GD2 is an amphiphilic molecule
that combines a hydrophobic ceramide to a hydrophilic
oligosaccharide, containing two N-acetyl neuraminic acids. (B)
Natural substitutions of sialic acids in GD2. Neu5Ac, N-acetyl
neuraminic; Neu5Gc, N-glycolyl neuraminic acid; Neu5,9Ac2, 9-O-
acetyl-5-N-acetyl neuraminic acid.
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opportunity to increase immunogenicity of GD2 gangliosides in
vaccination efforts.

Disialogangliosides are also prone to form lactones at low pH.
Lactones are cyclic esters of hydroxycarboxylic acids, formed
through intramolecular esterification. GD3-lactone was identified
in mouse brain (Gross et al., 1980) and human melanoma cells
(Kawashima et al., 1994). However, no such report exists for GD2-
lactone. Nonetheless, synthetic lactonization of GD2 was described,
and demonstrated to possess increased immunogenicity. GD2-
lactones induced an active humoral response in vaccination
efforts, producing superior results compared to native GD2
(Ragupathi et al., 2003).

Structural heterogeneity is also found in the ceramide moiety.
This can consist of different fatty acids and/or sphingoid bases. The
latter consist of sphinganine, sphingosine, and phytosphingosine of
different chain lengths, which can be further O-acetylated (Pruett
et al., 2008; Hama, 2010). The most common sphingoid base found
in human gangliosides is sphingosine (Ando and Yu, 1984; Sarbu
et al., 2021), but GD2 ceramide can also include eicosphingosine,
sphinganine, or phytosphingosine (Ando and Yu, 1984; Colsch et al.,
2011; Merrill, 2011; Sibille et al., 2016). In addition, fatty acids can be
unsaturated, saturated, oxygenated (Ladisch et al., 1989), and of
different lengths, ranging from C16 to C24 (Ando and Yu, 1984;
Sjoberg et al., 1992; Serb et al., 2009; Balis et al., 2020; Fabris et al.,
2021). The functional consequences of the heterogeneities of the
ceramide tail remain largely unknown. There are some indications
that the lipid anchor composition determines ganglioside insertion
into glycolipid-enriched microdomains through hydrophobic bonds
with phospholipids, cholesterol, and glycosylphosphatidylinositol-
anchored proteins (Furukawa et al., 2012). Within these
microdomains, gangliosides interact with signaling molecules
including receptor tyrosine kinases (Furukawa et al., 2012).
Changes in the composition of the ceramide tail can thus result
in the modification of plasma membrane fluidity and consequently
in the deregulation of cellular signals. Furthermore, GD2 with
shorter fatty acid chain (16 or 18 carbons) are more likely to be
shed in the extracellular environment than longer chain GD2, in
which they will be able to produce effects on bystander cells,
including immunosuppression (Li and Ladisch, 1991; Ladisch
et al., 1994). As another example, both fatty acid chain length
and sphingoid structure influence the immunogenicity of
glycosphingolipids, and thus, are of particular relevance to
GD2 vaccination efforts (Okuda et al., 2019; Okuda, 2021). The
ceramide moiety can also mask the receptor function of the
oligosaccharide head through interaction with membrane
cholesterol (Kolter, 2012). This observation raises inquiries about
the asymmetrical distribution of glycosphingolipids in cellular
membranes and tissue as GD2 detection and targeting is
mediated by the oligosaccharide head. Indeed, ganglioside
profiling should take into account both the oligosaccharide and
the ceramide moieties.

3 GD2 biosynthesis

While the heterogeneity of the lipid tail results from the
ceramide biosynthesis at the endoplasmic reticulum (Mandon
et al., 1992; Sandhoff et al., 2018), the structural diversity of

GD2 ganglioside oligosaccharide is generated within the Golgi
apparatus as thoroughly reviewed elsewhere (Sandhoff et al.,
2018; Sandhoff and Sandhoff, 2018). Intracellular synthesis of
GD2 ganglioside begins with formation of the ceramide core. The
synthesis of the sphingoid base is initiated by the condensation of a
coenzyme A-activated fatty acid with L-serine, catalyzed by the
serine palmitoyltransferase (SPT), to form 3-keto sphinganine
(Ikushiro and Hayashi, 2011). Although palmitoyl CoA (16C) is
the main substrate, SPT can also metabolize other acyl-CoAs, from
C14 to C18, forming a variety of long-chain bases that differ by
structure and function. In fact, SPT consists of three different core
subunits (SPTLC1, SPTLC2, and SPTLC3) that condition the
substrate specificity (Sandhoff et al., 2018). As an example,
SPLTC3 induces a shift towards myristoyl-CoA (14C) and with
the addition of serine, it produces sphingoid bases 16, 18 or
20 carbon long (Sandhoff et al., 2018).

The next step is the reduction of 3-keto sphinganine by 3-keto
sphinganine reductase followed by acylation of sphinganine to
hydroceramides of different chain lengths (Ikushiro and Hayashi,
2011). Six isoforms of ceramide synthase have been described and
determine preferences for fatty acids of different chain length
(Cingolani et al., 2016). At this stage, dihydroceramides can be
dehydrogenated to ceramide by the dihydroceramide desaturases
des1 (Fabrias et al., 2012), or hydroxylated to phytoceramides by
des2 (Sandhoff et al., 2018).

Ceramides are then transported to the early Golgi apparatus
vesicular transport or protein-bound transfer (Hanada et al., 2009;
Sandhoff et al., 2018).

On the early Golgi’s cytosolic leaflet, addition of glucose to
ceramides, mediated by UDP-glucose-ceramide-glucosyltransferase,
produces glucosylceramide β-Glc-(1-1) Ceramide (GlcCer). GlcCer
is then translocated to the luminal leaflet and the biosynthesis of the
oligosaccharide moiety is synthesized in the Golgi apparatus by the
sequential action of different glycosyltransferases (GT) and
sialyltransferases (ST) (Figure 2). The sugar donor groups used in
ganglioside synthesis are nucleotide sugars: UDP-saccharides for the
sugar backbone, and CMP-sialic acid for the sialylations. Starting
from GlcCer, the addition of a sialic acid by GM3 synthase
(ST3 GAL 5, ST3 β-galactoside α-2,3-sialyltransferase 5) forms
GM3 (Figure 2) (Ishii et al., 1998). Thereafter, GM3 can be
converted by GD3 synthase (ST8SIA1, ST8 α-N-
acetylneuraminate α-2,8-sialytransferase 1) to form GD3, the key
precursor to GD2 (Nagata et al., 1992). A final sialic acid added to
GD3 by ST8Sia3 or ST8sia5 will form GT3. Downstream of these
three precursors, gangliosides are synthesized by multienzyme
hetero or homodimers, capable of using any of the precursor
gangliosides as substrate. Using GD3, β4GalNT1 will link
N-acetylgalactosamine (GalNAc) to the terminal galactose to
form GD2. GD2 may in turn be used as substrate by β3GalT4,
producing GD1b. This highlights GD2’s role as a metabolic
intermediate (Figure 2).

GD2 ganglioside can be further modified by the addition of an
O-acetyl group to the external sialic acid (Sjoberg et al., 1992). The
O-acetylation reaction is catalyzed by Sialyl O-Acetyl Transferases
(SOAT) and localized onmembrane fractions and in the Golgi (Higa
et al., 1989; Vandamme-Feldhaus and Schauer, 1998). With the help
of recent screening methods, a single enzyme fitting all the necessary
requirements was identified, encoded by the CASD1 (capsule
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structure1 domain containing 1) gene, whose overexpression in
cellular models led to an increased expression of O-acetylated
gangliosides (Arming et al., 2011). Additional work demonstrated
that CASD1 transfers O-acetyl group on free sialic acids, and knock-
out of CASD1 impedes cellular expression of O-acetylated
gangliosides, underlining its essential role in this process
(Baumann et al., 2015; Cavdarli et al., 2021).

While the acetyl donor group is universally identified as acetyl-
CoA, there are divergent models regarding the formation process of
O-acetyl-GD2 (OAcGD2). Conflicting studies suggest that the
O-acetylation can either occur on C7 or C9 (Kamerling et al.,
1987; Sjoberg et al., 1992). It is thought that the transfer
primarily occurs on C7, with subsequent spontaneous migration
to C9 possible under physiological pH (Varki and Diaz, 1984). Other
reports show that OAcGD2 can be either obtained by the
O-acetylation of GD2 by the SAOT or by the conversion of

OAcGD3 by the β3GalT4 (Baumann et al., 2015; Cavdarli et al.,
2020). Finally, according to initial models, the O-acetyl group is
added on the terminal sialic acid, yet, recent data highlight the
possibility of inner sialic acids’ acetylation (Cavdarli et al., 2020).
Noteworthy, none of these mechanisms are exclusive, and may take
place simultaneously with different importance. Interestingly,
O-acetylation of sialic acids diminishes affinity of
neuraminidases, which might consequently hamper the first step
of ganglioside degradation (Hunter et al., 2018).

Surprisingly, OAcGD2 is concomitantly expressed with GD2 at
the tumor cell surface (Alvarez-Rueda et al., 2011). This observation
suggests another point of control in OAcGD2 biosynthesis. There
are some indications that the synthesis of OAcGD2 can be regulated
by the quantity of acetyl-CoA concentrations within the Golgi
apparatus (Higa et al., 1989). This mechanism does not further
exclude a possible turnover of O-acetyl esters bound to sialic acids of

FIGURE 2
Pathway for ganglioside biosynthesis. Cer, ceramide, N-acylsphingosine; Lac-Cer, lactosyl ceramide; Gal, galactose; GalNAc,
N-acetylgalactosamine; Glc, glucose; Sia, sialic acid; ST, sialyltransferase; GalT, galactosyltransferase; GalNT, N-acetyl-galactosaminyltransferase; GlcT,
glucosyltransferase. Neu5Ac, N-acetyl neuraminic acid. Created with BioRender.com.
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gangliosides controlled by sialate-O-acetylesterases (SIAE) (Butor
et al., 1993). Thus, the expression of OAcGD2 in a cell type may be
the result of the conjunction of, at least, three parameters: the
balance between two enzymatic systems, SAOT and SIAE; the
activity of the GM2/GD2 synthase that synthesizes
OAcGD2 from OAcGD3; and the activity of GM1/GD1b
synthase that forms GD1b from GD2 (Figure 2). Given the
complexity of this biosynthetic model, the clarification of the
mechanisms that regulate the expression of O-acetyl-
GD2 remains challenging. At the end of the biosynthetic process,
gangliosides are transported through vesicular transport on the
surface of secretory vesicles to be expressed on the membrane.

Once at the cell surface membrane, GD2 ganglioside can be
internalized. The kinetics of GD2 internalization have been reported
in several studies after binding to specific antibodies (Wargalla and
Reisfeld, 1989; Buhtoiarov et al., 2011; Tibbetts et al., 2022). The
phenomena of GD2 internalization at the cell surface has several
practical implications for designing anti-GD2 immunotherapies.
For example, anti-GD2 immunotoxins have been designed and
demonstrated some efficacy against GD2-expressing tumor cells
in vitro and in vivo (Wargalla and Reisfeld, 1989; Mujoo et al., 1991).
On the other hand, anti-GD2 internalization can also represent a

mechanism for immunotherapy escape (Tibbetts et al., 2022). Yet,
the mechanisms by which this occurs are not well understood.
Studies performed with other ganglioside species suggest the
existence of different endocytic processes such as clathrin- or
caveolin-dependent mechanisms and autophagy (Sandhoff et al.,
2018). Once in the early endosome, gangliosides can follow different
pathways. Of note, the saturation of the ceramide acyl chain was
reported to influence trafficking fate of gangliosides, with
unsaturated acyl chain promoting recycling (Chinnapen et al.,
2012). Ganglioside catabolism starts with the removal of sialic
acids. This process is carried out by membrane-bound sialidases
mainly located in the late endosomes. Once GD2 ganglioside is
converted to its monosialylated GM2 equivalent, the terminal
N-acetylgalactosamine is then removed by hexosaminidase,
forming GM3. The final sialic acid is detached by sialidases and
SAP-B to produce LacCer. β-galactosidases with their cofactors will
produce GlcCer, and then ceramides under the influence of β-
glucosidases with SAP-C. Finally, ceramidases and SAP-D split
ceramides into sphingoid bases and fatty acids. Starting from
GlcCer, catabolic fragments such as LacCer, ceramides or
sphingosine can leave the lysosome to be used in new metabolic
reactions, constituting salvage pathways (Tettamanti et al., 2003). To

FIGURE 3
Anti-GD2 immunotherapies. Strategies to target GD2 are based on three approaches. (A) Patient immune system is engaged against GD2-positive
cells through antibodies, immunoctykines or bispecific antibodies. (B) Immune effectors, such as antibody-drug conjugates, radioconjugates, or CAR-
modified cells, are directly provided to the patient. (C) Patient immune system may be activated to target GD2 through the use of vaccines, based on
purified GD2, peptide mimotopes or anti-idiotypes. NK, Natural Killer; CAR, Chimeric Antigen Receptor. Created with BioRender.com.
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avoid catabolism, some gangliosides can be directly recycled back to
the plasma membrane, and others can go through “direct
glycosylation”, in which they are reintegrated in the Golgi and
follow later stages of the biosynthesis pathway (Yu et al., 2008).

While glycosidases play a significant role in the breakdown of
gangliosides, it has long been believed that the expression of cellular
gangliosides primarily depends on the biosynthetic rather than
catabolic processes. Essentially, in order to enhance the presence
of a specific ganglioside, the cell needs to increase the enzyme
responsible for its synthesis and/or reduce the activity of the
enzyme that utilizes this ganglioside as its substrate (Bieberich
and Yu, 1999; Mabe et al., 2022). As a consequence, it is difficult
to modulate the expression of a single ganglioside species at the
enzymatic level.

4 Regulation of GD2 expression

As will be seen in further details later in this work, there is a
tissue- and age-dependent restriction of GD2 expression
(Svennerholm et al., 1991; Lammie et al., 1993; Huang et al.,
2022). GD2 biosynthesis is mostly regulated by the activity of
different glycosyltransferases, with emphasis on ST8SIA1,
B4GALNT1 & B3GALT4 (Sorokin et al., 2020; Sha et al., 2022),
and is controlled epigenetically, transcriptionally, and post-
transcriptionally.

Common to the transcriptional regulation of all aforementioned
genes, and ganglioside glycosyltransferase in general, is their lack of
TATA- and CCAAT-boxes, or any known core promoter elements
(Kasprowicz et al., 2022). GC-rich boxes were however observed in
the promoters (Yu et al., 2004). These features correspond to
housekeeping genes, genes under little regulation. This apparent
lack of regulation underlines the importance of another level of gene
expression regulation: epigenetic modifications (Itokazu et al.,
2017). Epigenetic regulation of ganglioside patterns is seen
during development in physiological conditions (Tsai and Yu,
2014; Itokazu et al., 2017). In cancers expressing low levels of
GD2 such as Ewing sarcoma and some neuroblastomas (NB),
inhibition of silencing epigenetic modifications (detailed later in
this work) increases significantly GD2 expression (Kroesen et al.,
2016; Kailayangiri et al., 2019; van den Bijgaart et al., 2019; Mabe
et al., 2022). However, the same treatment on healthy counterpart
cells did not lead to increased GD2 (Mabe et al., 2022). This suggests
additional levels of regulation differentiating normal from aberrant
cells. This distinction can be a result of varying transcriptional
regulations in the three genes mainly responsible for
GD2 expression (Sorokin et al., 2020; Sha et al., 2022). This
additionally means that GD2 can be a useful stage-specific
marker molecule of developing cells.

ST8SIA1, the gene coding for the GD3 synthase is essential to
GD2 expression through the production of GD3, precursor and
bottleneck to all b-series ganglioside synthesis (Freischütz et al.,
1995; Tsai and Yu, 2014; Mabe et al., 2022). The gene possesses
multiple initiation sites in the human promoter region. However,
alternative transcripts have rarely been observed, with weak
expression in some cancers with no particular effect described
(Kasprowicz et al., 2022). Of interest, the promoter region
contains binding sites for transcription factors such as c-Ets-1,

CREB, AP-1, and NF-κB (Kasprowicz et al., 2022), associated
with cancers and inflammation. In addition, work on rat
PC12 cells showed that alternative use of transcription factors
could differentiate between high- and low-ST8SIA expressing
cells (Yu et al., 2008). This implies a potential modulation of
GD2 expression by microenvironmental cues. A negative control
region has similarly been described, but data is lacking regarding its
relevance (Furukawa et al., 2003).

B4GALNT1, the gene coding for GD2/GM2 synthase, is under
complex regulation. There are three promoters for this gene,
corresponding to three transcription start sites and three different
exons. In the different promoters, distinct transcription factor
binding sites are present, implying differential regulation.
Furthermore, an enhancer for two promoters, as well as a
silencer for the third have been described (Yu et al., 2004).
Alternative use of promoters, enhancers and silencers may
regulate cell-specific expression.

B3GALT4, the gene coding for the GD1b/GM1 synthase
similarly possesses multiple promoters with associated
transcription factor binding sites, and transcription start sites
(Al-Obaide et al., 2015). Tissue or cell specificity was noted for
promoter use and transcription factor binding sites. Alternative
promoter or transcription factor use may be a mechanism leading to
higher GD2 expression (Yang et al., 2022). In addition, the promoter
regions contain cancer-associated transcription factors binding sites,
linking tumorigenesis to ganglioside expression (Al-Obaide et al.,
2015).

In a final regulation layer, glycosyltransferases form complexes
in their respective compartments. Multiple enzymes can form
heterodimers in addition to homodimers: ST8Sia1/ST3Gal5,
ST8Sia1/B4GalNT1, B4GalNT1/B3GalT4 (Yu et al., 2004). Dimer
formation is influenced by enzyme composition: overexpression of
either ST8Sia1 or B4GalNT1 in normal cells lead to increased
ST8Sia1/B4GalNT1 with concomitant decrease of dimers using
other partners (Bieberich et al., 2002). While dimerized, ST8Sia1
& B4GalNT1 transactivate each other to produce GD2 from GD3
(Bieberich et al., 2002). These mechanisms potentiate simple enzyme
up- or downregulation and lead to increased surface GD2. In this
model, additional regulation of GD2 synthesis may be mediated by
post-translational modifications of glycosyltransferases, such as
N-glycosylation that has been described to affect enzyme cellular
localization (Bieberich et al., 2000). However, limited details
concerning the specifics of these modifications, potentially
druggable, are available in the literature (Yu et al., 2004; Yang
et al., 2022).

5 GD2 expression in normal tissues

GD2 expression has been reported in the brain to varying
degrees according to developmental stages (Svennerholm et al.,
1991; van den Bijgaart et al., 2019). While GD2 represents 5%–
7% of brain gangliosides during gestation, the proportion
progressively declines until it reaches 2% in adult brains
(Svennerholm et al., 1991; van den Bijgaart et al., 2019). In
comparison, its precursor, GD3, maintains a stable proportion of
5% of brain gangliosides through development (Svennerholm et al.,
1989). This underlies development-dependent restriction of
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GD2 expression, most likely in favor of more complex gangliosides
highly expressed in adult brains such as downstream GD1
(Svennerholm et al., 1989; Sipione et al., 2020). After birth,
GD2 expression has been reported in various brain zones such as
the hypophysis, the hypothalamus, the hippocampus, and the
midbrain (Svennerholm et al., 1994; Yuki et al., 1997; Colsch
et al., 2011). Concerning nervous tissues outside the brain,
GD2 expression has been detected on the spinal cord, cauda
equina, and the peripheral nerves (Svennerholm et al., 1994; Yuki
et al., 1997; Colsch et al., 2011). GD2 expression was additionally
detected in the skin (Hersey et al., 1988), and in human prostate cells
(Shiraishi et al., 1988).

Regarding cellular expression, surface GD2 has been detected
in various populations. Melanocytes, the pigmental cells of the
skin, have also been shown to express GD2, in line with their
neuroectodermic origin (Svennerholm et al., 1994). Noteworthy,
expression of GD2 has been detected on T cells activated artificially
or in disease (Hersey and Jamal, 1989; Villanueva-Cabello et al.,
2015; Villanueva-Cabello and Martinez-Duncker, 2016). This may
have an impact on GD2-targeting therapies that aim to engage the
immune system, as T cells may be targeted as well, with particular
relevance for GD2 CAR-T cells. Among immune populations, one
report noted GD2 expression on B cells and reticular dendritic cells
in lymph nodes of melanoma patients (Hersey and Jamal, 1989).
More recently, GD2 was identified as a marker of mesenchymal
stromal cells (MSC), be they from the bone marrow or umbilical
cord (Martinez et al., 2007; Santilli et al., 2022). This point is of
particular interest in the field of oncology, as MSC are often found
in tumors with various pro-tumorigenic roles such as immune-
inhibition and angiogenesis (Kidd et al., 2008; Lee and Hong,
2017). Targeting of tumors expressing GD2 may as such yield
additional benefits in microenvironment regulation, although
further studies are needed for validation on cancer-
associated MSCs.

Of note, the O-acetylated form of GD2, OAcGD2, displays more
restricted expression than GD2. Among 32 tissues tested by
immunohistochemistry, OAcGD2 was only weakly detected in
specific zones of few tissues. OAcGD2 was detected in the zona
reticularis of the adrenal medulla, some macrophages of the bone
marrow, the germinal centers of lymphoid follicles, as well as the

Purkinje neurons and the gray matter of the dorsal horns (Alvarez-
Rueda et al., 2011).

6 GD2 expression in cancer

Overexpression of GD2—significant increase in GD2 compared
to healthy tissue–has been reported in various cancers (Tab.1)
(Nazha et al., 2020). Interestingly, most of these tumors are
pediatric cancers. As such, increased GD2 may reflect aberrant
developmental processes, with cells less differentiated compared
to healthy counterparts and not having completed the transition to
expression of more complex gangliosides such as GD1 (Filbin and
Monje, 2019). In this sense, it is intriguing to note that GD2 is
increased specifically on breast cancer stem cells. Additionally, in
several GD2-positive cancers, OAcGD2 is correspondingly
overexpressed (Table 1). Combined with its more restricted
normal expression and considering that anti-OAcGD2 antibodies
have no cross-reactivity with GD2, targeting OAcGD2may decrease
on-target off-tumor anti-GD2 immunotherapy adverse effects in
patients (Alvarez-Rueda et al., 2011; Terme et al., 2014).

GD2 overexpression can be further correlated with the
upregulation of ST8SIA1 and B4GALNT1, or the downregulation
of B3GALT4 (Sorokin et al., 2020; Yoshida et al., 2020; Kasprowicz
et al., 2022; Mabe et al., 2022; Sha et al., 2022). So far, no mutation
has been reported for these genes, and the specific causes of
GD2 overexpression remain unclear.

At the plasma membrane level, GD2 has been identified as a
lipid raft component (Sha et al., 2022). Lipid rafts are specialized,
sphingolipid-enriched, dynamic microdomains within the
membrane that can compartmentalize cellular processes. Within
lipid rafts, signaling proteins such as tyrosine kinases can either be
recruited or excluded, to regulate signal transduction (Mollinedo
and Gajate, 2020). Several reports have demonstrated the role of
GD2 in modulation of cell signaling. In NB cells, enrichment of
GD2 has been observed in lipid rafts, and inhibition of
GD2 synthesis through B3GALT4 silencing, leads to decreased
rafts within cells (Sha et al., 2022).

While GD2 and OAcGD2 represent interesting targets for these
multiple cancers, recent works suggest that GD2 expression is rather

TABLE 1 Tumors overexpressing GD2 and OAcGD2 gangliosides.

Cancer % Tumors expressing GD2 % Tumors expressing OAcGD2

Neuroblastoma 95%—100% Wu et al. (1986); Kramer et al. (2001) 100% Alvarez-Rueda et al. (2011)

Osteosarcoma 85%–100% Roth et al. (2014); Poon et al. (2015); Dobrenkov et al. (2016) -

Gliomas 80% Longee et al. (1991) 100% Fleurence et al. (2017)

Melanoma 25%—75% Hersey et al. (1988); Dobrenkov et al. (2016) 75% Alvarez-Rueda et al. (2011)

Small Cell Lung Cancer (SCLC) 50%—100% Cheresh et al. (1986b); Grant et al. (1996) 75% Alvarez-Rueda et al. (2011)

Ewing sarcoma 40%–100% Grant et al. (1996); Dobrenkov et al. (2016); Wingerter et al. (2021) -

Soft tissue Sarcomas 93% (Depends on sarcoma) Chang et al. (1992) -

Retinoblastoma 37%–100% Portoukalian et al. (1993); Sujjitjoon et al. (2021); Wang et al. (2022) -

Breast Cancer 2%—35% (On Breast cancer stem cells) Battula et al. (2012) On Stem cells Cheng et al. (2021)

Ovarian cancer 78% Galan et al. (2023) -
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heterogeneous in tumors, including neuroblastoma (Schumacher-
Kuckelkorn et al., 2017; Terzic et al., 2018; Dondero et al., 2021).
Several reports further suggest that GD2 expression level may
predict anti-GD2 antibody therapeutic responses (Terzic et al.,
2018; Hirabayashi et al., 2021; Theruvath et al., 2022). As such,
studies on the mechanisms influencing GD2 tumor cell expression
are required to optimize anti-GD2 therapies. Several parameters
associated with the tumormicroenvironment have been identified so
far. For example, it has been noted that hypoxic conditions led to
overexpression of the key enzyme to GD2 production, ST8SIA1, in
colon tumor cell lines (Yin et al., 2010). Similarly, osteosarcoma
spheroids had gradually increased GD2 expression over time,
concurrent with cell growth and densification of the sphere
causing a decrease in oxygen availability (Wiebel et al., 2021).
Further studies are required to confirm the link between hypoxia
and GD2 expression. Immunostimulatory cytokines were also tested
on diverse cancer models for their capacity to enhance
GD2 expression. The cytokines, IL-4, TNF-α and IFN-γ, all
increased GD2 expression as a single agent or in combination
with each other (Hoon et al., 1991a; Hoon et al., 1991b). TNF-α
and IFN-γ are cytokines produced either by innate or adaptive
immune cells (Castro et al., 2018; Josephs et al., 2018). Therefore, it
is of particular relevance to immunotherapies as immune cell
activation may lead to increased target expression by bystander cells.

GD2 expression in tumors has also been studied in respect to the
cellular intra-tumoral heterogeneity and tumor cell plasticity. A
small subpopulation of cells within tumors with self-renewal
capacities are named cancer stem cells (CSC). CSCs have been
linked with resistance to conventional chemotherapy and
radiotherapy, and thus, are believed to drive tumor progression
and disease recurrence (Phi et al., 2018). Targeting CSCs is therefore
important for limiting tumor spread and recurrence. Interestingly,
the expression of GD2 has been evidenced in breast carcinoma CSCs
(Battula et al., 2012; Liang et al., 2013). In parallel, factors
modulating the expression of GD2 in breast CSCs have been
identified. In various models of triple negative cancer cell lines,
oxidative stress, caused by disturbances in the normal redox state of
cells, induced increased stemness in cells and as such increased
percentages of GD2-positive cells (Jaggupilli et al., 2022). In
addition, OAcGD2 expression was also confirmed in breast CSCs
(Cheng et al., 2021).

Another source of intra-tumoral heterogeneity with regards to
GD2 expression stems from plasticity. Cell plasticity allows tumor
cells to change their phenotypic characteristics without necessitating
further genetic mutations in response to environmental cues. For
instance, in NB there is a more differentiated “noradrenergic” state,
and a less-differentiated “mesenchymal” state (Boeva et al., 2017; van
Groningen et al., 2017). When diagnosing human primary NBs, the
noradrenergic state is found to be the predominant state in the tumor
(Boeva et al., 2017; van Groningen et al., 2017), while the MES state
may be more prevalent in relapse and metastatic disease according to
studies on human tumors and mouse models (Boeva et al., 2017; van
Groningen et al., 2019; McNerney et al., 2022). Interestingly,
“mesenchymal” NB cells demonstrate lower GD2 expression level
than “noradrenergic” NB cell lines, with greater resistance to anti-
GD2 immunotherapy (Mabe et al., 2022; McNerney et al., 2022).

Given the emerging role of cancer plasticity in anti-GD2
immunotherapy, the development of strategies targeting the

underlying mechanisms of plasticity may lead to durable
responses. At the cellular level, epigenetic modification is a
promising approach that allows regulation of glycosyltransferase
gene expression (Kroesen et al., 2016; Kailayangiri et al., 2019;
Mabe et al., 2022). Histones, the DNA packaging proteins, can be
acetylated or methylated leading to changes in chromatin
architecture that can increase or decrease gene expression through
DNA accessibility. EZH2 is part of the PRC2 complex and is involved
in histone methylation, such as the silencing modification of histone
3, H3K27me3. Use of EZH2 inhibitors in various potentially GD2-
positive cancers such as neuroblastoma and Ewing sarcoma led to
increased GD2 expression through upregulation of ST8SIA1, and in
some cases B4GALNT1 (Kailayangiri et al., 2019; Mabe et al., 2022).
Similarly, Tazemetostat, an inhibitor of EZH2, successfully altered
the cellular state in “mesenchymal” NB. This reprogramming led to
the activation of “noradrenergic” gene expression, including
ST8SIA1, resulting in an increase in GD2 expression (Mabe et al.,
2022).

In the same line, histone deacetylase (HDAC) catalyzes, amongst
others, deacetylation of the activating modification H3K27ac. Use of
HDAC inhibitors enhanced GD2 expression on neuroblastoma cells
through upregulation of ST8SIA1 (Kroesen et al., 2016; van den
Bijgaart et al., 2019). This effect could be further augmented through
exogenous addition of sialic acids (van den Bijgaart et al., 2019).

Although both HDAC inhibitors and EZH2 inhibitors, have
FDA-approval in different cancers (Mann et al., 2007; Straining and
Eighmy, 2022), these treatments are nonspecific and lead to a
general decrease of silencing marks or increase of activating
marks. This causes up- and downregulation of numerous other
genes and as such precautions are necessary in their use.

In a more technical approach, but particularly relevant to the use
of 2D and 3D in vitro models, it has been demonstrated that cell
confluency modulates GD2 expression, whether in monolayer or
spheroid culture (Wiebel et al., 2021). If unchecked, this parameter
may negatively impact data reproducibility. The mechanisms
linking cell confluency and GD2 expression have not been
described, but hypoxia and oxidative stress due to reduced
nutrient may play a role. In addition, these microenvironmental
stress factors may induce epigenetic rewiring, of particular
importance for GD2 expression as mentioned above.

7 Functional aspects of
GD2 ganglioside in cancer progression

As described above, GD2 is overexpressed in several cancer
types. Nevertheless, comprehension of the biological consequences
stemming from its overexpression have yet to be unequivocally
determined. Several roles of GD2 have been suggested using
different experimental approaches. For example, exogenous
GD2 can be added in the culture media to be incorporated in
cells’ plasma membranes (Li et al., 1996). Anti-GD2 blocking
antibodies can also be used to disrupt GD2 interaction with
other cell membrane components. Pharmacological depletion of
the cellular gangliosides can be achieved using glucosylceramide
synthase inhibitors such as PDMP (Inokuchi et al., 1990) or PPMP
(Lee et al., 1999). Alternative methods consist in gene transfer
(Yoshida et al., 2001) or gene editing (Bhat et al., 2023).
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However, it should be noted that these experimental approaches
have technical limitations. Because of the nature of GD2 as a
metabolic intermediate in a sequential process, targeting the
enzymes responsible for GD2 biosynthesis may result in a
complex pattern of interference making it difficult to identify the
molecular ganglioside species involved. For example, knocking out
GD3 synthase will result in the accumulation of GD3 precursors and
the disappearance of its downstream products. While GD2-blocking
antibodies have the advantage of precisely identifying GD2, their
different modes of actions such as antigen blocking, masking,
clustering or internalization hinder understanding of the normal
roles in cancer cells. Nonetheless, these different approaches have
evidenced several biological effects of GD2 particularly relevant to
tumor progression and immunosuppression as discussed below.

Among first studies were conflicting reports pointing to a link
between GD2 expression and either adhesive or anti-adhesive
properties. Regarding anti-adhesive properties, one work has
shown that GD2 is a cellular receptor for tenascin-C, an
extracellular matrix protein found in embryonic, inflamed, or
cancerous tissues, leading to cell detachment from fibronectin
through inhibition of focal adhesion (Probstmeier and Pesheva,
1999). A study using osteosarcoma cells similarly showed that
GD2 overexpression led to increased cell motility (Shibuya et al.,
2012). In that context, GD2 expression has been linked with the
EMT process in bladder cancer which could be reversed upon
inhibition of GD2 synthesis (Vantaku et al., 2017). Contrariwise,
multiple work based on cancerous models such as melanoma and
neuroblastoma indicate a role in adhesion. Acting as a co-receptor
for integrins in binding to various extracellular matrix proteins such
as fibronectin, vitronectin and collagen, blocking of GD2 can inhibit
adhesion (Cheresh et al., 1986a; 1987; Yesmin et al., 2021).
Altogether, these observations suggest that effects of GD2 on
adhesion are context dependent, with a possible dependence on
integrin type (Furukawa et al., 2012).

It is interesting to note in either case, GD2 is associated with
integrins. In this line, different works have demonstrated
localization of GD2 in adhesion plaques and presence of trimeric
complexes of GD2, Focal Adhesion Kinase (FAK) and integrins,
(Cheresh et al., 1984; Aixinjueluo et al., 2005). In SCLC cells, GD2-
specific antibodies disrupted the GD2/integrin complexes at the
tumor cell surface resulting in the dephosphorylation of FAK and
subsequent anoikis. Inversely, overexpression of GM2/
GD2 synthase reduced anoikis in melanoma models. The
association of GD2 with FAK/AKT signaling pathway were later
reported by others in high-expressing GD2 melanoma cells (Yesmin
et al., 2021), glioma cells (Iwasawa et al., 2018), prostate cancer cells
(Nguyen et al., 2018; Xing et al., 2021), triple negative breast cancer
cells (Nguyen et al., 2018), and osteosarcoma cells (Liu et al., 2014).
FAK signal through the AKT/mTOR pathway to promote processes
such as cell survival, cell motility, angiogenesis (Chuang et al., 2022).
In the context of cell attachment, FAK activation is a necessary step
in the outside-in signaling mediated by integrins when bound to
matrix proteins, and leads to pro-survival signaling (Mitra and
Schlaepfer, 2006). In the context of cell detachment and motility,
FAK activation promotes anchorage independent growth and
consequently tumor cell survival during dissemination (Duxbury
et al., 2004; Liu et al., 2008; Deng et al., 2021). As such, activation of
FAK, possibly facilitated by its localization in the increased GD2-

dependent lipid rafts, may be a link between the opposite adhesive/
anti-adhesive roles of GD2 in different contexts. In this sense,
another example of modulation of the tumor signaling pathways
by GD2 was identified in breast cancer cells. In GD3 synthase
transfected breast cancer cells, GD2 colocalized with the receptor
tyrosine kinase cMET and was responsible for its constitutive
activation, leading to increased proliferation through downstream
MAPK signaling (Cazet et al., 2012). This effect was blocked either
by silencing GM2/GD2 synthase, or by anti-GD2 antibodies
treatment (Cazet et al., 2012).

Both adhesive/anti-adhesive mechanisms link back to a positive
correlation between GD2 expression and invasiveness in different
context such as melanomas, osteosarcoma (Shibuya et al., 2012;
Yesmin et al., 2021), gliomas (Iwasawa et al., 2018), triple negative
breast cancer (TNBC) and prostate cancer (Nguyen et al., 2018; Xing
et al., 2021). In this sense, anti-GD2 incubation decreased matrix-
metalloproteinase 2 production in osteosarcoma (Liu et al., 2014).

Regarding other processes of cancer dissemination,
overexpression of GD2/GM2 synthase in a melanoma model
increased angiogenesis, potentially through a drastic increase in
periostin production, a protein with implications in angiogenesis
and migration (Huizer et al., 2020; Yoshida et al., 2020).

Other molecular alterations induced by anti-GD2 may be
implicated in antigen-positive cells’ apoptosis. In different cancer
context such as neuroblastoma and small cell lung cancer,
incubation of anti-GD2 antibodies led to cell death without any
immune mediator, through activation of the caspase-3 pathway
inducing apoptosis (Yoshida et al., 2001; Kowalczyk et al., 2009;
Tsao et al., 2015; Iwasawa et al., 2018). Interestingly, use of
antibodies directed against O-acetyl GD2 similarly induced
apoptosis in OAcGD2-expressing neuroblastoma cells through
caspase-3 activation (Cochonneau et al., 2013).

Along the same lines, in reports based on neuroblastoma cell
lines, incubation with anti-GD2 diminished Aurora kinase A and
MYCN expression, while PHDLA1, P53 and c-jun’s were
strengthened (Horwacik et al., 2015; Horwacik et al., 2013).
Aurora kinase A is involved in cell proliferation and is crucial to
complete mitosis. Aurora kinase A additionally protects from
degradation MYCN, a major driver of oncogenesis in
neuroblastoma. Inversely, aurora kinase A promotes tumor-
suppressor p53 degradation. On the opposite, PHDLA1 is a
tumor suppressor inhibiting AKT and Aurora kinase A, and is
regulated by p53 (Chen et al., 2018). As such, incubation with anti-
GD2 induces a shift from a tumor-promoting function characterized
by increased Aurora A kinase expression, to a tumor-suppressing
function characterized by increased PHDLA1, in line with the
observed increased apoptosis. However, c-jun
expression–regarded as a proto-oncogene–was similarly increased
following anti-GD2 treatment. Interestingly, c-jun may rather favor
apoptosis, as it mediates expression of pro-apoptotic factor
following Jun kinase activation, as described after anti-GD2
incubation (Yoshida et al., 2002).

In addition, GD2 may be implicated with regulation other
hallmark of cancer, such as cancer stem cells (CSC) and
treatment resistance. Expressed on breast CSCs in TNBC, it has
been reported that the genes associated with CSC properties such as
SOX2, BCL11A, FOXC1, are in fact tightly regulated by ST8SIA1
(Nguyen et al., 2018). Still in TNBC, upregulation of ST8SIA1 was
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associated in patients with chemoresistance. Inhibition of
ST8SIA1 enhanced the efficacy of the chemotherapy,
concomitant with a suppression of the FAK/Akt/mTOR and
Wnt/β-catenin pathways (Wan et al., 2021). Both of these reports
may be linked by the fact that cancer stem cells generally display
increased chemoresistance (Abdullah and Chow, 2013; Zhao, 2016).

Although unrelated to cancer functions, injection of anti-GD2 is
often followed by allodynia, due to GD2 expression on peripheral
nerves (Anghelescu et al., 2015). This was explained by antibody
mediated activation of Src kinases cascading to activation of the
NMDA-Receptor, involved in peripheral nerve sensitization. It is
interesting to note that FAK kinase activation mediates among
others Src kinase activation.

Apart from tumor-centric roles, GD2 might be involved in
regulation of the tumor immune microenvironment. In gliomas,
knock-out of ST8SIA1 increased the number, and activation status,
of microglia/macrophages inside the tumor via reduced IL-6 and
TGF-β1 (Zhang et al., 2021). Going further, the general changes in
chemokine and cytokine production observed following the knock-
out favored polarization towards the M1 phenotype rather than the
M2-tumor promoting phenotype enriched in wild-type gliomas
(Zhang et al., 2021). In neuroblastomas, based on overexpression
of B3GALT4, forming GD1b from GD2, one report described
enhanced recruitment of CD8+ T cells. The enzyme
overexpression decreased GD2 quantity and consequently the
formation of lipid rafts. In turn, this reduced c-Met signaling and
downstream AKT/mTOR/IRF-1 pathway, with one finality being
the increased expression of CXCL9 and CXCL10, responsible for
cytotoxic T cell recruitment (Sha et al., 2022). It can thus be
hypothesized that GD2 has a role in immune microenvironment
suppression, both at the innate and adaptive level.

Like other glycosphingolipids, GD2 is in part shed from the
plasma membrane, mostly as micelles or membrane vesicles
(Ladisch et al., 1987; Li and Ladisch, 1991; Kong et al., 1998).
Circulating GD2 can be measured in the serum of patients with
GD2-expressing tumors, such as NB and retinoblastomas
(Valentino et al., 1990; Portoukalian et al., 1993). Thus, it can be
proposed as a companion diagnostics to anti-GD2
immunotherapies.

Shed gangliosides can be also incorporated in the plasma
membrane of the neighboring cells (Chang et al., 1997), thus it is
possible that GD2 can modulate tumor-bystander cell interactions.
In this line, GD2-positive melanoma cells with increased cell growth,
invasion, and adhesion secreted extracellular vesicles that could
enhance properties of neighboring GD2 negative cells to similar
levels (Yesmin et al., 2023). There are also several studies evidencing
a role of GD2 in inhibition of T cell reactivity both in vitro and in
vivo (Floutsis et al., 1989; Ladisch et al., 1992; Li et al., 1996). This
diminished activity, evaluated through lymphoproliferative
responses was valid for both non-specific mitogens such as PHA
and soluble antigens such as toxoids (Ladisch et al., 1992). The
effects on T cells, while significantly lower, were comparable to
potent doses of cyclosporine A, an immunosuppressive agent (Li
et al., 1996). Interestingly, shed GD2 was detected incorporated into
T cells, and these T cells were significantly more apoptotic than
GD2 negative ones. In addition, variations in immunosuppressive
potential were observed depending on the ganglioside subspecies.
Shorter fatty acid chains (C18 or less) were associated with increased

immunosuppression for GD2 (Ladisch et al., 1994). Surprisingly,
GD2 extracted from tumors were more immunosuppressive
compared to healthy human brains’, which might imply
enrichment of different GD2 subspecies in cancer than in
physiological conditions (Ladisch et al., 1994). Other
modifications modulating this property are modifications to sialic
acids, with lactones less immunosuppressive than their classical
counterparts, and hydroxylation of the fatty acid, displaying a
similar trend (Ladisch et al., 1992; Ladisch et al., 1995). Similarly,
using purified GD2, and inhibition of dendropoiesis, and dendritic
cell activation by four-fold was shown (Shurin et al., 2001). This
implies dysfunctions in the generation of possible adaptive immune
responses to GD2 expressing cancers. On the contrary, incubation of
NK cells with shed GD2 did not hinder cell cytotoxicity, nor their
maturation (Ando et al., 1987; Grayson and Ladisch, 1992; Liu et al.,
2022).

Finally, GD2 can also regulate direct tumor-immune cell
interactions. In a recent study, GD2 blocking antibodies allowed
the identification of GD2 as a ligand for the immune checkpoint
receptor siglec-7, expressed on monocytes and NK cells (Ito et al.,
2001; Theruvath et al., 2022). This finding arises on the observation
that a Fc-dead anti-GD2 antibody enhances ADCP of GD2-positive
tumor cells by macrophages in the absence of Fc binding or
complement activation (Theruvath et al., 2022). The final
demonstration was brought by evidencing the binding of
recombinant siglec-7 onto GD2 gangliosides (Theruvath et al.,
2022). Given these observations, similar work conducted on NK
cells might yield interesting results.

8 GD2 as a target antigen for
immunotherapies

8.1 First successes: monoclonal antibodies

The most representative therapeutic targeting of GD2, paving
the way for all other forms immunotherapies, are monoclonal
antibodies. The murine IgG3 monoclonal antibody (mAb) 3F8,
mediates tumor cell killing directly through GD2 binding, as
mentioned earlier, and through antibody dependent cell
cytotoxicity (ADCC), complement dependent cytotoxicity (CDC),
as well as phagocytosis of intact GD2 positive cells (Munn and
Cheung, 1989; Munn and Cheung, 1990; Kushner and Cheung,
1991). Phase II studies on patients with stage 4 neuroblastoma, 40%
responded with in some cases nearly 50% of patients progression-
free (Cheung et al., 1998a; Cheung et al., 1998b). These clinical
studies confirmed the implication of ADCC, with both granulocytes
and NK cells’ activation potential correlating positively with
treatment outcome (Delgado et al., 2010; Cheung et al., 2012;
Tarek et al., 2012).

Another murine antibody, 14G2a, IgG2a class-switched from
the IgG3 14.18, was shown to enable ADCC and CDC (Mujoo et al.,
1987; Mujoo et al., 1989). In Phase I studies in various contexts such
as melanoma, neuroblastoma, and osteosarcoma clinical utility of
14G2a varied depending on the context, going from 25% of patients
respondent, up to 66% in neuroblastoma, with two complete
remissions and two partial remissions (Handgretinger et al.,
1992; Saleh et al., 1992; Murray et al., 1994).
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A similarity of 3F8 and 14G2a is that both of them are cross-
reactive with NCAM, a neural adhesion molecule (Patel et al., 1989;
Agrawal and Frankel, 2010). Affinity for GD2 however is a
differentiating factor as 3F8 had higher affinity than 14G2a
(Cheung et al., 2012).

In order to reduce production of human anti-mouse antibodies,
efforts were carried out to reduce murine components of these
antibodies (Handgretinger et al., 1992; Saleh et al., 1992; Murray
et al., 1994; Cheung et al., 1998a; Cheung et al., 1998b).

Chimeric antigen ch14.18 was produced by fusing heavy and
light chains of murine 14.18 (Gillies et al., 1989). Chimeric
ch14.18 increased efficiency of ADCC (Mueller et al., 1990) and
prolonged half-life (Uttenreuther-Fischer et al., 1995). Analysis on
11 years follow-up of the 1st large scale study demonstrated benefit
on overall survival when compared to chemotherapy for
maintenance in neuroblastoma (Simon et al., 2004; 2011; Perez
Horta et al., 2016). Building up on the role of ADCC in treatment
outcome, a phase III trial combining Ch14.18 with IL-2, GM-CSF
and retinoic acid for neuroblastoma showed superiority to the
standard of care chemotherapy considering both overall survival
(73.2%) and progression free survival (56.6%) at 5 years (Yu et al.,
2010; Perez Horta et al., 2016; Yu et al., 2021). These results led to its
marketing authorization by the FDA in the United States of America
in 2015. In 2017, the European Commission granted marketing
authorization of dinutuximab ß, a ch14.18 mAb (expressed in CHO
cells instead of SP2O cells) after a phase III clinical trial conducted
by the SIOPEN (Ladenstein et al., 2018).

The murine 3F8 was similarly humanized by fusing
complementarity-determining regions to a human
IgG1 framework, thus forming hu3F8. The hu3F8 maintained
affinity of the murine antibody, but increased ADCC capacity
and drastically lowered CDC capacities (Cheung et al., 2012). In
a pilot Phase I trial of hu3F8 on resistant neuroblastoma, 79% of
patient treated with highest acceptable dosage had partial or
complete response (Kushner et al., 2018). This led in 2020 to
accelerated approval of hu3F8 in relapsed/refractory
neuroblastoma patients (Markham, 2021), increasing the panel of
approved anti-GD2 therapies available to patients. Acute pain
during antibody infusion and occasional neuropathy were
observed but with no late toxicities reported in long-term follow-
up of patients treated with anti-GD2 mAbs (Ozkaynak et al., 2000;
Yu et al., 2010; Kushner et al., 2011; Ladenstein et al., 2018).

Clinical success of anti-GD2 antibodies demonstrated the
potential of anti-GD2 immunotherapies. However, their clinical
use is hindered by neurologic adverse effects of on-target off-
tumor nature. Moreover, a number of patients remain refractory
or relapse, even in GD2-positive cancers. In this context, several
strategies to optimize success of therapies will be discussed here.
Avenues to optimize anti-GD2 treatment rely either on increasing
the administrable dose of antibodies, limited by the side effects, or
exploring other immunotherapeutic mechanisms (Figure 3).

8.2 Necessity of companion diagnostics

As stated earlier, GD2 expression is heterogeneous both between
and within tumors, which could pose an obstacle for effective tumor
targeting. GD2 is heterogeneously expressed in various cancers, and

may as such hold diagnostic and prognostic value, whether
expressed on tissues, or shed as was mentioned in the context of
cancer previously. Conflicting reports undermine GD2-expression’s
prognostic relevance (Valentino et al., 1990; Czaplicki et al., 2009;
Balis et al., 2020; Erber et al., 2021; Galan et al., 2023).However, shed
or tumor-expressed GD2may be used as a companion diagnostic for
anti-GD2 immunotherapies, particularly in cancers where
heterogeneous expression has been identified (See Table 1)
(Portoukalian et al., 1993; Wiebel et al., 2021). In addition,
GD2 may be used as a diagnostic tool. Studies have shown that
serum levels of GD2 separate between patients with NB and healthy
controls (Schulz et al., 1984). Serum level of GD2 of patients with
ovarian cancers was reported to hold higher diagnostic power than
standard CA125 detection for the screening of ovarian cancer of all
types (Galan et al., 2023). In this context, the challenge lies in
developing clinically applicable routine assays, due to
GD2 biochemical nature and the absence of reference controls.
Initially, detection of circulating/shed GD2 was conducted after
ganglioside extraction, followed by chromatographic separation
using high-performance thin layer chromatography and
densitometric scanning (Ladisch et al., 1987; Valentino et al.,
1990; Portoukalian et al., 1993). Since then, different methods
have emerged to detect circulating GD2. A more recent standard
for GD2 detection and quantification is the use of high-performance
liquid chromatography coupled to mass spectrometry (Busch et al.,
2018; Balis et al., 2020). This technique enables quantification of
gangliosides with precision as low as 4–6 ng/mL, and separation of
GD2 subspecies based on long chain bases. In a simplified technique,
ganglioside stripped of their ceramide and fluorescently labeled were
quantified using HPLC only through the differential retention time
of their glycan moiety, producing results comparable to HP-TLC
(Czaplicki et al., 2009). In a recent report, a quantitative ELISA was
performed on serum samples and displayed similar sensitivity as
HPLC-MS for GD2 when using a purified standard (Galan et al.,
2023). Circulating GD2 may additionally be detected indirectly. A
surprising report suggests that the epitope detection in monocytes
(EDIM) blood test utilizing GD2 could function as a sensitive and
non-invasive diagnostic tool for detecting tumor cells in patients
with NB (Stagno et al., 2022). EDIM is based on antigen expression
by macrophages which phagocytose parts of neoplastic cells,
extracellular vesicles, or circulating tumor cells, and subsequent
identification by flow cytometry in blood of patients (Stagno et al.,
2022). Further studies on this method are, however, required before
it can be widely adopted as a standard diagnostic approach. Apart
from circulation, GD2 expression may also be detected on tumor
cells. This aspect has particular relevance in therapeutic decisions.

The current gold standard for tissue expression of GD2 is
immunohistochemistry, which can be conducted on primary
tumors of bone marrow aspirates (Schulz et al., 1984; Berthold
et al., 1989; Sariola et al., 1991; Chang et al., 1992; Corrias et al.,
2008).

In the context of residual disease such as bone marrow
infiltration, quantification of B4GALNT1 (GM2/GD2S) via RT-
qPCR similarly showed high sensitivity (Hoon et al., 2001; Lo
Piccolo et al., 2001; Cheung et al., 2003; Laurent et al., 2010).
One report comparing both methods in this context revealed
higher sensitivity of RT-qPCR quantification of GD2S than
immunohistochemistry (Lo Piccolo et al., 2001). RT-qPCR
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however possesses the caveat of not quantifying strictly GD2 levels,
as GM2may instead be upregulated by this same enzyme. These two
techniques may then be used for different purposes, with
immunohistochemistry revealing pertinence of anti-GD2 therapy
in a patient, and B4GALNT1 quantification used for precise
monitoring of remission.

8.3 Engaging the patient’s immune system

As mentioned earlier, a common acute side effect upon anti-
GD2 mAb infusions is severe pain that limits the administrable dose
to patients (Ozkaynak et al., 2000; Yu et al., 2010; Kushner et al.,
2011; Tong et al., 2015; Ladenstein et al., 2018). This neuropathic
pain has been attributed to complement activation on anti-GD2
bound peripheral nerves (Sorkin et al., 2010). To reduce this side
effect, a single point mutation (K322A) was introduced in the Fc
receptor of the humanized 14.18 anti-GD2 mAb to decrease C1q
binding while maintaining ADCC capabilities (Sorkin et al., 2010).
The resulting antibody hu14.18K322A elicited less allodynia in rats
than dinutuximab (Sorkin et al., 2010). At the clinical level, this
enabled higher antibody dosage (Anghelescu et al., 2015), and the
result of a phase II clinical trial showed that usage of hu14.18K322A
displays similar efficacy with reduced pain in patients with NB
(Furman et al., 2022). An alternative approach to mitigate severe
pain associated with anti-GD2 treatment involves targeting
OAcGD2, expressed on GD2-positive tumors but not on
peripheral nerves (Alvarez-Rueda et al., 2011). The mAb 8B6,
specifically targeting OAcGD2, demonstrated comparable
immune-mediated tumor-killing effects in vitro and inhibition of
tumor growth in vivo to anti-GD2 antibody, without inducing
allodynia in rats ((Alvarez-Rueda et al., 2011; Terme et al., 2014).
Clinical trials are anticipated to explore optimal dosing of anti-
OAcGD2 mAb.

To potentiate antibody-based treatment, strategies to increase
patient immune cells’ engagement may be devised. Based on the
anti-GD2 antibodies partial reliance on immune effectors such as
NK cells and macrophages, immunocytokines were developed.
Immunocytokines are conjugate between an antibody and
cytokines, thus limiting their systemic effect, while bolstering
activity and proliferation of tumor microenvironment immune
cells (Neri and Sondel, 2016). The anti-GD2 hu14.18 antibody
expressed as a fusion protein with interleukin-2 (hu14.18-IL2) has
shown promise in treating NB during preclinical and clinical
testing. In a Phase II study of this therapeutic on relapsed or
refractory neuroblastoma, a fifth of 23 patients responded to
treatments, all displaying complete response from 9 to
35 months (Shusterman et al., 2010). However, doubts remain
regarding the overall therapeutic benefits of IL-2 due to the severe
toxicities associated with higher doses and the unestablished
effectiveness at lower doses (Shusterman et al., 2010). Another
potentially useful cytokine to bolster the patient’s immune system
is IL-15 (Vincent et al., 2013). Interestingly, in a preclinical study,
hu14.18-IL-15 & IL-21 outperformed hu14.18-IL2 in
immunocompetent mice with syngeneic NB with increased
survival (Nguyen et al., 2022). The increase in survival was
concurrent with increased tumor CD8+ T cells and
M1 macrophages, and decreased Treg. Interestingly this

increased recruitment was mediated by the CXCL9/10 axis, seen
to be activated during decreased lipid raft formation caused by
overexpression of GD1S, which could similarly apply to antibody
incubation, thus producing a synergistic effect (Nguyen et al.,
2022).

Anti-GD2 monoclonal antibodies have also paved the way for
the development of bi- and tri-specific antibodies. These novel
antibody constructs redirect T-cell cytotoxicity towards GD2-
positive cells by linking tumoral antigens and T-cell receptors via
anti-CD3 (Cheng et al., 2015; Cheng et al., 2016). Bispecific
antibodies, such as huOKT3-hu3F8, have demonstrated potent
tumor control (Cheng et al., 2016). Trispecific antibodies, formed
by linking ScFv to anti-GD2 IgG’s light chains, not only redirect
T-cells but also engage Fc-receptor bearing immune cells. In murine
models, trispecific antibodies based on ch14.18 or hu3F8 exhibited
remarkable control over metastatic neuroblastoma, melanoma, and
osteosarcoma tumors (Xu et al., 2015; Park and Cheung, 2020;
Nakajima et al., 2021; Park et al., 2021; Zirngibl et al., 2021).
Encouraged by preclinical success, phase I/II clinical trials
employing trispecific antibodies (hu3F8) have been initiated for
neuroblastoma, osteosarcoma, and small cell lung cancer (Hattinger
et al., 2019; Yankelevich et al., 2019; Ordóñez-Reyes et al., 2022).
Initial results from the neuroblastoma and osteosarcoma trials
indicate a 33% clinical response rate among patients with
relapsed/refractory disease who completed Phase I (Yankelevich
et al., 2019). Phase II results will provide further insights into the
effectiveness of this therapeutic approach.

8.4 Providing immune effectors

Another strategy is to directly provide cytotoxic effectors
redirected via antigen specific whole or fragment antibody.
Radiolabeled antibodies, enables targeted therapy combining
diagnostic and therapeutic capabilities (aka theranostics). A pilot
study using 131I-GD2 ch14.18 in patients with NB demonstrated
tumor uptake in 65% of cases with acceptable organ doses (Zhang
et al., 2022). A Phase II study on medulloblastoma using 131I-3F8
resulted in 15 long-term survivors out of 42 patients, showing
promising outcomes (Kramer et al., 2018). The Sloan Kettering
Cancer Center (New York City, NY, United States) adopted
131I-labeled anti-GD2 3F8 as a standard protocol for patients with
high-risk NB older than 1 year, starting from reference protocol N7
(Cheung et al., 2001). Of note, imaging with ch14.18-labeled 99mTc
improved NB recurrence detection (Reuland et al., 2001). In small
animal bearing NB tumors, gold particles conjugated to anti-GD2
hu14.18K322A showed enhanced CT contrast imaging, while
exhibiting an increased NK cell cytotoxicity against GD2-positive
tumors compared to that elicited by unlabeled hu14.18K322A.
Conjugation of anti-GD2 to gold particles may additionally
enable photo-thermolysis of GD2-positive cells following near-
infrared laser light exposure (Peng and Wang, 2011).

Building up on data showing internalization of the 14G2a
antibody, various payloads were conjugated to anti-GD2
(Kalinovsky et al., 2022; Tibbetts et al., 2022). Surprisingly, there
is a scarcity of studies on classical antibody-drug conjugates based
on anti-GD2. Recently, conjugation of ch14.18 with the
microtubular poisons monomethyl auristatin E & F was achieved
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via a cleavable linker to release the payload inside target cells after
endocytosis. Both antibody drug conjugates achieved superior
tumor control compared to the parent ch14.18 antibody, with
significant differences in mice GD2-positive melanoma and
lymphoma tumor volume. This opens the way for further work
based on this model, exploiting the full diversity of drug-conjugates
already in clinical trials (Fu et al., 2022). Of note, hydrophobic drugs
may be used in anti-GD2-linked liposomes and delivered effectively
(Di Paolo et al., 2011; Jose et al., 2020).

The anti-GD2 14G2a and 3F8 mAbs have also been used to
develop chimeric antigen receptors expressed particularly on αβ
T cells. CARs consist of a cell surface antigen-specific single-chain
variable fragment (ScFv) linked to signaling domains. Co-
stimulatory domains, such as CD28, CD137, and/or OX40, are
utilized in CAR-T cells, linked to the CD3ζ signaling domain.
Clinical trials using GD2 CAR-T cells have been conducted,
primarily in relapsed/refractory neuroblastoma (Louis et al., 2011;
Heczey et al., 2017). Third-generation CAR-T cells using a 14G2a
ScFv showed promising results, with complete remission achieved in
a subset of patients (Del Bufalo et al., 2023). A Phase I/II trial using a
hu3F8-based ScFv on a fourth-generation CAR demonstrated a 1-
year overall survival rate of 74% and partial responses in a portion of
patients (Yang et al., 2017; Yu et al., 2022). A comparison of these
trials highlighted that increased affinity and the use of a fourth-
generation construct did not necessarily result in superior effects.
GD2 CAR-T cells have also been tested in glioblastoma and
H3K27M-mutated diffuse intrinsic midline gliomas, showing
clinical improvements in some patients (Majzner et al., 2022).

CAR-T cells are not the only cell types modified with CARs for
GD2-positive cancers. Expression of GD2-specific CAR on
macrophages and mesenchymal cells led to GD2-positive tumor
cell cytotoxicity, proving potential utility, although their naturally
pro-tumorigenic role in the tumor microenvironment remains to be
addressed (Golinelli et al., 2022; Golinelli et al., 2020; Zhang et al.,
2023). NK cells and γδ T cells, which play crucial roles in antitumor
immunity and are found infiltrated in tumors, have also been
modified with CARs, resulting in GD2-positive cancer cell lysis
(Capsomidis et al., 2018; Chabab et al., 2020; Cózar et al., 2021; Zuo
et al., 2023). However, these cell types have a shorter lifespan and
memory cell formation remains uncertain compared to αβ T cells
(Sun et al., 2011; Comeau et al., 2020). NKT cells, semi-innate
lymphoid cells sharing properties of both NK cells and T cells, have
shown efficacy in preclinical studies, and a Phase I trial using CAR
GD2 iNKT cells derived from the 14G2a antibody was initiated for
neuroblastoma patients, showing potential with complete and
partial remissions observed (Heczey et al., 2014; Xu et al., 2019).
Overall, CAR-based immunotherapies targeting GD2 have
demonstrated promising results in various cancers, including
neuroblastoma and glioblastoma, with manageable safety profiles.
The utilization of different cell types and CAR designs provides a
range of options for personalized treatment approaches.

8.5 Activating the patient’s immune system

A final strategy is complete reliance on the patient’s immune
system activation, named active immunotherapy. In the case of
GD2, a glycolipid with poor immunogenicity, vaccine development

has been the primary focus. GD2’s glycan portion, which constitutes
its hydrophilic extracellular membrane, poses a challenge for vaccine
development since carbohydrate antigens are not strongly
immunogenic. To enhance immunogenicity, GD2 has been
conjugated to carrier proteins like keyhole limpet hemocyanin
(KLH) and combined with adjuvants. Initial attempts using GD2-
KLH and Monophosphoryl-Lipid A (MPLA) adjuvant failed to
induce anti-GD2 antibodies in glioma patients. However, GD2-
lactones (GD2L) conjugated to KLH with QS-21 adjuvant
successfully elicited anti-GD2 antibodies in over 80% of
melanoma patients, with responses lasting more than 6 months
(Nores et al., 1987; Ragupathi et al., 2003). Vaccine trials
involving mixtures of ganglioside conjugates such as GD2L and
GD3L-KLHwith OPT-821 and ß-glucan demonstrated encouraging
results in neuroblastoma, leading to high anti-GD2 titers and more
than 90% long-term survival rates (Kushner et al., 2014; Cheung
et al., 2021). A bivalent vaccine targeting GM2 and GD2-KLH
induced both anti-GM2 and anti-GD2 responses in nearly half of
melanoma patients (Chapman et al., 2000). However, a trivalent
vaccine combining GM2, GD3L, and GD2L-KLH with OPT-821
showed no advantage in overall or progression-free survival
compared to adjuvant alone in a phase II study on relapsed
sarcoma patients (Rosenbaum et al., 2022). This suggests that the
addition of ß-glucan adjuvant may have been beneficial. The context
and selection of ganglioside vaccines are critical factors to consider
for the success of this approach.

In order to circumvent the difficulties linked to the use of
purified GD2 gangliosides, approaches were developed to
produce mimics. Mimotopes are peptide sequences developed to
imitate molecules. In the case of GD2, phage display technology was
used to raise peptides against the ch14.18 antibody, aiming to
produce structural copies of GD2 (Förster-Waldl et al., 2005; Fest
et al., 2006; Riemer et al., 2006). Mimotopes could be delivered in
vivo directly, conjugated to KLH to increase immunogenicity, or
through DNA vaccines with adjuvant (Fest et al., 2006; Riemer et al.,
2006). In both cases, this induced a humoral response, capable of
clearing liver metastases with NK activation with the DNA vaccine.
Interestingly, DNA vaccines expressing mimotopes based on the
14G2a antibody led to production of antibodies reactive against
GD2 and NCAM, just as 14G2a (Bolesta et al., 2005). One mimotope
vaccine mimicking both GD2 and Lewis Y antigen, conjugated to a
pan T-cell epitope and with adjuvant, was used in a Phase I trial in
stage IV breast cancer patients (Hutchins et al., 2017).
Encouragingly, this led to production of antigens to both
antigens in all patients, and may pave the way for further studies.

Another technique mimicking GD2 is the development of anti-
idiotype vaccines. An anti-idiotype is an antibody raised against the
variable region of another antibody, thus adopting a similar
conformation to the epitope of this second antibody. This theory
was applied to GD2 after the observation of anti-idiotype (anti-Id)
antibodies in melanoma patients following treatment with the
murine 14G2a (Saleh et al., 1993). By immunizing rodents with
either 3F8 or 14G2a, anti-Id antibodies were generated, capable of
inhibiting anti-GD2 binding to GD2-positive targets. Furthermore,
immunization of allogenic mice with these anti-Id led to in vivo
production of anti-GD2 (Cheung et al., 1993; Sen et al., 1998).
Similar results were observed in primates using 1A7, the anti-Id
raised against 14G2a, with QS-21 adjuvant, leading to clinical
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evaluation of 1A7 (Sen et al., 1997). Phase I clinical trials were
conducted on patients with advanced melanoma. In these trials, 85%
of patients developed an anti-GD2 response with 1 complete
response and 12 stable diseases on 47 patients going for 1 + year
(Foon et al., 1998; Foon et al., 2000). In contrast, in high-risk
neuroblastoma following complete remission, all patients
developed anti-GD2, and 85% of patients in first remission
remained without disease progression, compared to 10% for
patients in second remission (Batova et al., 2004). More recently,
another anti-Id, named ganglidiomab was raised in mice against
14G2a, and further humanized to produce the chimeric
ganglidiximab (Lode et al., 2013; Eger et al., 2016).
Ganglidiximab was capable of raising anti-GD2 responses, and
may increase the specificity of this response, enhancing effect of
this therapeutic against tumoral challenges.

Interestingly, GD2 carbohydrate head-groups displayed on a
multivalent polyamidoamine scaffold used as vaccines induced rapid
expansion of γδ T cells in mice, followed by a second-wave CD8+

T cells expansion (Bartish et al., 2020).
Intriguingly, a role for GD2 has a target for un-engineered

cytotoxic T cells was described in mice. Immunization of mice with a
GD2 expressing cell line induced a cytotoxic T cell response, carried
out by CD8+ T cell (Zhao and Cheung, 1995). The cytotoxicity was
dependent on the TCR, independent of NK cells, and restricted to
GD2 and H-2b bearing targets. Functionally, it was suggested that
GD2 residues could be linked to peptides, working as haptens, that
bind to the MHC class I pocket. Pending confirmation, this could
pave the way for alternative targeting of GD2-positive cancers, such
as vaccine therapy and TCR engineering.

9 Conclusion and perspectives

While encouraging results have been observed using different
therapeutic modalities, cases of refractory or relapsed disease are still
frequent. Thus, the different treatment may benefit from
potentiation based on biological properties of GD2. Based on
monoclonal antibodies’ inhibition of the FAK/AKT/mTOR
pathway in GD2-positive tumors, inhibition of components of
the pathway or others involved in cell survival may achieve
targeted and synergistic effect, thus enhancing therapeutic effect.
Building up on GD2’s role as an immune checkpoint for
macrophages, synergistic use of anti-GD2 and anti-CD47—a
phagocytosis suppressor–has been used to attain synergy and
eradicate in vivo osteosarcoma and small cell lung cancer tumors
(Ito et al., 2001; Theruvath et al., 2022).

The potential expression of GD2 on T-cell warrants particular
attention in T-cell based immunotherapies, as it could potentially
lead to fratricidal killing and drop in therapeutic efficacy, as seen in
other contexts (Kozani et al., 2021). The same may apply with CAR-
macrophages since after tumor cell phagocytosis they may recycle
the tumor cell GD2 on their cellular membrane (Stagno et al., 2022).
Immune effector cell candidates for CAR approaches should be
tested respectively against the immunosuppressive properties of
tumor cell shed GD2. A different approach, based on GD2’s
propension to be shed from tumor cells, is the inhibition of
extravesicular vesicles’ secretion has proven effective in a
preclinical model (Liu et al., 2022). While this might inhibit

transfer of malignant properties from GD2-positive to antigen-
negative cells, it especially potentiated anti-GD2’s therapeutic
effect through reduction of decoy targets and
immunosuppressive properties of circulating GD2. Another
strategy will be the use of anti-GD2 immunotherapies at the
time of minimal residual disease.

Regarding the development of vaccines, different alternatives
can be suggested to further improve efficacy. As mentioned, the
choice of GD2 subspecies may matter, with varying immunogenicity
among the different structures, as seen with increased efficacy using
lactonized forms of GD2 (Nores et al., 1987). In addition, the
potential of GD2 stabilizing peptides to induce cytotoxic T-cell
response remains to be explored.

Finally, a commonality between all treatments is the superior
results obtained in the treatment of high-risk neuroblastoma
compared to other indications. One specificity of neuroblastoma
is high expression of GD2, observable in nearly all cells, with very
rare cases of antigen loss (Wu et al., 1986; Kramer et al., 2001). As
such, other GD2-positive cancer may benefit from strategies to
increase antigen expression to levels similar to neuroblastoma.
Different compounds may achieve this effect, such as epigenetic
modulators (HDAC or EZH2 inhibitors), cytokines (IFNγ,
TNFα, IL-4) which may additionally potentiate immune
effectors, retinoids (Fenretinide), or polyamine
(nanospermidine) as more recently described (Hoon et al.,
1991a; Hoon et al., 1991b; Shibina et al., 2013; Kroesen et al.,
2016; van den Bijgaart et al., 2019; Kailayangiri et al., 2019; Mabe
et al., 2022; Galassi et al., 2023). Identifying the most suitable
patients and the optimal timing for these approaches should also
be taken into consideration to improve the patients’ outcome. In
this regard, the quantification of tumor shed GD2 can provide a
diagnostic companion for anti-GD2 immunotherapies.
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