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Introduction:While vancomycin remains awidely prescribed antibiotic, it can cause
ototoxicity and nephrotoxicity, both of which are concentration-associated.
Overtreatment can occur when the treatment lasts for an unnecessarily long
time. Using a model-informed precision dosing scheme, this study aims to
develop a population pharmacokinetic (PK) and pharmacodynamic (PD) model
for vancomycin to determine the optimal dosage regimen and treatment duration in
order to avoid drug-induced toxicity.

Methods: The data were obtained from electronic medical records of 542 patients,
including 40 children, and were analyzed using NONMEM software. For PK,
vancomycin concentrations were described with a two-compartment model
incorporating allometry scaling.

Results and discussion: This revealed that systemic clearance decreased with
creatinine and blood urea nitrogen levels, history of diabetes and renal diseases,
and further decreased in women. On the other hand, the central volume of
distribution increased with age. For PD, C-reactive protein (CRP) plasma
concentrations were described by transit compartments and were found to
decrease with the presence of pneumonia. Simulations demonstrated that,
given the model informed optimal doses, peak and trough concentrations as
well as the area under the concentration-time curve remained within the
therapeutic range, even at doses smaller than routine doses, for most patients.
Additionally, CRP levels decreasedmore rapidly with the higher dose starting from
10 days after treatment initiation. The developed R Shiny application efficiently
visualized the time courses of vancomycin and CRP concentrations, indicating its
applicability in designing optimal treatment schemes simply based on visual
inspection.
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1 Introduction

Vancomycin is a glycopeptide antibiotic used to treat infections caused by vancomycin
susceptible bacterial species, especially methicillin-resistant Staphylococcus aureus (Levine,
2008). It is also indicated for the treatment of infections caused by Gram-positive bacteria in
patients with allergies to beta-lactam antibiotics or cephalosporins (Rybak M. et al., 2009).
Due to its various indications, vancomycin has been increasingly used in many countries
since it was approved (Kirst et al., 1998) and it remains a widely prescribed treatment agent
for various bacterial infectious diseases.
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Vancomycin, however, can cause severe toxicities such as
ototoxicity and nephrotoxicity, which can lead to treatment
failure if not carefully used. In past years, it was believed that the
toxicity was associated with impurities rather than its concentration
(Moellering, 1984). Subsequently, with the introduction of newer
manufacturing processes, ototoxicity has almost disappeared and
nephrotoxicity has also decreased significantly (Brummett, 1981;
Farber and Moellering, 1983).

Regarding nephrotoxicity, antioxidants have shown a
nephroprotective effect against vancomycin associated nephrotoxicity.
In a study assessing the nephroprotective role of ascorbic acid against
vancomycin associated nephrotoxicity, co-administration of ascorbic
acid with vancomycin preserved renal function and reduced the
absolute risk of nephrotoxicity by 20.3%“ (Hesham El-Sherazy et al.,
2021). Investigating the correlation between nephrotoxicity and different
antibiotic regimens, a comparison was made between once-daily dosing
and individualized multiple daily dosing of gentamicin and amikacin in
terms of clinical and bacteriological efficacy. The study assessed the
incidence of nephrotoxicity associated with both regimens and found a
non-significant difference between the twodosing regimens” (Abdel-Bari
et al., 2011).

Contrary to past understanding, it has been found that high doses of
vancomycin can also increase toxicity (Hidayat et al., 2006). Recent
studies have investigated the relationship between concentration and
nephrotoxicity, as well as the potential nephrotoxicity when
vancomycin is administered with aminoglycoside antibiotics (Elyasi
et al., 2012; Gelfand and Cleveland, 2013).

Vancomycin treatment failure can also occur in bacterial-
resistant infections (Centers for Disease Control and Prevention
(CDC). Antibiotic Resistance Threats in the United States, 2019.
Atlanta, GA: U.S. Department of Health and Human Services,
Centers for Disease Control and Prevention, 2019). Since
vancomycin-resistant enterococci (VRE) was reported in 1980s,
six resistance patterns have been identified (Kim et al., 2000;
Murray, 2000; Depardieu et al., 2003) Various strategies to
mitigate resistance have been introduced (Chong and Lee, 2000),
including the administration of vancomycin to achieve AUC/MIC =
400 (Martin et al., 2010), with AUC denoting the area under the
concentration-time curve and MIC denoting the minimum inhibitory
concentration, defined as the lowest concentration capable of inhibiting
bacterial growth. However, for bacteria strains with relatively high
MICs, the AUC/MIC = 400 requirement may be inadequate for
effective treatment.

Given that avoiding toxicity and resistance is crucial for the
success of vancomycin therapy, efforts have beenmade to investigate
factors affecting drug exposure and to adjust the dose accordingly.
Early efforts in this direction include a dosing interval nomogram to
achieve target peak and trough concentrations, adjusted based on
body weight and renal function (Matzke et al., 1984). Additionally, a
consensus review by American academic societies recommended
weight-normalized loading and maintenance doses to achieve target
trough concentrations or target AUC/MIC ratios (Rybak M. J. et al.,
2009).

However, these early descriptions of vancomycin plasma
concentrations did not utilize a nonlinear mixed-effects (NLME)
population pharmacokinetic (PK) model, which is now a standard
model for drug concentrations. This model distinguishes inter-
individual variability from intra-individual or residual variability,

producing more reliable results in PK analyses and dose selection.
Dose optimization based on a NLME population PK model falls
under the category of model-informed precision dosing (MIPD).
Numerous works have demonstrated the novelty of MIPD in
achieving vancomycin dose optimization (Frymoyer et al., 2020;
Ter Heine et al., 2020; Hughes et al., 2021; Uster et al., 2021; Aljutayli
et al., 2022; Heus et al., 2022; Matsumoto et al., 2022). These works
include model averaging and selection algorithms to improve
predictive performance (Uster et al., 2021; Heus et al., 2022), the
application of published models for prospective validation (Ter
Heine et al., 2020), continuous learning approaches in pediatric
patients (Hughes et al., 2021), clinical decision support tools for
individualized dosing in pediatric patients (Frymoyer et al., 2020),
application in Japanese patients (Matsumoto et al., 2022), and the
importance of Bayesian approaches for faster and reliable
monitoring (Aljutayli et al., 2022). While there are works related
to MIPD in vancomycin treatment for Asian patients other than
Japanese populations (Purwonugroho et al., 2012; Deng et al., 2013;
Vu et al., 2019; Munir et al., 2021; Belavagi et al., 2022; Wei et al.,
2022), in the Korean population, a study has been conducted in
neonatal patients only (Lee et al., 2021).

In addition to dose optimization to avoid toxicity and resistance,
an important aspect of vancomycin treatment is knowing when to
stop dosing to avoid unnecessarily prolonged treatment (Rhee et al.,
2020). This can be done by developing a pharmacodynamic (PD)
model to predict the time course of anti-bacterial effects. While
bacterial eradiation would be the most meaningful PD endpoint for
that purpose, in routine clinical care settings where such
information is usually not available, an alternative endpoint
could be C-reactive protein (CRP). CRP plasma concentration,
which is maintained between 1 and 10 mg/L, increases up to
100-fold within 2 h of the onset of inflammation and peaks
almost within 48 h (Kindmark, 1972; Lelubre et al., 2013).

With this background, this study aims to i) develop a
vancomycin population PK model and determine the optimal
individualized dosage regimen within the MIPD framework, ii)
develop a vancomycin PD model to identify the optimal
treatment time, and iii) develop a web-based tool to visualize
vancomycin PK and PD profiles for a selected dosage regimen
applicable in clinical practice. Figure 1 illustrates the flow chart
of this study.

2 Methods

2.1 Data collection

This was a retrospective study for PK and PD properties of
vancomycin in 542 patients including 40 pediatric patients
(<20 years), who received vancomycin intravenous IV) infusion
at Severance Hospital in Seoul, Republic of Korea. The data were
extracted from electronic medical records. The study encompassed
patients who were treated with vancomycin and underwent
Therapeutic Drug Monitoring (TDM) services. Patients lacking
dosing history and concentration sampling time information
were excluded from the analysis. Demographic information,
laboratory test results such as creatinine and blood urea nitrogen
(BUN), and comorbidity details were collected as potential
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covariates, as well as drug concentrations with 3 measurements per
patient on average for PK analysis and CRP concentrations for PD
analysis. PK and PD analyses were performed using NONMEM
software version 7.5 (ICON Development Solutions, Dublin,
Ireland) and exploratory data analysis was conducted using R
software version 4.2.2.

2.2 Bioanalysis

Serum vancomycin levels were assessed using the kinetic
interaction of microparticles in solution (KIMS) method on the
Roche Cobas c702 analyzer (Roche, Basel, Switzerland). A
competitive reaction takes place between the vancomycin-
macromolecule conjugate and vancomycin in the serum to bind
with the vancomycin antibody on the microparticles. The turbidity
induced by the binding of the vancomycin conjugate to the antibody
on the microparticles is measured photometrically, and this
measurement is inhibited by the presence of vancomycin in the
sample. The resulting turbidity is indirectly proportional to the
amount of vancomycin present in the sample. The lower limit of
quantitation for vancomycin is 4.0 μg/mL, determined as the lowest
concentration that meets a total error goal of 20%.

CRP concentrations were determined through a particle-enhanced
immunoturbidimetric assay on the Roche Cobas c702 as well. Serum
creatinine levels were measured by a rate-blanked compensated kinetic
Jaffe method on the Atellica CH 930 Analyzer (Siemens Healthcare
Diagnostics, Marburg, Germany).

2.3 Basic PK model building

One- and two-compartment disposition models were tested for
basic structural model since sparse samples near peak and trough
concentrations were taken, where trough and peak concentrations
were concentrations at the start and the end of IV infusion within
one dosing interval, respectively. Systemic and inter-compartmental
clearance and central and peripheral volume of distribution were

parameterized using allometry scaling (N. H. Holford, 1996) as the
following equations

TVV � θV × WT/70( ) × COVV

TVCL � θCL × WT/70( )
0.75 × Fren × Fmat × COVCL

where WT is body weight, TVV and TVCL denote population
typical value of volume of distribution (V) and clearance (CL),
and θV and θCL denote populationmedian values of V and CL for the
subject with WT = 70 kg. The same allometry scaling was also
applied to the inter-compartmental clearance (Q) and peripheral
volume of distribution (Vp). The exponential model was applied to
inter-individual variation of these parameters, and for the residual
error, additive, proportional and combined models were compared.

2.4 Covariate model building

Assuming vancomycin clearance is affected by age-related renal
function factor (Fren) and clearance maturation factor (Fmat)
associated with postmenstrual age (PMA) of up to 48 weeks
(Anderson et al., 2007), covariate model building was conducted
using the following model structure as a basis:

TVV � θV × WT/70( ) × COVV

TVCL � θCL × WT/70( )
0.75 × Fren × Fmat × COVCL

where COVV and COVCL denote functions of additional covariates
to be searched for V and CL, respectively. Then, Fren was formulated
as (Anderson et al., 2007):

Fren � CLCr/CLCrTV( )
λ

CLCr � RCr/Cr × e −ktox ·t( )

RCr � 64.2 × e kCr · age−30( )( )

where for the Fren model, CLCr is creatinine clearance, CLCrTV is the
typical value of CLCr corresponding to the subject with age of
30 years old, and λ is an exponent parameter, for the CLCrmodel, Cr
is plasma creatinine concentration, RCr is Cr production rate and

FIGURE 1
Study flow chart.
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ktox means a rate constant to describe the reduced creatinine
clearance due to vancomycin-induced nephrotoxicity which could
reduce clearance, and for the RCr model, 64.2 (mg⁄h) is the value of
RCr for the subject with age of 30 years old, and kCr is a rate constant
related to age (Cockcroft and Gault, 1976) such that kCr > 0 for
age <30 and kCr ≤ 0 for age ≥30.

On the other hand, Fmat, which applied to patients under 4 years
old, was formulated as (N. Holford et al., 2013):

Fmat � PMAγ/ PMA50γ + PMAγ( )
where PMA50 denotes PMA where maturation reaches 50% of the
adult clearance and γ is a steepness factor of sigmoid function.

After integrating these into clearance, potential covariates such
as age, gender, BUN, and the history of hypertension, diabetes, renal
diseases, cardiovascular disease, hematological diseases, pleural
effusion and edema, and sepsis were tested based on
pharmacological and physiological plausibility, as denoted by
COVV and COVCL. Stepwise covariate model building was
conducted with a likelihood ratio test based on the criteria of p <
0.01 (ΔOFV = 6.63, df = 1) for forward selection and p < 0.001

(ΔOFV = 10.82, df = 1) for backward deletion, where OFV means
objective function value of NONMEM.

2.5 PD model building

To characterize the dynamics of CRP for the time delay between
infection and biomarker level change in the plasma, a semi-
mechanistic model with proliferation and transit compartments
was attempted which was formulated as below:

dProl
dt

� Kin × 1 + SCRP ·D( ) − Kout × Prol ; Proliferation

dTran1
dt

� ktr × Prol − Tran1( ) ; Transit 1

dTran2
dt

� ktr × Tran1 − Tran2( ) ; Transit 2

dCRP
dt

� ktr × Tran2 − kCRP × CRP ; Circulation

Prol is the proliferation compartment, with Kin and Kout

denoting production and degradation rate constant, respectively,

TABLE 1 Demographic of patients who were included in the PK analysis.

The total number of patients = 542 Samples (vancomycin concentrations) = 1,526

Continuous Variable Median (Min, Max)

Age (year) 60 (0, 93)

PMA (month) 70 (39, 232)

Weight (kg) 59 (2.6, 106)

Albumin (g/dL) 2.9 (1, 4.4)

Total protein (g/dL) 5.7 (3.4, 8.4)

Creatinine (mg/dL) 0.7 (0.2, 12.9)

BUN (mg/dL) 15.25 (1.5, 141.5)

Vancomycin concentration (mg/L) 23.8 (1.7, 99)

Categorical Variable (Number, %) (Number, %)

Sex Male (319, 58.9) Female (223, 41.1)

Hypertension No (258, 47.6) Yes (284, 52.4)

Diabetes No (388, 71.6) Yes (154, 28.4)

Neutropenia No (523, 89.9) Yes (19, 3.5)

Sepsis No (447, 82.5) Yes (95, 17.5)

Hematological malignancy No (420, 77.5) Yes (122, 22.5)

Pleural effusion and edema No (493, 91) Yes (49, 9.0)

Cardiovascular disease No (286, 52.8) Yes (256, 47.2)

Renal diseases

No (395, 72.9)

Acute kidney disease (49, 9.04)

Chronic kidney disease (48, 8.86)

Others (50, 9.23)

PMA, postmenstrual age; BUN, blood urea nitrogen; SD, standard deviation; Min, Minimum; Max, Maximum.
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which was assumed to be Kin = Kout = ktr for numerical simplicity,
Tran1 and Tran2 are the transition compartments, with ktr denoting
a transit rate constant, and CRP is the circulating compartment, with
kCRP denoting an elimination rate constant. SCRP is a scaling factor
and its effect is proportional to disease severity (D), which was
estimated as the following equations where α is a scaling factor.

dD
dt

� kD × D × 1 − EDrug( )

EDrug � α × AUC

AUC obtained from the developed PK model, EDrug means drug
effect and kD is a first-order progression rate constant. To find
covariates for PD model parameters, a stepwise selection was done
with a likelihood ratio test based on the criteria of p < 0.05 (ΔOFV =
3.84, df = 1) for forward selection and p < 0.01 for backward deletion.

2.6 Model evaluation

To select the final model, the tested models were compared based
on OFV or AIC values and the precision of parameter estimates. The
selected model was then evaluated with goodness-of-fit plots such as
observation versusmodel prediction (PRED), and conditional weighted
residual (CWRES) versus PRED. Subsequently, a visual predicted check
(VPC) was conducted for the validation of the selected model, ensuring
that collected drug concentrations fall within the 95% confidence
interval of the 2.5th percentile, median, and 97.5th percentile of
predicted drug concentrations.

2.7 Simulation for optimal dosage regimen

Using the final PK model, simulations were conducted to
explore optimal dosage regimens for sub-populations stratified by
selected covariates. To achieve this, for the m selected covariates, the
range from the minimum to the maximum values for each covariate
i was divided into equi-spaced intervals Ni, resulting in a total of
N1 × N2 × · · · × Nm scenarios of covariate pairs.

These scenarios were simulated using typical values for
intravenous administration four times a day (QID). The objective
was to determine the optimal dosage regimen that meets the criteria
of achieving a trough concentration closest to the target value, which
was set at 7 mg/L for children under the age of 4, 10 mg/L for those
aged 4 to 19, and 15 mg/L for adults. Additionally, the peak
concentrations were required to remain below the toxic level of
40 mg/L across all age groups. These criteria were based on findings
from previous studies (Rybak M. et al., 2009; Rybak et al., 2020).

2.8 Simulation for the time course of anti-
bacterial effects

Using the developed PD model and the selected covariates, the
time course of CRP plasma concentrations was simulated by varying
the dose, infusion rate, and inter-dose interval in order to predict the
optimal time to discontinue treatment and prevent unnecessary
overtreatment.

2.9 Development of a web-based tool

A web-based application was developed using R Shiny to
visualize the simulated time course of plasma concentrations of
vancomycin and CRP, which is based on the developed PK-PD
model and the selected dosage regimen. This application allows
users to visualize the predicted individual PK-PD profile for a
specific dosage regimen.

3 Results

3.1 Patient information

A total of 542 hospitalized patients were included in the PK
model building, with 22 aged under 4, 18 aged 4 to 19, and
502 adults. Among them, 128 patients were eligible for the PD
analysis. Vancomycin was administered at doses ranging from
500 to 1,500 mg, with dose intervals ranging from 6 to 24 h. The
patient population spanned from neonates to the elderly, and
40 pediatric patients were included in both PK and PD analyses.
The average length of hospital stay was 20 days, with a minimum of
2 days and a maximum of 113 days. The hospitalization of up to
113 days was due to a secondary infection caused by pneumonia,
which necessitated the extension of vancomycin treatment. Detailed
demographic information for the patients can be found in
Tables 1, 2.

3.2 PK model

Various models were tested using the collected vancomycin
concentration data, and a 2-compartment model incorporating
allometry scaling was selected as the basic model based on the
OFV value. For covariates, gender, BUN, and the history of diabetes
and renal disease were selected for COVCL and age for COVV as
follows:

COVCL � e kBUN · BUN−15( )( ) × 1 + θFEM · FEM( ) × 1 + θDM ·DM( )
× 1 + θREN · REN( )

COVV � e kV · age−40( )( )

where FEM = 1 for female and 0 for male, DM = 1 for diabetes and
0 for no diabetes, and REN = 1 for renal disease and 0 for no renal
disease.

The incorporation of vancomycin-induced nephrotoxicity
(ktox) into the model significantly improved model prediction
(p < 0.0001). Vancomycin CL exhibited a gradual increase with
BUN levels up to 15 mg/dL, followed by a subsequent decrease. In
the final model, median values of CL and V were estimated to be
4.31 L/h and 38.6 L, respectively. The details of final parameter
estimates are presented in Table 3, and these values were
consistent with findings from other studies. Regarding the
relative standard error (RSE), except for γ, most parameters,
demonstrated reliable estimation. Goodness-of-fit plots of the PK
model are shown in Figure 2, revealing the absence of noticeable
trends. VPC plots in Figure 3 indicated that the majority of
observations fell within the 95% confidence intervals of the
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predictions. In these figures, the vancomycin concentration data
depicted represent observations during repeated dosing after
hospitalization. The two concentration measurements at
2,500 h correspond to peak and trough samples obtained from
the patient who was hospitalized for 113 days or 2,712 h.

3.3 PD model

A semi-mechanistic model with one proliferation
compartment and two transit compartments was selected as the
structural model. Among the covariates, the presence of
pneumonia had a significant effect on the transit rate constant
as in the following equation, where PNE = 1 indicates pneumonia
and 0 indicates no pneumonia.

ktr � θktr + θPNE · PNE

The final parameter estimates are presented in Table 4. Except
for kD and CRP0, the initial value of CRP, between-subject variability
(BSV) could not be obtained due to numerical difficulties.
Consequently, kCRP was fixed at 0.0365 h−1 based on the prior
knowledge that CRP’s half-life was 19 h (Vigushin et al., 1993).
Mean transit times for pneumonia and non-pneumonia patients
were 6.65 and 9.62 days, respectively. Figure 4 presented the
goodness-of-fit plots where no obvious trends were observed,
indicating, overall, the model adequately describes CRP
concentrations.

3.4 Simulation for optimal dosage regimen

Considering the range of covariates observed in the collected
data, a total of 384 scenarios were simulated for adult patients,

TABLE 2 Demographic of patients who were included in the PD analysis.

The number of patients = 128 Samples (CRP measurements) = 845

Continuous Variable Median (Min, Max)

Age (year) 63 (9, 87)

Weight (kg) 57.15 (31.5, 106)

Albumin (g/dL) 2.8 (1.7, 4.0)

Total protein (g/dL) 5.55 (3.9, 8.4)

Creatinine (mg/dL) 0.79 (0.2, 10.35)

BUN (mg/dL) 18.05 (1.9, 141.5)

CRP concentration (mg/L) 73 (0.4, 479.2)

Categorical Variable (Number, %) (Number, %)

Sex Male (79, 61.7) Female (49, 38.3)

Pneumonia No (87, 68.0) Yes (41, 32.0)

Hypertension No (46, 35.9) Yes (82, 64.1)

Diabetes No (76, 59.4) Yes (52, 40.6)

Neutropenia No (126, 98.4) Yes (2, 1.6)

Sepsis No (101, 78.9) Yes (27, 21.1)

Hematological malignancy No (115, 89.8) Yes (13, 10.2)

Pleural effusion and edema No (117, 91.4) Yes (11, 8.6)

Cardiovascular disease No (63, 49.2) Yes (65, 50.8)

Renal diseases

No (87, 68)

Acute kidney disease (13, 10.9)

Chronic kidney disease (14, 10.2)

Others (14, 10.9)

Co-infected bacterial species

None (109, 85.2)

Other Staphylococcus species (18, 14.1)

Streptococcus species (1, 0.8)

CRP, C-reactive protein, PMA, postmenstrual age; BUN, blood urea nitrogen; SD, standard deviation; Min, Minimum; Max, Maximum.
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using 4 Cr levels, 4 BUN levels, 4 age levels, and 6 body weight
(WT) levels. For pediatric patients, a total of 656 scenarios were
simulated. Among these, 336 scenarios were designed for
patients aged 4 years or younger, incorporating 7 PMA levels,
3 WT levels, 4 Cr levels, and 4 BUN levels. An additional
320 scenarios were created for patients aged over 4 years,
employing 4 age levels, 5 WT levels, 4 Cr levels, and 4 BUN
levels.

Daily doses were explored in increments of 0.2 g (0.05 g per
dose; QID) for adults, and in increments of 5 mg/kg (1.25 mg/kg
per dose; QID) for pediatrics. Detailed results are presented in
Table 5 for adults, Table 6 for pediatric patients and Table 7 for
those aged under 4. The MIPDs were provided for each
combination of covariate values, and the shading increased with
the dose. For precision dosing presented in the tables, the covariate

model for COVCL indicated that dose reductions of 23%, 15%, and
20% were necessary for patients with renal diseases, diabetes and
females, respectively. In simulation results, the optimal dose
increased with weight, while it decreased with Cr and BUN
levels. Regarding age, the dose exhibited an upward trend with
age until 40, followed by a subsequent decrease. Regarding the
attainment of target concentrations, it was confirmed that
simulated concentrations given optimal doses were within the
therapeutic range across all age groups. Figure 5 illustrates that
when concentrations of the study patients were simulated using the
optimal dose from a virtual patient with the most analogous
covariates to the study patient, the majority of simulated
concentrations lied within the therapeutic range. In contrast, a
significant portion of observed concentrations fell outside this
range.

TABLE 3 Parameter estimates of the final pharmacokinetic model.

Parameter Population estimate (%RSE)

Structural parameter

θCL (L/h) 4.32 (4.33)

θV (L) 38.6 (2.69)

θQ (L/h) 3.93 (9.31)

θV2 (L) 66.8 (9.78)

(Creatinine clearance related parameter)

kCr (if age ≥30) (yr-1) −0.0127 (14.3)

kCr (if age <30) (yr-1) 0.0193 (37.9)

λ 0.655 (3.66)

(Maturation related parameter)

PMA50 43.9 (16.3)

γ 2.08 (63.5)

(Nephrotoxicity related parameter)

ktox (day-1) 0.00598 (19.9)

(Covariate related parameter)

kV 0.00957 (8.88)

kBUN −0.00874 (13.2)

θREN −0.237 (13.0)

θFEM −0.199 (12.7)

θDM −0.151 (22.3)

Between subject variability

ω2
CL (CV(%)) 29.1 (4.18)

ω2
V2 (CV(%)) 101 (8.04)

Residual variability

σ2 proportional trough (CV %)) 17.8 (5.57)

σ2 additive trough (mg/L) 0.956 (23.0)

σ2 proportional peak (CV %)) 11.0 (11.6)

σ2 additive peak (mg/L) 4.47 (8.59)

CL, clearance; V, volume of distribution; Q, Inter-compartmental clearance; V2, peripheral volume of distribution; kCr, Age related rate constant of renal function; λ, Exponent of renal function;
PMA50, Postmenstrual age at 50% organ maturation; γ, Steepness factor of sigmoid function of maturation; ktox, Nephrotoxicity related rate constant; kV, Covariate coefficient of aging effect;

kBUN, Covariate coefficient of blood urea nitrogen effect; θREN, Covariate coefficient of renal disease effect; θFEM, Covariate coefficient of sex effect; θDM, Covariate coefficient of diabetes effect;
RSE, relative standard error; CV, coefficient of variance.
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FIGURE 2
Goodness-of-fit plot for the PKmodel (A) solid line: prediction; dots: observations, dashed line: smooth (of observations), (B) solid line: identity line;
dashed line: smooth, (C, D) solid line: zero residual line; dashed line: smooth.

FIGURE 3
Visual predictive check of the final pharmacokinetic model. Open circles are observations and lines are 2.5th, median and 97.5th percentiles of
observations. Colored area means confidence interval of each prediction percentile.
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TABLE 4 Parameter estimates of the final pharmacodynamic model.

Parameter Population estimate (%RSE)

Structural parameter

θktr (h-1) 0.0129 (4.90)

θPNE (h-1) 0.0058 (17.2)

kCRP (h-1) 0.365 FIX

CRP0 (mg/L) 110 (8.4)

kD (h-1) 0.00192 (29.2)

α 0.000239 (8.12)

SCRP 102 (6.56)

Between subject variability

ω2
KD (CV(%)) 147.6 (19.5)

ω2
CRP0 (CV(%)) 107.2 (7.65)

Residual variability

σ2 proportional (CV %)) 54.9 (2.71)

ktr, Transit rate constant; θPNE , Covariate coefficient of pneumonia effect; kCRP , elimination rate constant; CRP0, Initial value of C-reactive protein, kD , Progression rate constant; α, Scaling
factor for drug effect; SCRP, scaling factor for proliferation; RSE, relative standard error; CV, coefficient of variance.

FIGURE 4
Goodness-of-fit plot for the PDmodel. (A) solid line: prediction; dots: observations, dashed line: smooth (of observations), (B) solid line: identity line;
dashed line: smooth, (C, D) solid line: zero residual line; dashed line: smooth.
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3.5 Simulation for the time course of anti-
bacterial effects

The influence of dose and pneumonia on CRP concentration-
time profile is illustrated in Figure 6. No dose-dependent
differences were observed up to approximately 240 h or 10 days.
However, after this point, CRP levels exhibited a faster decline with
higher doses, returning to the normal range of 1–10 mg/L at
around 1,100 h or 46 days with the recommended dose. This
suggests that discontinuing vancomycin treatment at 46 days is
viable to prevent unnecessary overtreatment. It is worth noting
that the extended time required for CRP levels to normalize can be
attributed to the prolonged hospitalization period experienced by
the study patients.

3.6 Development of a web-based tool

The interface of the developed R Shiny tool for vancomycin
dose optimization is showcased in Figure 7. This tool offers the
capability to optimize the necessary dose for a patient to attain
the desired drug concentration based on their individual
covariates, achieved through the adjustment of the dose and/
or dosing interval. By providing visualizations of drug
concentration-time profiles, this tool serves as an alternative
to the nomogram approach detailed in Tables 5–7. In addition
to simulating drug concentrations, the application also facilitates
the visualization of simulated CRP plasma concentrations that
correspond to the employed dose, dosing rate, and covariates
utilized in the PK simulation.

TABLE 5 Simulation results for optimal daily dose in adults (g/day).

Age
(year)

Weight
(kg)

Creatinine (mg/dL)

0.5 1.0 1.5 2.0 >2.5

BUN (mg/dL)

10 20 30 >40 10 20 30 >40 10 20 30 >40 10 20 30 >40 10 20 30 >40

20

40 2.2 2 1.8 1.6 1.2 1.2 1 1 1 0.8 0.8 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6

50 2.6 2.4 2 1.8 1.4 1.4 1.2 1 1 1 1 0.8 0.8 0.8 0.8 0.6 0.8 0.8 0.6 0.6

60 3 2.6 2.4 2.2 1.6 1.6 1.4 1.2 1.2 1.2 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

70 3.2 3 2.6 2.4 1.8 1.6 1.6 1.4 1.4 1.2 1.2 1 1.2 1 1 1 1 1 0.8 0.8

80 3.6 3.2 2.8 2.6 2 1.8 1.6 1.6 1.6 1.4 1.2 1.2 1.2 1.2 1 1 1.2 1 1 0.8

90 4 3.4 3.2 2.8 2.2 2 1.8 1.6 1.6 1.6 1.4 1.2 1.4 1.2 1.2 1 1.2 1.2 1 1

40

40 2.2 2 1.8 1.6 1.2 1.2 1 1 1 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6

50 2.6 2.4 2 1.8 1.4 1.4 1.2 1.2 1.2 1 1 0.8 1 0.8 0.8 0.8 0.8 0.8 0.6 0.6

60 3 2.6 2.4 2.2 1.6 1.6 1.4 1.2 1.2 1.2 1 1 1 1 0.8 0.8 1 0.8 0.8 0.8

70 3.2 3 2.6 2.4 1.8 1.8 1.6 1.4 1.4 1.4 1.2 1 1.2 1 1 1 1 1 0.8 0.8

80 3.6 3.2 2.8 2.6 2 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.4 1.2 1.2 1 1.2 1 1 1

90 3.8 3.4 3.2 2.8 2.2 2 1.8 1.8 1.8 1.6 1.4 1.4 1.4 1.4 1.2 1.2 1.2 1.2 1 1

60

40 1.8 1.6 1.4 1.2 1 1 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4

50 2 1.8 1.6 1.4 1.2 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6

60 2.2 2 1.8 1.6 1.4 1.2 1.2 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6

70 2.6 2.2 2 1.8 1.6 1.4 1.2 1.2 1.2 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

80 2.8 2.6 2.2 2 1.8 1.6 1.4 1.4 1.4 1.2 1.2 1 1.2 1 1 1 1 1 0.8 0.8

90 3 2.8 2.4 2.2 1.8 1.8 1.6 1.4 1.4 1.4 1.2 1.2 1.2 1.2 1 1 1 1 1 1

80

40 1.4 1.2 1.2 1 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.6 0.4 0.4 0.4

50 1.6 1.4 1.4 1.2 1 1 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

60 1.8 1.6 1.6 1.4 1.2 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.8 0.6 0.6 0.6

70 2 1.8 1.6 1.6 1.2 1.2 1.2 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6

80 2.2 2 1.8 1.8 1.4 1.4 1.2 1.2 1.2 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

90 2.4 2.2 2 1.8 1.6 1.4 1.4 1.2 1.2 1.2 1.2 1 1 1 1 1 1 1 0.8 0.8

BUN, Blood urea nitrogen. *The presented optimal dose needs to be reduced by 15% for diabetes, 23% for renal diseases, and 20% for female.
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4 Discussion

The primary objective of this study was to present the optimal
dosage regimen and treatment duration for Korean patients undergoing
vancomycin treatment by utilizing a PK-PD model. Prior research
within the framework of vancomycin dose adjustment using TDM
has provided dosing guidelines based on peak and trough
concentrations, considering factors such as AUC, MIC, and patient
covariates (Rybak et al., 2020). However, these simplistic TDM-based
approaches often fall short of offering truly personalized vancomycin
therapy tailored to individual patient characteristics. In light of this
limitation, PK model-based studies have delved into dose optimization
(Anderson et al., 2007; Yamamoto et al., 2009; Deng et al., 2013; Abdel
Hadi et al., 2016; Goti et al., 2018). However, it is a challenge to come
across model-based endeavors that systematically develop optimal
dosage regimens spanning all age groups and encompassing a diverse
range of covariate effects.

Our PK model introduced Fren, which was formulated using
CLCr, as an alternative to established methods such as MDRD or
Schwartz’s formula or CKD-EPI equation. This decision was rooted

in the limitations and imprecision of MDRD for pediatric patients
below 12 years (Pierrat et al., 2003; Zachwieja et al., 2015) and the
inapplicability of Schwartz’s formula to adults, as well as the
unsuitability of CKD-EPI equation for children (Pierrat et al.,
2003; Michels et al., 2010; Schold et al., 2011; Zachwieja et al.,
2015; Bjork et al., 2021).

With regard to vancomycin-induced nephrotoxicity, highlighted in
earlier studies (Rybak M. J. et al., 2009; Elyasi et al., 2012; Gelfand and
Cleveland, 2013), our work revealed that creatinine clearance,
formulated to decrease with time, resulted in improved model
predictions. This finding suggests that prolonged therapy may lead
to a reduction in renal function (Pritchard et al., 2010). However, the
influence of other risk factors like concomitant treatments and extended
hospitalization requires further exploration due to limited data
availability. Consequently, additional research is necessary to
comprehensively understand vancomycin-induced nephrotoxicity.

For model parameter estimates, PMA50 was obtained to be
43.9 weeks, consistent with the timeline of glomerular function
maturation, which nearly reaches adult levels a year after birth
(Rhodin et al., 2009; Iacobelli and Guignard, 2021). The substantial

TABLE 6 Simulation results for optimal weight-normalized daily dose in pediatrics (mg/kg/day).

Age (year) Weight (kg)

Creatinine (mg/dL)

0.5 1.0 1.5 >2.0

BUN (mg/dL)

10 15 20 >25 10 15 20 >25 10 15 20 >25 10 15 20 >25

6

17 50 45 40 40 25 25 20 20 20 15 15 15 15 15 15 10

19 45 45 40 40 25 25 20 20 15 15 15 15 15 15 10 10

21 45 40 40 35 25 20 20 20 15 15 15 15 15 15 10 10

23 45 40 40 35 25 20 20 20 15 15 15 15 15 10 10 10

25 40 40 35 35 20 20 20 20 15 15 15 15 15 10 10 10

10

27 45 40 40 35 25 20 20 20 15 15 15 15 15 15 10 10

31 40 40 35 35 20 20 20 20 15 15 15 15 15 10 10 10

35 40 35 35 35 20 20 20 20 15 15 15 15 10 10 10 10

39 40 35 35 30 20 20 20 15 15 15 15 15 10 10 10 10

43 35 35 30 30 20 20 20 15 15 15 15 10 10 10 10 10

14

40 40 40 35 35 20 20 20 20 15 15 15 15 10 10 10 10

46 40 35 35 30 20 20 20 15 15 15 15 15 10 10 10 10

52 35 35 30 30 20 20 20 15 15 15 15 10 10 10 10 10

58 35 35 30 30 20 20 15 15 15 15 15 10 10 10 10 10

67 35 30 30 30 20 15 15 15 15 15 10 10 10 10 10 10

18

45 40 40 35 35 20 20 20 20 15 15 15 15 15 10 10 10

55 40 35 35 30 20 20 20 15 15 15 15 15 10 10 10 10

65 35 35 30 30 20 20 15 15 15 15 15 10 10 10 10 10

75 35 30 30 30 20 20 15 15 15 15 10 10 10 10 10 10

85 35 30 30 25 20 15 15 15 15 15 10 10 10 10 10 10

BUN, Blood urea nitrogen. *The presented optimal dose needs to be reduced by 15% for diabetes, 23% for renal diseases, and 20% for female.
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RSE for γ might be attributed to an imbalanced distribution of PMA
within the <4 years group, where approximately 40% of patients
exhibited PMA values between 30 and 50 weeks (data not shown),
leading to numerical difficulty in estimating the steepness factor of the
sigmoid maturation function (as outlined in the Methods section). Our
model indicated that central volume of distribution increased by
approximately 1% per year after the age of 40, a trend in line with
prior research demonstrating increased volume of distribution in the
elderly (Cutler et al., 1984; Guay et al., 1993). The estimated values for
clearance and central volume of distribution fell within the range of
values reported in earlier studies concerning Korean patients (Bae et al.,
2019; Chung et al., 2013; D. J; Kim et al., 2019), and the clearance value
was closely aligned with literature values for Korean neonates (Lee et al.,
2021). It is noteworthy that vancomycin pharmacokinetics have been
reported to be similar across Japanese, Chinese and Caucasian patient
populations (Tsai et al., 2015).

Simulations demonstrated that for adults within the normal
creatinine concentration range (1.0 mg/dL), certain patient groups

exceeded the optimal dose limit recommended in the label
(2 g/day). Nevertheless, this higher dose is deemed acceptable,
considering that individualized maintenance doses of up to 4.5 g
have been suggested for certain patients, including obese patients
(Rybak et al., 2020). For pediatric patients, all sub-groups proposed
optimal doses below the maximum dose (3 g/day) advised in recent
studies (Rybak et al., 2020). In comparison with actual
administered doses in the data, the optimal dose was generally
lower (data not shown), a pattern reinforced by Figure 5 where
concentrations for optimal doses were consistently below those for
actual doses.

In our study, peak and trough concentrations were selected as
indices for optimal dosage regimen design evaluation because they
are conveniently available in the routine clinic, requiring only two
blood samples (i.e., peak and trough samples) whereas other indices
such as AUC necessitate additional blood samples and
computational effort. Nevertheless, to assess the generality of our
results, we simulated AUC values using the optimal doses reported

TABLE 7 Simulation results for optimal weight-normalized daily dose in pediatrics aged under 4 (mg/kg/day).

PMA (week) Weight (kg)

Creatinine (mg/dL)

0.3 0.6 0.9 >1.2

BUN (mg/dL)

5 10 15 >20 5 10 15 >20 5 10 15 >20 5 10 15 >20

40

3 30 25 25 25 15 15 15 15 10 10 10 10 10 10 10 10

3.5 30 25 25 25 15 15 15 15 10 10 10 10 10 10 10 10

4 25 25 25 20 15 15 15 10 10 10 10 10 10 10 10 5

66

7 45 40 40 35 20 20 20 20 15 15 15 15 10 10 10 10

8 40 40 35 35 20 20 20 15 15 15 15 10 10 10 10 10

9 40 35 35 30 20 20 20 15 15 15 15 10 10 10 10 10

92

9 55 50 45 40 25 25 20 20 20 15 15 15 15 15 10 10

10.5 50 45 45 40 25 25 20 20 15 15 15 15 15 10 10 10

12 45 45 40 40 25 20 20 20 15 15 15 15 15 10 10 10

118

10 60 55 50 45 30 25 25 25 20 20 15 15 15 15 15 10

12 55 50 45 45 25 25 25 20 20 15 15 15 15 15 15 10

14 50 50 45 40 25 25 20 20 15 15 15 15 15 15 10 10

144

11 60 55 50 50 30 25 25 25 20 20 15 15 15 15 15 15

13 55 55 50 45 25 25 25 20 20 15 15 15 15 15 15 10

15 55 50 45 45 25 25 25 20 20 15 15 15 15 15 10 10

196

12.5 65 60 55 50 30 30 25 25 20 20 20 15 15 15 15 15

14.5 60 55 50 45 30 25 25 25 20 20 15 15 15 15 15 15

16.5 55 50 50 45 25 25 25 20 20 15 15 15 15 15 15 10

248

14 65 60 55 50 30 30 25 25 20 20 20 15 15 15 15 15

16.5 60 55 50 45 30 25 25 25 20 20 15 15 15 15 15 15

19 55 50 50 45 25 25 25 20 20 15 15 15 15 15 15 10

BUN, blood urea nitrogen; PMA, postmenstrual age. *The presented optimal dose needs to be reduced by 23% for renal diseases and 20% for female.
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in Tables 5–7 and a target AUC of 400–600 mg/L h with MIC =
1 mg/L, considering that AUC/MIC is another widely used
endpoint. The resulting figure (Figure 8) indicated that around
90% of adults achieved AUC levels within the target range, and
nearly all pediatric patients met the target, affirming the
appropriateness of the optimal doses proposed by our study.

While other biomarkers for bacterial infection such as
procalcitonin (PCT) and absolute neutrophil count (ANC) are
available (Stol et al., 2019), CRP was used in our study due to its
cost-effectiveness and swift test result confirmation compared to
PCT and ANC, making it useful for acute infection (Escadafal et al.,
2020). Despite certain limitations and potential confounders

associated with CRP elevation in various conditions, its
widespread use as a biomarker remains due to its practicality.

In our PDmodel, it was assumed that CRP proliferation increased
with disease severity (D) as previously reported (Hohenthal et al.,
2009; Haran et al., 2012). However, since our data lacked the requisite
detail to capture the potential nonlinear relationship between CRP
and D, we opted for a simple model where the production rate
constant (Kin) was multiplied by a linear function of D.

Regarding PD simulation, no discernible differences were
identified in the initial response (CRP0) across different doses.
This could be attributed to limitations in accurately predicting
high CRP values and difficulties in isolating vancomycin’s pure

FIGURE 5
Simulated concentrations (blue crosses) obtained when the optimal dose was given to each patient in the data, superimposed by observed
concentrations (gray open circles), where black horizontal dashed lines mean upper and lower limit of therapeutic range.

FIGURE 6
The time course of simulated CRP concentration, plotted by dose (A) and the presence of pneumonia (B).
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effects from potential confounding factors. Nevertheless, this model
exhibited trends in CRP concentration shifts based on dose and
selected covariate, furnishing the optimal treatment discontinuation
point at 1,100 h or 46 days. It is worth mentioning that for most
adult patients, treatment was concluded around the 1100-h mark,
signifying a suitable treatment duration (Figure 6).

Given the retrospective nature of this study, several limitations
warrant consideration. Firstly, the information concerning
medication history, including concomitant medications, was
unavailable for inclusion in model building. Secondly, because
laboratory tests were not performed in all patients in a clinical
practice setting, CRP was only measured in 128 out of 542 patients,

FIGURE 7
R Shiny application for vancomycin dose optimization and visualization of simulated PK and PD profiles.
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leading to only a limited subset of patients included in PD analysis.
Lastly, the lack of follow-up data hindered the incorporation of
information regarding infection recovery, relapse rates, and
mortality rates.

In summation, this study established a comprehensive PK-PD
model for vancomycin across all age groups and recommended
optimal doses for each sub-population. Simulations underscored
that most study patients’ concentrations would fall within the
therapeutic range with doses smaller than usual. The R Shiny
application developed herein not only facilitates identification of
the optimal dose but also aids in pinpointing the optimal treatment
duration by providing visual insights into simulated concentration
and CRP profiles. The findings of this study are anticipated to equip
clinicians with tools for achieving precise vancomycin treatment
tailored to their patients.
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