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Background: Clinical decision support tools (CDSs) have been demonstrated to
enhance the accuracy of antibiotic prescribing among physicians. However, their
effectiveness in reducing inappropriate antibiotic use for respiratory tract
infections (RTI) is controversial.

Methods: A literature search in 3 international databases (Medline, Web of science
and Embase) was conducted before 31 May 2023. Relative risk (RR) and
corresponding 95% confidence intervals (Cl) were pooled to evaluate the
effectiveness of intervention. Summary effect sizes were calculated using a
random-effects model due to the expected heterogeneity (° over 50%).

Results: A total of 11 cluster randomized clinical trials (RCTs) and 5 before-after
studies were included in this meta-analysis, involving 900,804 patients met full
inclusion criteria. Among these studies, 11 reported positive effects, 1 reported
negative results, and 4 reported non-significant findings. Overall, the pooled effect
size revealed that CDSs significantly reduced antibiotic use for RTIs (RR = 0.90,
95% Cl = 0.85 to 0.95, # = 96.10%). Subgroup analysis indicated that the
intervention duration may serve as a potential source of heterogeneity. Studies
with interventions duration more than 2 years were found to have non-significant
effects (RR = 1.00, 95% Cl = 0.96 to 1.04, I° = 0.00%). Egger's test results indicated
no evidence of potential publication bias (p = 0.287).

Conclusion: This study suggests that CDSs effectively reduce inappropriate
antibiotic use for RTIs among physicians. However, subgroup analysis revealed
that interventions lasting more than 2 years did not yield significant effects. These
findings highlight the importance of considering intervention duration when
implementing CDSs.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42023432584, Identifier: PROSPERO (CRD42023432584).
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1 Introduction

Respiratory tract infections (RTIs) commonly encountered in
medical practice include otitis media, sinusitis, pharyngitis, acute
bronchitis, and pneumonia (Gulliford et al., 2014a). These acute
respiratory infections are predominantly viral in origin and tend to
be self-limiting (Peters et al., 2011; Wang et al., 2021). Despite their
viral etiology, antibiotics are commonly prescribed in clinical
practice for their treatment. Inappropriate antibiotic use has been
observed in 50%-88% of cases involving RTT patients, highlighting a
pervasive trend of antibiotics overprescription (Botica et al., 2013;
Shen et al., 2021; Calabria et al., 2022). This pattern serves as a classic
manifestation of antibiotic misuse, which not only fails to effectively
alleviate respiratory symptoms but also contributes to the emergence
and dissemination of antimicrobial resistance. Moreover, the lack of
microbiological testing and indiscriminate use of broad-spectrum
antibiotics in the management of bacterial RTIs further exacerbate
the development of antibiotic resistance (Webb et al., 2019a; Zhang
et al,, 2022). Studies indicate that globally, at least 4.95 million
people deaths associated with antibiotic-resistant infections each
year, and it is expected to lead to a global economic output loss of
about 100 trillion USD by 2050 (O’Neill, 2014; Antimicrobial
Resistance Collaborators, 2022). These alarming circumstances
have prompted the World Health Organization (WHO) to
acknowledge bacterial resistance as a major global health
concern, urging nations worldwide to implement stringent
measures for the regulation of antimicrobial agents (WHO,
2021). In line with these concerns, current treatment guidelines
emphasize a no antibiotic prescribing strategy for the majority of
self-limiting RTIs, as evidence suggests that reducing antibiotic
prescribing does not compromise patient safety regarding
bacterial infections (Gerber et al., 2017; Webb et al., 2019a). This
strategy is crucial for curtailing antibiotic overuse, mitigating the rise
of antimicrobial resistance, and safeguarding public health.

To address the challenges associated with antibiotic prescribing
in RTIs, clinical decision support tools (CDSs) have emerged as
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FIGURE 1
Operational model of a clinical decision support system for
antibiotic prescribing (HCI, human-computer interaction).
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invaluable computer programs that aid physicians in making
evidence-based treatment decisions (Eudaley et al., 2019). These
tools incorporate guidelines and relevant clinical evidence into their
algorithms to provide tailored decision support based on patient
diagnostic outcomes (New et al., 2022). Typically integrated within
hospital information systems and seamlessly connected to electronic
health records, CDSs hold great potential for facilitating accurate
prescribing practices in clinical settings, thereby mitigating the
incidence of antibiotic misuse resulting from physician errors.
However, it is important to note that these tools serve as
supportive aids and should not supplant the role of physicians in
making prescription decisions (Jones et al, 2023). Figure 1
represents a common flow chart of CDSs for antibiotic prescriptions.

The effectiveness of clinical decision support tools has been a
subject of debate in the literature. While some studies have
demonstrated their ability to significantly improve prescribing
behavior (Gonzales et al, 2013; Gulliford et al, 2019), others
have questioned their efficacy or even suggested potential
negative impacts on prescribing practices (Mostaghim et al,
2019; van de Maat et al, 2020). Consequently, a systematic
review and meta-analysis have been conducted to critically
evaluate existing studies and provide comprehensive insights into
the application of CDSs in clinical settings, aiming to establish a
clear understanding of their overall impact and utility.

2 Methods

This systematic review and meta-analysis followed PRISMA
guidelines for transparent reporting. The study protocol was
registered in PROSPERO (CRD42023432584).

2.1 Search strategy

A comprehensive literature search was conducted in three
databases: PubMed, Web of Science, and Embase. The search was
conducted up until 31 May 2023, and included the following search
terms: “Decision Support Systems, Clinical,” “Anti-Bacterial

» o«

Agents,” “Acute Respiratory Infections,” and “Respiratory Tract
Infections.” The search strategy aimed to identify relevant studies
that examined the impact of decision support tools on reducing

antibiotic use in the context of acute respiratory infections.

2.2 Study selection

Two independent reviewers screened the titles and abstracts of
the identified articles to determine their eligibility for inclusion. In
cases of disagreement, a third reviewer was consulted. Full-text
articles of potentially eligible studies were retrieved and further
assessed for inclusion based on predefined criteria. The study
selection process followed the PICOS (Population, Intervention,
Comparison, Outcome, Study design) framework. Participants (P)
included patients diagnosed with acute respiratory tract infections.
The intervention (I) involved the use of decision support tools by
healthcare professionals. The comparison (C) group consisted of
those without decision support tools or a pre-intervention
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FIGURE 2

Flow chart of the study selection process.

comparison. The primary outcomes (O) measured were antibiotic
prescribing rates or quantifiable effect sizes with 95% confidence
intervals. The study designs (S) considered were randomized clinical
trials and observational studies published in English.

2.3 Data extraction

Data extraction was performed independently by two reviewers
using a standardized data extraction form. The extracted
information included study characteristics (e.g., author, year of
publication, study design), participant characteristics (e.g., sample
size, demographics), details of the CDSs used (e.g., type, features),
antibiotic prescribing outcomes (e.g., as prescription rate or RR or
OR value and corresponding 95% CI), and the conclusion of

statistical analysis.

2.4 Risk of bias assessment

In this review and meta-analysis, the

methodological quality of the included studies was assessed

systematic

using specific tools to evaluate bias. The RoB 2.0 tool assessed
randomized clinical trials (RCTs) across six key domains:
Randomization, Interventions, Missing outcome data, Outcome
Measurement, Reported results, and other sources of bias. Each
domain was assigned a risk level: low, uncertain, or high. This
comprehensive assessment provided insights into RCT quality and
potential biases (Sterne et al., 2019). For before-and-after studies,
the NIH Quality Assessment Tool focused on 12 domains,
study design, allocation concealment,

including blinding,
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participant selection, data collection methods, and statistical
analysis, etc. Each domain was categorized as good, fair, or
poor, indicating quality and potential biases (NIH, 2013). The
risk of bias assessment was conducted independently by three
authors and resolved through discussions or review by a fourth
author. This rigorous evaluation using standardized tools
enhanced the reliability and validity of the findings. Publication
bias was assessed using funnel plots and statistical tests, such as
Egger’s regression test, to detect potential publication bias or
small-study effects.

2.5 Standardization of data

In order to enhance comparability among studies with different
types of outcome measures, standardization of data was performed
in this study. Prescription rates, prescription change rates, and odds
ratios (ORs) were transformed into RRs for consistent analysis.
Firstly, prescription change rates were divided by 100 and added by
1 to obtain the RR value. The transformation of prescription rates
and ORs into RRs was conducted according to Eq. 1, 2 respectively
(Viera, 2008; Wang et al., 2018).

RR=P,/P, 1)
RR = OR/[(1 - Py) + (Py x OR)] )

Where P; and P, is prescription rates with intervention or without
intervention independently.

This standardized approach allowed for a more uniform
comparison and interpretation of the results across different
outcome measures.
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TABLE 1 Characteristics of studies included in the analysis.
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Name (publication Country Study Duration Population size Diagnosis Interventions Outcome [RR Conclusion
year) design (95% ()]
Gonzales et al. (2013) American RCT 6 months | Group 1: pre- = 3,639, post- = 1,001 Acute Group 1: Printed decision support Group 1: 0.869 Significantly
Bronchitis (0.796-0.958) reduced
Group 2: pre- = 2,974, post- = 1,017 Group 2: computer-assisted decision support Group 2: 0.872
intervention (0.759-0.975)
Control group: pre- = 3,195,
post- = 950
Litvin et al. (2013) American BAS 27 months | Adults: 13,285 ARIs Computer-assisted decision support Adult: 1.016 No statistically
intervention (0.9465-1.0849) different
Children: 6,467 Children: 0.9811
(0.9097-1.0526)
Gulliford et al. (2019) United Kingdom RCT 12 months | Intervention group: 323 155 RTI Computer-assisted decision support 0.88 (0.78-0.99) Significantly
intervention reduced
Control group: 259 520
Gulliford et al. (2014a) United Kingdom RCT 12 months | Intervention group: pre- = 59,226, RTI Computer-assisted decision support 0.987 (0.975-0.999) Significantly
post- = 59,309 intervention reduced
Control group: pre- = 54,431,
post- = 51,093
Linder et al. (2009) American RCT 7 months Intervention group: 594 ARI Computer-assisted decision support 1.142 (1.066-1.223) Significantly
intervention increased
Control group: 6,236
McGinn et al. (2013) American RCT 12 months | Intervention group: 586 ARI Computer-assisted decision support 0.74 (0.60-0.92) Significantly
intervention reduced
Control group: 398
Devin Mann et al. (2020) American RCT 33 months | Intervention group: 42,126 ARI Computer-assisted decision support 0.99 (0.87-1.11) No statistically
intervention different
Control group: 58,447
May et al. (2021) American BAS 6 months | Pre-intervention: 306 ARI Computer-assisted decision support 0.846 (0.767-0.932) Significantly
intervention reduced
Post-intervention: 263
Mostaghim et al. (2018) Australia BAS 24 months | Pre-intervention: 134 Pneumonia Computer-assisted decision support 1.005 (0.911-1.108) No statistically
intervention different
Post-intervention: 107
Webb et al. (2019a) Australia BAS 12 months | Pre-intervention: 1,122 Pneumonia Computer-assisted decision support 0.825 (0.738-0.923) Significantly
intervention reduced
Post-intervention: 1,047
Sharp et al. (2017) American BAS 6 months | Pre-intervention: 10,491 Acute sinusitis Computer-assisted decision support 0.962 (0.946-0.979) Significantly
intervention reduced

Post-intervention: 11,458

(Continued on following page)
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Pre-intervention: 597
Post-intervention: 402
Intervention group: 2,388

reduced

intervention

Control group: 2,095

Significantly

0.775 (0.757-0.794)

RTI Computer-assisted decision support

Intervention group: 59,483

reduced

intervention

Control group: 94,767

Significantly

0.795 (0.690-0.916)

Computer-assisted decision support

ARI

Intervention group: 419

reduced

intervention

Control group: 14,515

Significantly

0.893 (0.843-0.949)

Printed and Computer-assisted decision

ARI

Adults: 5,886

reduced

support intervention

Children: 7,195

Duration
33 months
18 months

Study
design
RCT
RCT

12 months

RCT

6 months

RCT

9 months

RCT

Country
Netherlands
American

Netherlands

American

American

Name (publication
van de Maat et al. (2020)
Meeker et al. (2016)

TABLE 1 (Continued) Characteristics of studies included in the analysis.
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Vervloet et al. (2016)

Bourgeois et al. (2010)

Samore et al. (2005)

ARI, acute respiratory infections; RTI, respiratory tract infections; RR, relative risk; CI, confidence interval; RCT, randomized clinical trial; BAS, before-after study.
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2.6 Statistical analysis

Meta-analysis was performed using standardized RRs and their
corresponding 95% ClIs extracted or re -calculate from each eligible
study. The presence of heterogeneity among the included studies
was evaluated utilizing Cochran’s Q test and the I statistic. A
significance level of p < 0.1 for Cochran’s Q test was considered
indicative of statistically significant heterogeneity. The I’ statistic
provided a quantitative measure of heterogeneity and inconsistency
across studies. Consistent with prior research, I values of 0%-25%,
25%-50%, 50%-75%, and 75%-100% were interpreted as
representing no heterogeneity, mild heterogeneity, moderate
heterogeneity, and substantial heterogeneity, respectively (Xu
et al.,, 2018).

Given the observed substantial heterogeneity in this study, a
random-effects model was selected to pool the effect sizes.
Subsequently, a subgroup analysis was conducted to explore
potential sources of heterogeneity. To assess publication bias,
visual inspection of funnel plots for asymmetry and Egger’s test
were employed, with a significance level of p < 0.05 indicating the
presence of publication bias. The meta-analyses were conducted
using STATA version 13.0 (Stata Corporation, TX, United States),
ensuring robust and reliable data synthesis.

3 Results

3.1 Literature retrieval and study
characteristics

A total of 204 potential articles were identified through our
search strategy. After reviewing titles and abstracts, 130 articles were
retained after removing duplicates and irrelevant studies. Further
evaluation of the full texts based on our inclusion and exclusion
criteria resulted in the exclusion of 91 articles. Ultimately,
16 relevant studies were included in our analysis (Figure 2)
(Samore et al, 2005; Linder et al, 2009; Bourgeois et al., 2010;
Gonzales et al, 2013; Litvin et al, 2013; Mcginn et al, 2013;
Gulliford et al., 2014b; Meeker et al., 2016; Vervloet et al., 2016;
Sharp et al, 2017; Webb et al., 2019b; Gulliford et al., 2019;
Mostaghim et al., 2019; Devin Mann et al, 2020; van de Maat
et al., 2020; May et al., 2021).

The characteristics of the included studies are presented in
Table 1, involving a total of 900,804 participants. Among them,
5 studies had a before-after study design, while 11 studies were
randomized clinical trials (including two studies with two
intervention comparisons). The duration of the studies ranged
from 6 to 33 months. Geographically, the studies were conducted
in developed countries such as the United States, Germany, Sweden,
and Australia. Participants were diagnosed with respiratory tract
infections, including acute bronchitis (1 study), acute sinusitis
(1 study), community-acquired pneumonia (2 studies), and acute
respiratory tract infections (9 studies). Most interventions utilized
computerized CDS, while two studies employed printed CDS. In
terms of outcomes, 11 studies reported statistically significant
reductions in antibiotic prescription rates with the use of CDS,
4 studies reported non-significant findings, and 1 study reported an
increase in antibiotic utilization associated with CDS.
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3.2 Meta-analysis results

The Figure 3 presents the pooled results of 16 studies on CDS
interventions to reduce antibiotic prescribing rates in patients
with  respiratory Due
heterogeneity, a random-effects model was chosen. The results

tract  infections. to  substantial
indicate a moderate effect of CDS in reducing antibiotic
prescribing rates among patients with respiratory tract
infections (RR = 0.90, 95% CI = 0.85-0.95, I’ = 96.10%).
Subgroup analysis revealed that interventions with a duration
of 24 months or longer did not show significant effects (RR =
1.00, 95% CI = 0.96-1.04, I? = 0.00%), while interventions with a
duration of less than 24 months significantly reduced antibiotic
prescribing rates (RR = 0.86, 95% CI = 0.81-0.92, I’ = 97.20%)
(Figure 4).

3.3 Risk of bias assessment

Supplementary Table S1 and Figure 5 present the risk of bias
assessment for before-after studies and RCTSs, respectively.
Among the 5 before-after studies, 3 were rated as good (low
risk) and 2 as fair (medium risk). Among the 11 RCTs, 10 were
considered low risk, and 1 had an uncertain risk. The funnel plot
for publication bias assessment (Figure 6) visually demonstrates
symmetry. The results of Egger’s test suggest a low risk of
publication bias (p = 0.287).

10.3389/fphar.2023.1253520

4 Discussion

Our study aimed to evaluate the effectiveness of CDSs in
reducing antibiotic prescription rates for RTIs through a
systematic review and meta-analysis. The results of our study
revealed a modest effect of decision support tools in reducing
antibiotic use, indicating that their implementation can promote
more judicious prescribing practices in RTI management. However,
it is important to consider factors that may influence healthcare
providers’ adherence to the recommendations provided by CDSs.

One possible explanation for the observed modest effect is
the
provided by CDSs. Despite the availability of evidence-based

partial adherence by physicians to recommendations
guidelines and CDSs, healthcare providers may deviate from
these recommendations for various reasons. Firstly, physicians
may not fully adhere to the recommendations provided by the
CDSs due to concerns about potential adverse outcomes. It is
possible that the fear of missing a bacterial infection or the fear
of adverse events may influence physicians’ decision-making
processes, leading to a cautious approach to antibiotic prescribing
(Ashiru-Oredope et al., 2021; Mmari et al., 2021; Xu et al., 2021).
Secondly, patient preferences and demands may also contribute to
the observed effect. Patients may insist on receiving antibiotics
from CDSs, which
challenges for physicians in adhering to evidence-based practices
(Finkelstein et al., 2014; Duan et al., 2022). Additionally, financial

incentives or other external factors may influence prescribing

despite recommendations can create

Study %
D RR (95% CI) Weight
Ralph Gonzales (2013)a ——OL— 0.87 (0.80, 0.96) 591
Ralph Gonzales (2013)b —*:— 0.87(0.76, 0.98) 522
Cara B. Litvin (2012)a : - 1.02(0.95, 1.08) 6.38
Cara B. Litvin (2012)b E—-OI- 0.98 (0.91, 1.05) 6.29
Martin C Gulliford (2019) - 0.88 (0.78, 0.99) 535
Martin C. Gulliford (2014) e 0.99 (0.98, 1.00) 7.01
Jeffrey A Linder (2009) E — 1.14 (1,07, 1.22) 6.37
Thomas G. McGinn (2013) —_— 0.74 (0.60, 0.92) 3.50
Devin Mann (2020) — 0.99 (0.87, 1.11) 5.30
Alexandria May (2021) —O—E- | 0.85 (0.7, 0.93) 581
Mona Mostaghim (2018) :—0— 1.00 (0.91, 1.11) 5.80
Brandon J. Webb (2019) —0‘— 0.89 (0.84, 0.95) 6.45
Adam L Sharp (2017) E * 0.96 (0.95, 0.98) 6.99
Josephine S. van de Maat (2020) : + 1.05 (0.65, 1.54) 1.38
Daniella Meeker (2016) —_— E 0.47(0.39, 0.57) 3.89
Marcia Vervloet (2016) -+ : 0.77 (0.76, 0.79) 6.95
Fabienne C. Bourgeois (2010) —4—:— 0.80 (0.69, 0.92) 4.87
Matthew H. Samore (2005) —Oi— 0.89 (0.84, 0.95) 6.53
Overall (I-squared = 96.1%, p = 0.000) 0 0.90 (0.85, 0.95) 100.00
1

NOTE: Weights are from random effects analysis E

T T

.386

FIGURE 3
Forest plot of the effect of CDSs on reducing antibiotic use for RTls.
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Study %
D RR (95% CI) Weight
Less than 24 months :
Ralph Gonzales (2013)a - 0.87(0.80, 0.96) 591
Ralph Gonzales (2013)b —_— 0.87(0.76, 0.98) 522
Martin C Gulliford (2019) - 0.88 (0.78, 0.99) 535
Martin C. Gulliford (2014) : 0.99 (0.98, 1.00) 7.01
Jeffrey A Linder (2009) : - 1.14 (1.07, 1.22) 6.37
Thomas G. McGinn (2013) —*—:— 0.74 (0.60, 0.92) 3.50
Alexandria May (2021) —*—:— 0.85(0.77,0.93) 5.81
Brandon J. Webb (2019) - 0.89 (0.84, 0.95) 6.45
Adam L Sharp (2017) : 0.96 (0.95, 0.98) 6.99
Daniella Meeker (2016) —_— : 0.47(0.39, 0.57) 3.89
Marcia Vervloet (2016) -* : 0.77 (0.76, 0.79) 6.95
Fabienne C. Bourgeois (2010) —4—: 0.80 (0.69, 0.92) 4.87
Matthew H. Samore (2005) - 0.89 (0.84, 0.95) 6.53
Subtotal (I-squared = 97.2%, p = 0.000) Q 0.86 (0.81, 0.92) 74.85
: :
More than 24 months :
Cara B. Litvin (2012)a : - 1.02 (0.95, 1.08) 6.38
Cara B. Litvin (2012)b - 0.98 (0.91, 1.05) 6.29
Devin Mann (2020) -:—+— 0.99(0.87, 1.11) 5.30
Mona Mostaghim (2018) :—.0— 1.00 (0.91, 1.11) 5.80
Josephine S. van de Maat (2020) : + 1.05 (0.65, 1.54) 1.38
Subtotal (I-squared = 0.0%, p = 0.968) : > 1.00 (0.96, 1.04) 25.15
: |
Overall (I-squared = 96.1%, p = 0.000) 0 0.90 (0.85, 0.95) 100.00

1
NOTE: Weights are from random effects analysis :

.3|86 2.I59
FIGURE 4

Forest plot of subgroup analysis of intervention duration of CDSs on reducing antibiotic use for RTls.

behaviors, leading to deviations from the recommendations
provided by CDSs (Liu et al., 2019). Identifying these challenges
and targeted interventions and

addressing them through

educational initiatives can improve the utilization and
implementation of CDSs.

Comparing our findings with previous research on the use of CDSs
in other clinical settings provides valuable insights. Similar to our study,
the meta-analysis on CDSs and antibiotic prescribing found that decision
support systems improve the precision of clinical antibiotic prescriptions
and reduce prescription rates in primary care settings (Carracedo-
Martinez et al., 2019). However, there was no observed improvement
in mortality rates and hospital stay (Carracedo-Martinez et al., 2019).
Nevertheless, previous systematic reviews demonstrated that CDSs can
enhance prescribing accuracy and reduce adverse events among
physicians (Reis et al, 2017; Whitehead et al, 2019). However, a
meta-regression analysis suggested that CDS integrated with electronic
chart or order entry systems is unlikely to effectively improve the process
of care or patient outcomes (Roshanov et al.,, 2013). These variations may
stem from differences in study populations, healthcare systems,
implementation strategies, and the complexity of clinical decision-
making. These variations contribute to the understanding of the
varied impacts of CDCs in different healthcare contexts.

Subgroup analysis revealed that the duration of the intervention
may serve as a potential source of heterogeneity. Studies with
interventions lasting more than 2 years showed non-significant
effects on antibiotic prescribing rates (RR = 1.00, 95% CI =
0.96-1.04). This suggests that the

decision-support tools over an extended period may lead to a

sustained use of

reduction in their effectiveness. Longer intervention durations
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Risk assessment of bias for RCTs using ROB 2.0 tool.

could amplify the influence of the aforementioned factors
(concerns, patient insistence, and extrinsic motivations) on
physicians or a loss of enthusiasm for the CDSs over time.
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Funnel plot to evaluate potential publication bias.

Future studies should explore strategies to ensure the long-term
sustainability and effectiveness of decision-support interventions in
clinical practice.

The practical implications of our research findings are noteworthy.
The implementation of CDSs holds the potential to optimize antibiotic
prescribing practices and address the growing problem of antimicrobial
resistance. By providing evidence-based recommendations to clinicians
in clinical practice, CDSs have the potential to improve clinical decision-
making, enhance patient outcomes, and reduce unnecessary antibiotic
use. However, to maximize their impact, comprehensive measures are
needed, including integrating CDSs into electronic health records,
providing ongoing education and training for healthcare providers,
and fostering a culture of antimicrobial resistance management.

Despite the overall positive effects observed, it is crucial to
acknowledge the limitations of this study. There are several
limitations to this study. Firstly, the majority of included studies
were conducted in developed countries such as Europe, the
United States, The lack
underdeveloped countries may limit the generalizability of the

and Australia. of research from
findings. Secondly, some studies were conducted over a decade
ago. Given the rapid advancement of information technology,
newer CDSs may offer improved user experiences to physicians,
potentially leading to better outcomes in antibiotic prescribing.
Lastly, substantial heterogeneity was observed in the analysis
results, caution is advised when interpreting and applying the
findings of this study.

5 Conclusion

In conclusion, our study contributes to the growing body of
evidence supporting the effectiveness of CDSs in reducing antibiotic
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