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The purpose of drug discovery is to identify new drugs, and the solubility of drug
molecules is an important physicochemical property in medicinal chemistry, that
plays a crucial role in drug discovery. In solubility prediction, high-precision
computational methods can significantly reduce the experimental costs and
time associated with drug development. Therefore, artificial intelligence
technologies have been widely used for solubility prediction. This study utilized
the attention layer in mechanism in the deep learning model to consider the
atomic-level features of the molecules, and used gated recurrent neural networks
to aggregate vectors between layers. It also utilized molecular fragment
technology to divide the complete molecule into pairs of fragments, extracted
characteristics from each fragment pair, and finally fused the characteristics to
predict the solubility of drug molecules. We compared and evaluated our method
with five existing models using two performance evaluation indicators,
demonstrating that our method has better performance and greater robustness.
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1 Introduction

Drug R&D (Research and Development) is a complex process involving many
disciplines and technological fields, mainly including medicine, chemistry, biology, data
science (David et al., 2009; Fleming, 2018). Drug discovery is the first step in the entire drug
R&D process, the goal of which is to find molecules that can treat a certain disease. This can
be achieved through the acquisition of naturally existing or artificially synthesized
compounds, virtual screening, high-throughput screening (Hughes et al., 2011; Brown
and Boström, 2018). Drug discovery is a challenging task as it involves sifting through
billions of molecules within a time span of approximately 12 years and a cost of 2 billion U.S.
dollars until the drug is launched (Cai et al., 2020; Gupta et al., 2021). In the process of drug
discovery, screening the properties of relevant drug molecules can quickly eliminate drug
candidates that do not meet the expected properties, resulting in significant reduction of both
time and financial resources. The properties of drug molecules refer to the chemical and
physical characteristics of drug molecules, which can help scientists predict the absorption,
distribution, metabolism, and excretion behavior of drugs in the body, and thus help drug
R&D personnel formulate strategies and optimize drug design (Chuang et al., 2020). The
physical and chemical properties of drug molecules including molecular weight, polarity,
lipophilicity, solubility, and electrophilicity, can help drug R&D professionals better
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understand the behavior of drug molecules in living organisms, thus
guiding drug R&D (Lu et al., 2023). Among them, the solubility of
molecules is a critical indicator of the degree of solvent solubility, as
it determines the ability of drug molecules to dissolve in living
organisms, referring to the solubility of drug molecules in water or
other solvents. Solubility can affect the pharmacokinetic
performance of drugs in the body (Ran et al., 2002; Sorkun et al.,
2019). Therefore, drug developers need to consider the solubility of
drugs to control its effective dose in living organisms. Predicting the
solubility of drug molecules in solvents can help drug R&D
personnel better understand the dissolution and permeation
characteristics of drugs and help drug design and optimization
(Li and Zhao, 2007; Sorkun et al., 2019). Therefore, predicting
the solubility of drug molecules is a very important step in the
drug discovery process. Traditional methods for determining the
solubility of drug molecules in solvents require chemical
experiments in the laboratory. Although these methods are
reliable and accurate, the time and cost of the experiments are
difficult to control. In addition, the results obtained by traditional
experimental methods may be affected by experimental conditions,
precision, and equipment, thus lacking conclusive universality and
generalizability (Williams, 2000; Ran and Yalkowsky, 2001;
Huuskonen et al., 2008).

With the development of technology, an increasing number of
researchers are inclined to use computational methods to predict the
properties of existing drug molecules, especially the solubility of
drug molecules (Lee et al., 2022). These methods include molecular
dynamics (MD) simulation (Brooks, 1995; Hospital et al., 2015) and
the techniques based on quantitative structure-activity relationship
(QSAR) models (Wang et al., 2015; Neves et al., 2018; Chen et al.,
2021). Molecular dynamics simulation-based approaches have
considerable potential in the prediction of the physical and
chemical properties of drug molecules in drug discovery.
Klimovich et al. (2015) have provided a detailed account of the
use of the free energy of drug molecule dynamics in the prediction of
drug molecule properties. QSAR methods utilize the correlation
between the physical and chemical properties and the structural
characteristics of drug molecules and their biological activity to
predict the solubility of drug molecules. These methods commonly
encompass regression analysis, principal component analysis,
maximum likelihood estimation, and genetic algorithm. Dudek
et al. (2006) have presented the methods for constructing the
three main components of QSAR models.

With the widespread application of artificial intelligence
technology, an increasing number of machine learning and deep
learning methods have been widely adopted in drug discovery
property prediction and bioinformatics (Vamathevan et al., 2019;
Zemouri et al., 2019; Lei et al., 2021; Pan et al., 2022; Han
Chengshan, 2023). In addition, some attention-based methods
have been widely applied in bioinformatics (Bian et al., 2021;
Guo et al., 2022; Guo and Lei, 2022). Wu et al. (2022) replaced
the gating network with the attention mechanism to capture
dynamic task relations in the study of drug molecule solubility,
and utilized local fine-tuning and consensus prediction to further
improve the prediction performance of the model. Tang et al. (2020)
proposed a self-attention-based message passing neural network to
study the relationship between chemical properties and structures in
a interpretable way during their research on drug molecule

lipophilicity and solubility. Zhang et al. (2022) proposed a novel
method based on cluster constraints to investigate the potential data
characteristics of drug repositioning, and predicted new associations
between existing drugs and diseases.

Graph convolutional neural network methods have also been
further applied in the field of drug molecule property prediction
(Zhao et al., 2021; Fang et al., 2022; Li et al., 2022). Zeng et al., (2022)
used a variant of graph neural network that combined attention
mechanism with graph neural network to capture drug molecule
features and performed prediction of drug molecule properties.
Zhang et al. (2021) used multi-scale attention networks to predict
the properties of drug molecules, and their research showed that
better results can be obtained when using image segments of drug
molecules.

Therefore, the main research goal of this paper is to quickly
predict the solubility of pending drugs in the drug screening stage,
thereby shortening the time of drug screening and saving a lot of
time for drug screening. Based on existing methods, we propose a
model named MolSOL, which uses a fragment-based attention
model framework to study the solubility of drug molecules.
Firstly, we decompose the drug molecule based on the structure
of functional groups, and subsequently divide the complete
molecular structure into fragments as inputs to the model.
Secondly, we use graph attention networks to extract and learn
features from each drug molecule fragment. Thirdly, we integrate
the learned features of molecular fragments and perform an analysis
to predict the solubility of drug molecules. The key contributions of
this article are as follows:

(1) A model called MolSOL is proposed to separate the complete
molecule at a single bond, so as to form a pair of molecular
fragments to extract the characteristics of the molecule
separately.

(2) The graph attention network was used to extract the
characteristics of molecular fragment pairs and learn.

(3) Compared with other advanced methods, better performance
can be obtained in terms of solubility of drug molecules.

2 Materials and methods

2.1 Dataset and data process

2.1.1 Dataset
The ESOL (Delaney) dataset (Delaney, 2004) is a widely used

dataset in the field of computational chemistry and drug discovery.
It was originally introduced by John Delaney in 2004 and has been
extensively utilized for solubility prediction tasks. The dataset
contains information on the solubility of various organic
compounds as measured in water at room temperature. The
dataset consists of a total of 1,128 compounds with their
corresponding experimental solubility values. The solubility
values are reported as logarithmic molar concentration (logS),
ranging from −11.6 to 6.04. A negative logS value indicates low
solubility, while a positive value indicates high solubility.

The compounds included in the ESOL dataset cover a wide
range of organic chemistry, representing diverse chemical classes
and functional groups. This diversity allows for a comprehensive
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analysis of the relationship between molecular structure and
solubility. However, it is important to note that the ESOL
dataset also has some limitations and potential biases. Firstly, the
dataset is primarily focused on organic compounds and may not be
representative of the solubility behavior of inorganic or
organometallic compounds. Additionally, the dataset
predominantly contains relatively small and drug-like molecules,
which may limit its applicability for larger or structurally complex
molecules. Furthermore, it is worth mentioning that the ESOL
dataset is based on experimental measurements, which can be
subject to errors and inconsistencies. There might be variations
in the experimental methodologies used to measure solubility,
leading to potential inaccuracies in the dataset. Also, the dataset
might have some missing values or outliers, which could impact the
predictive models trained on it.

In summary, the ESOL (Delaney) dataset provides valuable
information on the solubility of a diverse range of organic
compounds. D espite its limitations and potential biases, it
remains a widely used benchmark dataset in solubility prediction
tasks.

FIGURE 1
Preprocessing of molecules.

TABLE 1 Atom and bond features used for molecular graph construction.

Attribute Size Description

Atom symbol 15 [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At]

Degree 8 Covalent bonds [0,1,2,3,4,5]

Charge 1 Electrical charge

Radical Electrons 1 radical electrons

Hybridization 6 [sp, sp2, sp3, sp3 d, sp3 d2, other]

Aromaticity 1 Atom is aromatic system part (true/false)

Hydrogens 5 Connected hydrogens [0,1,2,3,4]

Chirality 1 Atom chirality

Chirality type 2 R or S

Bond features Type 4 [single, double, triple, aromatic]

Conjugation 1 Bond conjugation

Ring 1 Bond is ring part

Stereo 4 [StereoZ, StereoNone, StereoE, StereoAny]

FIGURE 2
One-hot encoding.
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2.1.2 Data process
During the initial stage of data preprocessing, molecules with

duplicate or missing information were removed to ensure that each
chemical structure in the data was unique while maximizing the
preservation of data properties (Yadav and Roychoudhury, 2018).
Then, the Simplified Molecular Input Line Entry System
(Weininger, 1988) (SMILES) data were processed one by one as
shown in Figure 1. The SMILES were converted into a molecule
using the Rdkit (Landrum, 2023) database to check its validity, and a
molecular graph was generated using the node and edge features
listed in Table 1 and being saved as input data for the model (Ahmad
et al., 2023).

The neural network in this paper requires inputs of molecules,
which are represented using one-hot encoding. As shown in
Figure 2, an entire aspirin molecule can be encoded using the
adjacency matrix of its atoms. The adjacency matrix describes the
relationship between atoms in the molecule, so the molecule can be
decomposed into relatively independent nodes based on this
relationship, with each node representing an atom. One-hot
encoding is a commonly used representation method, which
represents the feature vector of each atom as a long vector with
only one position being 1 and other positions being 0. The position
of the 1 represents the type of the atom, so we can use this method to
express the features of the atom. By combining the one-hot vector of
each atom with the adjacency matrix, we can obtain a complete
molecular representation, which can be used as input to the neural
network.

2.2 Molecular fragment

Molecular fragments refer to smaller subunits of molecular
structures, usually composed of a few atoms or functional groups
(Rees et al., 2004; Petros and Hajduk, 2009). Molecular fragments
can be the basic skeleton of some compounds or small chemical
molecules with specific functions. Compared to complete molecules,
molecular fragments are more versatile and can be used in various
fields, such as building structure-activity relationships, molecular
design, and drug discovery. A common technique is to screen many
small compounds (often molecular fragments) through high-
throughput screening to evaluate their affinity for specific drug
targets. Researchers can then combine these fragments to form
larger compounds, where each molecular fragment can interact
with the target protein. With such molecular design strategies,
researchers can create millions of new compounds and evaluate
their activity, thus discovering more effective drug candidates.

2.3 Molecular fragment extraction

A complete molecule can be divided into several different
molecular fragments according to different rules. The most
common methods for extracting molecular fragments include
skeleton segmentation, substructure search, reaction division, and
machine learning segmentation (Barnard, 1993; Duvenaud et al.,
2015). Due to the complexity of the structure of organic substances,
a complete molecule can be divided into multiple long skeletons and
multiple molecular components. The number of molecular

fragments may also increase with the number of acyclic single
bonds since a molecule could contain a substantial quantity of
such bonds.

In this study, we utilize the fragility of single bonds in a molecule
to mark all acyclic single bonds in the molecule as fragile bonds and
extract molecular fragments accordingly. It should be noted that
only one acyclic single bond is randomly broken during each
extraction process in this study as shown Figure 3C, and thus,
we generate two fragments as shown in Eq. 1:

Gsi � Fragment Gs( ), i � 1, 2{ } (1)
Here, Gs is a complete drug molecule and the Fragment() function is
used to split the complete drug molecule. This approach can
significantly reduce the computational cost and memory
consumption of model training.

2.4 Methods

The model framework of the entire article is shown in
Figure 3. Figure 3A shows the input and output of the entire
network model. Firstly, a drug molecule graph Gs is the input, and
the feature vector of the drug molecule is obtained through m
MolFra models to predict the solubility of the drug molecule.
Different possible molecular fragments of a drug molecule
Asiprin resulting from the breakage of acyclic single bonds are
shown in Figure 3B. The obtained drug molecule fragments are
input into MolFra models in pairs, as shown in Figure 3C. The
two molecular fragments Gs1 and Gs2 are separately input to the
atomic attention network layers, obtaining the atomic embedding
vectors for both molecular fragments. Finally, the atomic
embedding vectors for the two molecular fragments are
integrated into the molecular structure embedding vector and
further integrated into a complete molecular embedding vector.
Finally, the molecular average feature vector is obtained by taking
the molecular embedding vectors for all possible pairs of
molecular fragments and then a fully connected layer is used
to predict the solubility of the drug molecule.

Xiong et al. (2020) proposed a graph convolutional neural
network structure mainly based on graph attention networks to
encode molecular structure information. In their paper, they
indicated that their proposed graph neural network structure is
significantly superior to existing works. This paper adopts this
structured model as the molecular feature extraction network to
obtain embedded vectors of the graph. The core of the graph
attention mechanism is to obtain the context-aware vector of the
target node by focusing on its neighboring and local environment.

2.5 Attention machine

The graph attention network structure in this article is shown in
Figure 3C. Given two molecular fragment graphs Gsi = {Vsi, Esi,
Xiatom, Xibond}, where i = {1,2} represents molecular fragment 1 and
molecular fragment 2, Vsi = {vi1, vi2, . . ., viN} represents the atoms in
the i-th molecular fragment, Esi = {ei1, ei2, . . ., eiN} represents the
bonds between two atoms in the i-th molecular fragment. Xiatom =
{xatom

1 , xatom
2 ,. . ., xatom

N }, Xiatom∈RN×Fn represents the feature matrix
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of chemical properties of atoms in the i-th molecular fragment, and
Xibond = {xbond

1 , xbond
2 , . . ., xbond

N }, Xibond∈RN×Fe represents the feature
matrix of chemical properties of bonds in the i-th molecular
fragment, where Fn and Fe respectively represent the dimensions
of the chemical property vectors of atoms and bonds. All chemical
properties in this article can be calculated using the RDkit library.
The model proposed in this article is centered on the atom.

2.5.1 Feature extraction
The attention network proposed in this article is referred as

MolFra. Firstly, the two molecular fragments Gs1 and Gs2 are input
into the network. The feature information is extracted using l1 and l2
layer attention networks to generate the atom node embedding
vector featuresH1 = {a1, . . . , aN} andH2 = {b1, . . . , bN}, respectively,
where H1 and H2 belong to RN×F, and F is the dimension of the
embedding vector. In order to calculate the graph embedding, the
two molecular fragments Gs1 and Gs2 are contracted into two graphs
s1 and s2. Two graphs are constructed respectively, denoted as Gs1

′ �
V1′s1, E1

′
s1, X1′Node{ } and G′

s2 � V2′s2, E2
′
s2, X2′Node{ }, where V1s1′ =

{s1,v11, . . . ,v1N} andV2′s2 = {s2,v21, . . . ,v2N}, E1s1′ � esi, i ∈ Vs1{ } and
E2′s2 � esi, i ∈ Vs2{ }. In the node feature matrix, X1′node �
x1′s, x1

′
1, . . . , x1

′
N{ } and X2′node � x2′s, x22

′, . . . , x2′N{ }, where
X1′node, X2′node ∈R(N+1)×F. The feature vectors in the hypergraphs
are initialized as follows:

xs1
′ � 1

N
∑
i∈Vs1

ai (2)

xs2
′ � 1

N
∑
i∈Vs2

bi (3)

x2′i � bi, i ∈ Vs2 (4)
x1′i � ai, i ∈ Vs1 (5)

Then, the node embedding vectors of graph s1 and s2 are
extracted using T1 and T2 attention layers, respectively. These
vectors then serve as the graph embeddings for the two
molecular fragments.

2.5.2 Attention layer
Each attention layer consists of two parts: aggregation and

update. In the aggregation step, the target nodes t1 and t2
aggregate information propagated from their 1-hop neighbors.
The attention mechanism is used to assign weights to the
messages for facilitating the model to aggregate important
information. The aggregation steps of the attention mechanisms
at layer l1 and l2 in the two hypergraphs can be formalized as follows:

εl1t1i � leakyrelu W1 · al1−1t1 , al1−1i[ ]( ), i ∈ N t1( ) (6)
εl2t2i � leakyrelu W2 · al2−1t2 , al2−1i[ ]( ), i ∈ N t2( ) (7)

FIGURE 3
Overall model framework. (A) Method flow. (B) Molecular segmentation. (C) MolFra framework.
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Cl1
t1 � elu ∑

i∈N t1( )
softmax εl1t1i( )W1 · al1−1i

⎛⎝ ⎞⎠ (8)

Cl2
t2 � elu ∑

i∈N t2( )
softmax εl2t2i( )W2 · al2−1i

⎛⎝ ⎞⎠ (9)

The node embeddings of target node t1 and t2 and its 1-hop
neighbors are initialized as follows:

a0t1 � xatom
t1 (10)

b0t2 � xatom
t2 (11)

a0i � xatom
i , xbond

eti
[ ], i ∈ N t1( ) (12)

b0i � xatom
i , xbond

eti
[ ], i ∈ N t2( ) (13)

2.5.3 Gated recurrent unit
In the update step, a gated recurrent unit (GRU) was used as

shown in Figure 4. It mainly accepts information aggregated from
neighboring nodes and the embedded vector of the previous layer’s
target node to generate the update state vector of the atom. This
mechanism can be formally represented as:

al1t1 � GRUl1 al1−1t1 , Cl1
t1( ) (14)

bl2t2 � GRUl2 al2−1t2 , Cl2
t2( ) (15)

2.5.4 Integration of vectors
To obtain a global vector feature for a molecular fragment, we

performed aggregation of atomic nodes and obtained the aggregated
vector using Eqs 16, 17:

y1
1 � Aggregate al1i1( ), i � 1, ..., t{ } (16)

y2
1 � Aggregate al2i2( ), i � 1, ..., t{ } (17)

Here, y1
1 represents the global vector feature of molecular fragment

1, while y2
2 represents the global vector feature of molecular

fragment 2. The Aggregate() function is used for aggregating the
global features of molecular fragments. It merges the vector features
of each fragment in a certain way to obtain the global vector feature
representing the entire molecule.

By summing the global vector features of the two molecular
fragments, a complete molecule vector representing the features of
the entire molecule is obtained:

y
∧
1 � sum y1

1 + y2
1( ) (18)

In this article, we first split a molecule into single bonds, then
extract features and learn for each molecular fragment separately.
Finally, we sum up the global feature vectors of the two molecular
fragments. Since a molecule may have multiple single bonds, we also
divide them into multiple pairs of molecular fragments. To obtain a
complete drug molecule vector feature, we take the average of all the
vector features after division as the final drug molecule feature
vector, as shown in Eq. 19.

y
∧ � mean yi

∧( ), i � 1, 2, ..., m (19)

Here,m represents the number of pairs of molecular fragments, and
the mean() function is used to obtain the average value.

2.6 Optimization

In neural networks, loss functions are often used to calculate the
difference between predicted and true values. As drug molecule
solubility is a typical regression prediction task, we selected mean
squared error (MSE), which calculates the square of the difference
between the predicted and true values and then takes the mean. To
optimize the performance and convergence speed of the model, we
chose Adam (Adaptive Moment Estimation) for model
optimization. Adam combines the advantages of Adagrad and

FIGURE 4
Aggregate embedded vector.
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RMSProp algorithms, enabling the adaptive adjustment of the
learning rate of each parameter while considering the first and
second moments of the gradient average during updates.

2.7 Complexity analysis

Our model is roughly divided into three parts: data
preprocessing, graph neural network layers, and output layers.
When calculating the complexity of the model, we mainly
consider the complexity of these three parts.

In the data preprocessing part, the processing of chemical
molecules is mainly performed, and these operations are linear.
Therefore, O(n2 + m) can represent the complexity of this part,
where O(n2) represents the complexity of modeling relationships
between atoms, and O(m) represents the complexity of modeling
chemical bond relationships.

After splitting the molecules into fragments, the model primarily
processes the two network layers, l1 and l2. Therefore, we can
understand that the model has L layers of networks, and the
total complexity of the network layers in the model can be
represented as O(L). The parameter L represents the number of
network layers in your model. Each network layer is responsible for
processing and transforming the input data. The choice of L depends
on the complexity of the task at hand and the depth required to
capture the necessary features and patterns in the data. Generally,
having a deeper network (higher L) allows for more complex
representations and potential improvements in performance.
However, a very deep network can also lead to overfitting or
slow convergence during training. Therefore, it is a trade-off that
needs to be carefully considered and evaluated. Each network layer
contains a certain number of neurons, and these neurons need to
perform calculations and message passing. Therefore, the
complexity of each layer of neurons in the model is represented
as O(N), where N represents the number of neurons in each layer.
The parameter N represents the number of neurons in each network
layer. Neurons are the basic computational units that perform
calculations and message passing in the model. The choice of N
depends on the complexity of the input data and the capacity needed
to capture the necessary information. Having a larger number of
neurons (higher N) can potentially increase the model’s ability to
learn complex patterns and representations. However, a larger
model also requires more computational resources and can be
more prone to overfitting if the dataset is not large enough to
support the increased capacity. Thus, the complexity of the network
layers in our model can be represented as O(L*N). The output layer
is used for predicting the water solubility of the drug molecules and
has relatively low complexity, which can be neglected.

Therefore, the overall complexity of our model can be
represented as O(n2 + m + L*N).

3 Experiments and result

3.1 Metrics

To better evaluate the performance of the model, we selected two
evaluation metrics commonly used by other researchers: mean

absolute error (MAE) and root mean square error (RMSE). Here
are the reasons for choosing MAE and RMSE:

1) Gap reduction: MAE and RMSE help quantify the prediction
accuracy of a deep learning model by measuring the differences
between actual observations and predicted values. This provides
insights into the performance gap of the model.

2) Reflecting error magnitude: MAE and RMSE intuitively reflect
the magnitude of prediction errors. MAE represents the average
absolute difference between predicted values and true values,
while RMSE represents the average squared difference. These
metrics help assess the accuracy and stability of the model’s
predictions.

3) Robustness to outliers: MAE and RMSE exhibit a certain level
of robustness to outliers. Since RMSE involves squaring the
differences, it is more sensitive to large errors and thus more
influenced by outliers. On the other hand, MAE is smoother
and less affected by outliers. This is particularly important in
deep learning, as outliers can have a detrimental effect on the
model.

4) Mathematical properties: Both MAE and RMSE have desirable
mathematical properties, making them suitable for optimization
and problem-solving. For instance, RMSE is differentiable, which
is crucial for optimization algorithms like gradient descent used
to adjust parameters in deep learning models.

5) Diversity and simplicity: MAE and RMSE are commonly-used
evaluation metrics in deep learning, widely accepted and
applicable in various scenarios. Moreover, they are relatively
simple to calculate, allowing for easy comparison and
performance assessment between models.

Overall, the advantages of MAE and RMSE as evaluation metrics
in deep learning lie in their intuitiveness, robustness, and good
mathematical properties. These metrics are widely used for model
evaluation and optimization. However, it is important to choose the
most appropriate evaluation metrics based on the specific problem
and requirements. The calculation formulas for MAE and RMSE are
as follows:

MAE � 1
n
∑n
i�1

yi
∧ − yi

∣∣∣∣∣∣ ∣∣∣∣∣∣ (20)

RMSE �
�����������
1
n
∑n
i�1

yi
∧ − yi

∣∣∣∣∣∣ ∣∣∣∣∣∣2√
(21)

3.2 Parameter analysis

3.2.1 Dataset ratio
Dividing the dataset into training, validation, and testing sets

according to a certain proportion is usually an important operation
in machine learning and deep learning tasks. Therefore, we first used
the commonly used random splitting method, which divide the
dataset into four ratios of 8:1:1, 7:1:2, 6:1:3, and 5:1:4 for training,
validation, and testing sets, respectively, with a batch size of 200. The
experimental results of the test set are shown in Figure 5, and we
conclude that the 8:1:1 ratio provides the best model performance in
terms of MAE and RMSE evaluation metrics. We believe that 8:1:
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1 ratio splitting provides enough training data, resulting in the best
training effect of our model.

3.2.2 Batch size
Batch size is an important parameter that needs to be specified

when training neural networks. It determines the number of samples
that are fed into the model for training at each iteration. The choice
of batch size has a significant impact on both the training efficiency
and model performance. Therefore, it is vital to choose an
appropriate batch size. In this model, we conducted experimental
comparisons by selecting batch sizes of 32, 64, 128, 256, and 512 for
training the model with a dataset ratio split of 8:1:1, as shown in
Figure 6. From the graph, we can see that our model’s training
performance is optimal when the batch size is 256, so we chose a
batch size of 256.

3.2.3 DataSet partitioning
There are two common forms of dataset partitioning: random

partitioning and scaffold partitioning.

Random partitioning: The data is randomly divided into a
training set, validation set, and test set. The advantage of random
partitioning is that it can randomly select samples to make the
distribution more reasonable and reduce bias. However, the
disadvantage is that each run of the model will produce a
different partition, which may affect the repeatability of the
results.

Scaffold partitioning: The data is partitioned according to the
original scaffold of the dataset. The advantage of skeleton
partitioning is that the algorithm’s results are repeatable. The
disadvantage is that it may introduce sample selection bias.

We compared the random dataset splitting with scaffold dataset
splitting under the condition of a batch size of 256 and the dataset
ratio split of 8:1:1, as shown in Figure 7. The graph shows that the
random splitting achieved better results with smaller values in three
evaluation metrics than the scaffold splitting. We believe that this
result is due to scaffold splitting handling more description and

FIGURE 5
ESOL dataset ratio splitting.

FIGURE 6
The impact of batch size about ESOL dataset.

FIGURE 7
The impact of ESOL dataset partitioning.

TABLE 2 The parameters used in model training.

Parameters Value

Epoch 300

Batch Size 256

Dataset ratio split 8:1:1

Optimizer Adam

Initial learning rate 0.0025

Atom layes 3

Mol layers 2

Weight_Decay 0.005

Drop rate 0.002

Early stop patience 40
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comparison of structural features between molecules, while random
splitting is more suited for training and evaluating machine learning
and deep learning models.

3.3 Experimental results on benchmarks

To better verify the performance of ourmodel, ourmodel compares
the parameters of Table 2 with the five benchmark methods.

Random forest is a supervised learning algorithm that generates a
collection of decision trees through bootstrapping samples of
compounds and features (Breiman, 2001). Random forest has the
advantage of high scalability, can handle large-scale data sets, and
can handle complex relationships in high latitude feature space, which
makes it a powerful tool to predict drug molecular solubility, a problem
with multiple characteristics. However, it requires a large amount of
computing resources and memory to run, and the training process is
often very time-consuming.

The MPN encoder is adapted from deep chemistry and chemical
props and is implemented in Python, which is an open-source deep
learning framework (Tang et al., 2020). MPN has the advantage of

being able to capture local and global information, which helps to
gain a more comprehensive understanding of the chemical
information within molecules and improve the accuracy of water
solubility prediction. However, compared to other traditional
machine learning methods, it is more complex and requires more
parameters and computational resources, whichmay result in higher
computational costs and longer training time.

SAMPN is a message passing neural network model based on
self-attention networks, which is adapted from the message passing
neural network (Tang et al., 2020). SAMPN can directly learn the
characteristics and structure of molecules without Feature
engineering the molecules explicitly. This makes it suitable for
dealing with various complex organic molecular structures and
Chemical bond. But it usually requires a large amount of labeled
data. This may be a challenge for certain specific fields or low
abundance target attributes.

MultiMPN is a multi-task message passing neural network
(Tang et al., 2020).

AlipSol is an attention-driven expert mixture model that explicitly
reproduces the hierarchical structure of task relationships (Wu et al.,
2022). AlipSol’s design can adapt to various types ofmolecular structures
and chemical characteristics, and its prediction speed is usually fast,
which can predict the water solubility of single ormultiplemolecules in a
short time. This makes it a useful tool in fields such as high-throughput
screening and virtual drug screening. But its performance depends on
the quality and diversity of the dataset used for training. If the training set
is insufficient or the sample distribution is uneven, it may affect the
accuracy and applicability of the prediction results. Additionally,
although AlipSol performs well in predicting molecular water
solubility, it cannot cover all possible chemical structures and situations.

Table 3 shows the comparison results of our method and
benchmark method on the test dataset, using a 8:1:1 random
dataset partitioning method. It outperforms the benchmark
method in all two performance evaluation metrics.

3.4 Ablation study

To verify the effectiveness of our model after splitting molecules
into fragments, we also compared the performance on the complete
molecules, as shown in Table 4. When we used molecule fragments, we

TABLE 3 Performance comparison of different methods of ESOL dataset.

MAE RMSE

RF 0.8011 1.1110

MPN 0.5126 0.7248

SAMPN 0.5046 0.7012

multiMPN 0.4737 0.6840

ALipSol 0.4615 0.6757

Ours 0.4585 0.6718

TABLE 4 Ablation experiment comparison about ESOL dataset.

MAE RMSE

Null-Fragment 0.4769 0.6865

Fragment 0.4585 0.6718

TABLE 5 Prediction of water solubility of ESOL.

SMILES COP(=S) (OC)SCC(=O)N(C)C=O CCCCC=O CC(C)OC=O CC(C)O c1ccncc1 c1ccnnc1

Formula C6H12NO4PS2 C5H10O C5H10O C3H8O C5H5N C4H4N2

Graph

LogS −1.995 −0.850 −0.630 0.430 0.760 1.100

Prediction −1.991 −0.845 −0.628 0.426 0.755 1.096

SAMPN −1.893 −0.843 −0.621 0.413 0.739 0.997

MPN −1.801 −0.834 −0.602 0.401 0.723 0.961
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obtained lower results in all three performance evaluation metrics, and
the performance was also better. This demonstrates the effectiveness of
our model after splitting molecules into fragments.

4 Case study

The main purpose of our study is to predict the water
solubility of molecules in drug discovery and quickly screen
out candidate drugs. We randomly selected six data from the
dataset for result verification, as shown in Table 5. Among them,
the three molecules C6H12NO4PS2, C5H10O, and C5H10O can
spontaneously dissolve in water, and their predicted values are
respectively different from the actual values by 0.004, 0.005, and
0.002. The three molecules C3H8O, C5H5N, and C4H4N2 cannot
spontaneously dissolve in water and need to be added with
additional energy to dissolve in water. The solubility of these
three molecules are respectively different from the actual values
by 0.004, 0.005, and 0.004. Based on the above six compounds, it
is evident that our model’s predicted results are close to the actual
values, serving as confirmation that our model is suitable for
implementation in drug screening based on the prediction of
molecular water solubility.

To verify the generalizability of ourmodel, we randomly selected six
drug molecules from the AqSolDB (Wu et al., 2022) dataset to predict
their water solubility, as shown in Table 6. The error between the actual
values of the six drug molecules in the table and our predicted values
ranges from 0.002 to 0.005, indicating that there is little difference in the
actual error compared to the ESOL dataset. Therefore, it can be
considered that our model has certain generalizability.

5 Conclusion

Solubility is of great importance in the physicochemical properties
of drug molecules. In this study, we used drug molecule fragments and
atom-level attention network techniques to predict the solubility of drug
molecules. Our method was compared with five existing computational
methods and achieved better results on all three performance evaluation
metrics. This proves that theMolSol method proposed in our study can
significantly reduce the prediction time for drug molecular water
solubility, help screen and optimize candidate drugs, accelerate the
development of new drugs, and increase the success rate. The model
proposed in this article can predict the water solubility of drug
molecules, and identify potential references for drug molecules
considered ineffective or failed in other therapeutic areas.

In our future work, we will apply the MolSol model to the
prediction of other drug properties to provide comprehensive

support for drug design and development. We will also focus on
combining water solubility prediction with other property
prediction methods to construct a multi-property prediction
model, providing comprehensive evaluation and guidance for
drug development.
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HCH=CHCH=CHCH=@

1

C(C[2]
CH=CHCH=CHCH=@

2)#N

C(C[2]
CH=CHCH=CHCH=@2)

(=O)NH2

C(CH=CH2)
#N

C(CH3)
(=O)NH2

C(CH=CH2)
(=O)NH2
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