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Unresolved inflammation is a pathological consequence of persistent
inflammatory stimulus and perturbation in regulatory mechanisms. It increases
the risk of tumour development and orchestrates all stages of tumorigenesis in
selected organs. In certain cancers, inflammatory processes create the
appropriate conditions for neoplastic transformation. While in other types,
oncogenic changes pave the way for an inflammatory microenvironment that
leads to tumour development. Of interest, hallmarks of tumour-promoting and
cancer-associated inflammation are striking similar, sharing a complex network of
stromal (fibroblasts and vascular cells) and inflammatory immune cells that
collectively form the tumour microenvironment (TME). The cross-talks of
signalling pathways initially developed to support homeostasis, change their
role, and promote atypical proliferation, survival, angiogenesis, and subversion
of adaptive immunity in TME. These transcriptional and regulatory pathways
invariably contribute to cancer-promoting inflammation in chronic
inflammatory disorders and foster “smouldering” inflammation in the
microenvironment of various tumour types. Besides identifying common target
sites of numerous cancer types, signalling programs and their cross-talks
governing immune cells’ plasticity and functional diversity can be used to
develop new fate-mapping and lineage-tracing mechanisms. Here, we review
the vital molecular mechanisms and pathways that establish the connection
between inflammation and tumour development, progression, and metastasis.
We also discussed the cross-talks between signalling pathways and devised
strategies focusing on these interaction mechanisms to harness synthetic lethal
drug combinations for targeted cancer therapy.
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1 Introduction

Inflammation is an evolutionary process that allows the human body to cope with
pathogenic invasion and traumatic injuries. It is involved in the activation and recruitment of
numerous innate and adaptive immune cells that bolter the host’s defence against invading
pathogens and set the stage for tissue recovery, regeneration, and remodelling, once the
instigating factors are removed from the body (Attiq et al., 2018). However, unresolved
inflammation that arises from persistent inflammatory stimuli and perturbation in
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regulatory mechanisms have pathological consequences (including
organ failure, fibrosis, autoimmunity and metaplasia), which
increases the risk of cancers in selected organs (Medzhitov, 2008).

Over the past few decades, evidence gathered from a range of
molecular studies using genetically modified mice to
epidemiological data of patients has supported the functional
relationship between inflammation and cancer, which also led to
general acceptance of tumour-promoting inflammation as a key
hallmark of cancer (Hanahan and Weinberg, 2011; Yu et al., 2018).
Of interest, hallmarks of tumour-promoting and cancer-associated
inflammation are striking similar, sharing a complex network of
stromal (fibroblasts and vascular cells) and inflammatory immune
cells that collectively form the tumour microenvironment (TME).
Inflammation momentously orchestrates the TME composition and
cellular plasticity in chronic inflammatory and tissue repair
processes, also when observed in the context of cancer-induced
smouldering inflammation. Regardless of cancer-instigating factors,
innate immune cells and inflammatory cytokines made up the
composition of TME, suggesting that the innate immune system
plays a vital role at every step of carcinogenesis (Mantovani et al.,
2008; Greten and Grivennikov, 2019).

As part of the evolutionary development, cross-talk interactions
between signalling pathways were developed to capacitate the cells to
perform homeostasis without glitches. Nonetheless, the mechanistic
studies focusing on the pro-tumorigenic inflammatory pathways
have suggested that tumour cells have shown the ability to usurp the
homeostasis-promoting pathways for their benefit (Greten and
Grivennikov, 2019). In this scenario, feedback and cross-talk
mechanisms previously dubbed as an evolutionary gift become
liabilities instead. It became evident in cancer treatment that the
inhibition of one cancer-associated signalling pathway can give rise
to a secondary survival pathway that potentially encumbers cancer
drug efficacy and propagates chemotherapeutic resistance
(Prahallad and Bernards, 2016). Hence, transcriptional, and
regulatory signalling mechanisms propagating the plasticity of the
stromal, tumour, and inflammatory immune cells in TME need to be
elucidated for a better understanding of complex cross-talk
interactions and functional diversity of multiple cell types in
tumour-associated inflammation. Here, we review the molecular
pathways that establish the connection of inflammation with cancer
and describe their role in abrogating antitumour immunity during
tumour development and progression. We also discussed strategies
focusing on the cross-talk interaction of signalling pathways to
harness synthetic lethal drug combinations for cancer treatment.

2 Tumour-promoting inflammation;
extrinsic and intrinsic pathways

While few studies have casually implicated inflammation for
urinary bladder, gastric, hepatic and colon cancer, others formally
substantiated its role in the development of prostate, pulmonary,
pancreas and oesophageal cancer. It is worth mentioning that in
most cancers, environmental variants, including food, pollutants,
and infections agents, serve as instigating factors. Down the lane,
inflammation corroborates with ecological exposures and bolsters
their cancer potential (Groopman and Kensler, 2005). The
underlying molecular mechanisms of inflammation-induced

cancers are intricate and involve both innate and adaptive
immunity (Condeelis and Pollard, 2006; De Visser et al., 2006).
Even though viral oncogene directly participates in the neoplastic
transformation, no evidence supports that infection or pathogen-
encoded oncogenes are the prerequisites for inflammatory cells to
induce cancer (Chisari, 2000). In epithelial cells, the release of highly
reactive oxygen and nitrogen species by phagocytic inflammatory
cells poses direct oxidative or nitrosative damage to the DNA. In
contrast, free-radical chain reactions with the phospholipid and
other cellular components cause additional indirect damage (Ames
et al., 1995). Consequently, the necrosed cells are substituted with
resident progenitor and stem cells to conserve the functional barrier
of epithelial cells. In this scenario, the risk of mutation significantly
increases in the epithelial cells, especially those that undergo DNA
synthesis in the presence of the said damaging factors. Here, the
cytokines, including IL-1β, IL-8, IL-10, VEGF and TGF-β released
by the inflammatory cells promulgate proliferation and induce
angiogenesis, initiating the neoplastic transformation of the
epithelial cells (Coussens et al., 2000).

Proteolytic enzymes produced by the inflammatory cell are
pivotal for the disease progression. It allows them to migrate
through the extracellular matrix and promotes the invasion of
epithelial cells into stromal and vasculature compartments for
tumour metastasis (Condeelis and Pollard, 2006). According to
Dranoff (2004), aberrated cytokine levels, which includes
insufficient production of anti-inflammatory and excessive
secretion of pro-inflammatory cytokines, promote inflammation
and cancer. Moreover, suppression of immune-surveillance
modulating cell-mediated anti-tumour activities allows the cancer
cell to evade the immune responses and proliferate without any
check and balance (Langowski et al., 2006).

Infiltration of the immune cells (e.g., tumour-associated
macrophages, immature myeloid cells, T cells), tissue
remodelling, imbalance of inflammatory mediators and anti-
inflammatory mechanisms altogether make up tumour-
promoting inflammation (Yu et al., 2018). The development
process can be curtailed into two pathways; extrinsic and
intrinsic. In the extrinsic pathway, exogenous factors, including
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs), initiate inflammatory
responses via activating inflammatory cells, increasing the risk of
cancer (Mantovani et al., 2008; Takeuchi and Akira, 2010).
Nevertheless, the intrinsic pathway is mediated by genetic
alterations, affecting the functionality of oncogenes, including
proto-oncogenes, tumour suppressor genes and DNA repair
genes (Vogelstein and Kinzler, 2004). This orchestrates the
development of microenvironment and inflammation-related
programs, which serves as prerequisites for neoplastic
transformation (Figure 1).

3 Key orchestrators of tumour-
promoting inflammation

Macrophages have a diverse phenotypic spectrum allowing
them to participate and play an essential role in various
inflammatory signalling pathways. They are responsible for
phagocytosis, antigen presentation and immunomodulation
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FIGURE 1
Pathways involved in tumour-promoting inflammation. Insufficient mechanisms to resolve inflammation and perseverance in instigating stimuli
result in non-resolving inflammation. Development of angiogenesis to support the tissue remodelling, infiltration of tumour-associated macrophages,
immature myeloid and T cells, abundance of inflammatory mediators and imbalance of pro- and anti-inflammatory cytokines creates an ideal
microenvironment for non-resolving inflammation. Extrinsic and intrinsic pathways bridge inflammation and cancer. In the extrinsic pathway, an
inflammatory response is triggered by exogenous factors, including the PAMPs from pathogens or DAMPs from necrotic cells, which activate the
inflammatory cells and establish a microenvironment that potentiates cancer risk. On the contrary, the intrinsic pathway is induced by a mutation in

(Continued )
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(Arango Duque and Descoteaux, 2014). Varying sizes and
compositions of leukocytes infiltrate, containing tumour-
associated macrophages (TAM), mast, hematopoietic, and T cells
have been detected in most tumours. TAMs play themost significant
role in tumour growth by suppressing innate immunity and
promoting tissue remodelling (Qian and Pollard, 2010; Yahaya
et al., 2019). TAMs secrete proangiogenic mediators such as
vascular endothelial growth factors (VEGFs), promoting
angiogenesis required by tumours of specific size. They can also
inhibit the anticancer immune responses by releasing
immunosuppressive factors such as IL-10, transforming growth
factor (TGF) and prostaglandin E2. Additionally, by activating
arginase 1 (ARG1), TAMs decrease the availability of L-arginine
and promote proapoptotic activity in the T cells (Ostuni et al., 2015).

Poor prognosis and a reduced survival rate have been observed
among classic Hodgkin’s lymphoma patients with elevated TAM
levels, suggesting its active role in the disease’s development and
progression (Figure 2) (Steidl et al., 2010).

Cytokine is a big family of small proteins involved in
intracellular communication, immunomodulation and cellular
plasticity. Cytokines can be broadly classified into interleukins
(IL), chemokines (CK), tumour necrosis factor (TNF), interferons
(IFN) and tumour growth factor. Upon receiving the stimulus,
peripheral cells instantaneously produce and release these
biogenic proteins (Dembic, 2015). IL-1 is one of the most potent
immunomodulator, promoting inflammation, thermoregulation,
wound healing and haemostasis (Attiq et al., 2021b). Moreover, it
facilitates the infiltration of phagocytes and fibroblasts into the

FIGURE 2
Putative role of inflammatory effector molecules in (1) tumour proliferation and angiogenesis; (2) tumour metastasis and invasion; (3) modulation of
tumour microenvironment and immune evasion; and (4) induction of chemotherapeutic resistance.

FIGURE 1 (Continued)
cancer-associated genetic factors such as activating proto-oncogenes, tumour suppressor and DNA repair genes inactivation and chromosomal
aberration. These events pave the way for inflammatory microenvironment and neoplastic transformation by upregulating the expression of
inflammation-related programs. These two pathways congregate and activate the transcriptional factors (e.g., NF-κB, STAT3, HIFα), which propagate the
production of inflammatory mediators, including cytokine, chemokines, COX2/PGE2 and ROS, in inflammatory, stromal, and tumour cells.
Perpetually activated transcriptional factors orchestrate pro-tumorigenic inflammatory microenvironment, which is well-known for its tumour-
promoting effects.
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malignant cells, promoting mutagenesis, ROS production and
tumour growth (Dembic, 2015). IL-6 increases the production of
acute-phase proteins and propagates specific cellular and humoral
immune responses by activating T cells and recruiting monocytes at
the inflammation site (Gabay, 2006; Attiq et al., 2021a).
Additionally, it promotes cell proliferation, differentiation,
angiogenesis and antiapoptotic activities by inducing VEGF
synthesis (Setrerrahmane and Xu, 2017). Upregulated IL-1 and
IL-6 expressions are frequently observed in tumours like breast
cancer, highlighting their anti-apoptotic and pro-survival properties
at all stages of cancer (Garcia-Tuñón et al., 2005).

TNF serves as a master regulator of inflammatory mediators
(Parameswaran and Patial, 2010). Based on its pleiotropic nature, it
is classified into TNF-α and TNF-β. TNF receptor 1 (TNFR)
activation by TNF-α increases the turnover of transcriptional
factors, including NF-κB, and triggers inflammatory cascades. In
comparison, TNFR-2 activation induces endothelial adhesion,
vascular permeability and tissue regeneration (Yang et al., 2018).
Numerous studies have implicated TNF-α for tumour progression
based on its potential to encourage the mass migration of myeloid
cells into the microenvironment and promote vascularisation via
increasing the production of VEGF. Moreover, the activation of
transcription factors (NF-κB, AP-1 and ELK-1) allows TNF-α to
actively participate in malignant cell proliferation (Waters et al.,
2013). The late study of Ferrajoli et al. (2002) used TNF-α as a
tumorigenesis biomarker and associated its elevated plasma level
with varying stages of tumour progression and metastasis in chronic
lymphocytic leukaemia.

The chemokines family is functionally divided into
inflammatory and homeostatic chemokines. The former recruits
the leukocytes towards injury and inflammation, while the latter
directs the leukocytes to support haematopoiesis (Chen et al., 2018).
Nevertheless, the recruitment of effector T cells in autoimmune
diseases is also the consequence of continuous chemokines
production (Moser and Willimann, 2004). Chemokines
contribute to tumour growth by activating mitogen-activated
protein kinase (MAPK), responsible for upregulating the
expression of growth-stimulating genes. In terms of
vascularisation, CXCL12 is the most potent angiogenic
chemokine, which enables the adequate amount of oxygen supply
required in primary and metastatic breast cancer (Chow and Luster,
2014).

The growth factors are produced by mononuclear cells to
recruit, stimulate and proliferate the fibroblasts and endothelial
cells. Inflammatory cell-derived peptide growth factors are
platelets-derived growth factor (PDGF), transforming growth
factor (TGF) β, epidermal growth factor (EGF) and vascular
endothelial growth factor (VEGF). PDGF is involved in
stimulating vascular smooth muscle cell migration and
proliferation (Figure 2). TGF-β promotes chemotaxis, leukocyte
recruitment and adhesion. Dermal regeneration is the primary
function of the EGF; nevertheless, it also supports proliferation
and migration of keratinocytes, endothelial and fibroblast cells
(Bodnar, 2013; Mukai et al., 2018). VEGF increases vascularity,
activates T cells and promotes endothelial cell proliferation and
migration (Angelo and Kurzrock, 2007). Due to their definitive role
in proliferation, survival and micro-metastasis, it is unsurprising
that these growth factors have directly associated with cancer

progression. For instance, upregulated expressions of EGF and
VEGF and their receptors are extensively reported in colorectal
carcinoma (Sasaki et al., 2013). Although TGF-β and PDGF are
generally known for growth-suppressing activities, studies have
suggested that successive genetic mutations and DNA damage
alter their signalling hierarchy to promote malignant
transformation and survival in colorectal and breast cancers
(Farooqi and Siddik, 2015).

4 Signalling pathways; tumour and
inflammation rendezvous

4.1 Cyclooxygenase pathway

The cyclooxygenase enzymes convert arachidonic acid into
prostaglandins (PGs) and stimulate the production of
inflammatory chemokines and cytokines. The mammalian
cyclooxygenases are classified into COX-1 and COX-2 (Attiq
et al., 2017). The presence of a 3′-untranslated instability
sequence makes the COX-2 mRNA turnover relatively quicker
than COX-1. For the same reason, COX-2 is inducible and
participates in the development of inflammatory disorders and
tumour-promoting inflammation (Attiq et al., 2018; Attiq et al.,
2021a). Upregulated COX-2 expressions are frequently reported in
epithelial and stromal tumours, including prostate, colorectal and
non-small cell lung cancer (NSCLC) (Sandler and Dubinett, 2004;
Wu and Sun, 2015). These expressions harness the hypoxic
condition causing the dysregulation of the yes-associated protein
1 (YAP-1), which regulates the transcription of genes involved in cell
proliferation and apoptotic genes suppression (Hashemi Goradel
et al., 2019).

Immunosuppressive properties of COX-2 are driven by its major
metabolic by-product, PGE2. Cytosolic PGE2 synthase (cPGES) and
membrane-bound microsomal PGE2 synthase-1 and -2 (mPGEs-
1 and -2) participate in the catalytic conversion of PGH2 to PGE2.
Once synthesised, PGE2 binds and activates respective membrane
receptors (EP1-4) (Reader et al., 2011). The coupling of EP-1 with
the Gq-phospholipase C (PLC)-inositol trisphosphate (IP3)
pathway increases the intracellular concentration of Ca2+.
EP2 and EP4 receptors are coupled with the Gs-adenylyl cyclase
(AC)-cAMP-protein kinase A (PKA) pathway. Pertussis toxin-
sensitive Gi protein-bound EP3 decreases the cAMP and inhibits
of concentration of AC (Liu et al., 2015). Immunohistochemistry of
colorectal cancer cells exhibits 100-fold of EP4 than the normal
colonic epithelium, indicating an association between PGE2
signalling and colorectal tumorigenesis (Fujino et al., 2002).
Furthermore, cAMP/protein kinase A (PKA) dependent
mechanism is the main activating factor of EP2 receptor-
mediated Tcf transcriptional activity. On the contrary,
EP4 receptor-mediated activation occurs primarily through a
phosphatidylinositol 3-kinase (PI3K) dependent pathway (Fujino
et al., 2003). Another study has reported the activation of a PI3K-
dependent pathway by PGE2, which resulted in the signal-regulated
kinases (ERKs) phosphorylation and subsequent induction of the
functional expression of early growth response factor 1 (EGR-1).
Interestingly, this activation cascade was only observed in cells
expressing EP4 and was completely absent in cells with EP2
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(Guillemot et al., 2001). It is worth mentioning that EGR-1-derived
PI3K- and ERK-dependent pathway controls the key regulator of
cyclinD1. Moreover, EP4-derived PI3K/Akt activation stimulates
the proliferation and motility of colorectal cancer cells, suggesting a
potential role for EP4 in development and progression of cancer
(Sheng et al., 2001; Sonoshita et al., 2001).

COX-2 and PGE2 weaken immune surveillance by evading the
activated macrophages and cytotoxic T cells, allowing maximal
tumour cell expansion without check and balance (C. S.
Williams, 1999). Moreover, by activating the EP2 and
EP4 receptors of natural killer cells (NK), tumour-derived PGE2
inhibit NK cells to migrate, exhibit cytotoxic effect and producing
interferon-gamma. Frondoside A, an EP4 inhibitor, suppresses
breast cancer metastasis by abrogating PGE2 production and
augmenting NF-dependent IFN-γ synthesis (Gualde and Harizi,
2004; Martinet et al., 2010). In the same manner, COX-2/PGE2
nexus also suppress the maturation of dendritic cells and their major
histocompatibility complex (MHC) expression, significantly
abrogating their function to present antigen and activating
T cells (Harizi et al., 2003). These suppressive behaviour are
driven by PGE2-induced IL-10 production and EP2 and EP4 DC
receptor activation. Hence, studies have suggested that targeted
therapies focusing on the EP2/EP4 signalling can be attractive
therapeutic interventions to reactivate DC immune activities
(Harris et al., 2007). Cross-talk of numerous signals is
responsible for regulating the functionality of COX-2 on the
cancer cells. According to Hashemi Goradel et al. (2019), nuclear
factor-kappa β (NF-κB), EGFR and mitogen-activated protein
kinase (MAPK) transcriptional proteins are reported to upstream
COX-2 expression in various cancers (Hashemi Goradel et al., 2019).

4.2 Nuclear factor kappa-light-chain
enhancer of activated B Cells (NF-κB)

The NF-κB transcriptional family consist of RelA (p65), RelB,
and c-Rel. NF-κB1 (p105) andNF-κB2 (p100) precursor proteins are
processed to p50 and p52, making up the Rel homology domains
responsible for binding and dimerization of DNA. Inhibitory IκB
serves as negative regulators under resting conditions, restricting the
NF-κB dimers to the cytosol (Attiq et al., 2021b; Attiq et al., 2021c).
Once the stimulus is received, IκB kinase (IKK) complex undergoes
phosphorylation, proteasomal degradation and ubiquitination. This
results in the release of bound NF-κB dimers and paves the way for
nuclear translocation. The binding of NF-κB to the DNA activates its
transcriptional activity, increasing the production of cytokines,
chemokines and growth factors involved in cellular
communication, differentiation, proliferation, survival, and
immunomodulation (Yao et al., 2019; Jalil et al., 2020; Attiq
et al., 2021c). Hence, it is unsurprising that NF-κB dysfunction is
implicated in inflammatory disorders, autoimmune diseases and
tumorigenesis.

The late discovery of homologue cRel encoded retroviral
oncogene v-Rel, established NF-κB role in oncogenesis (Gilmore,
2004). The mutated genes of NF-κB subunits or IκB proteins are
frequently observed in numerous malignant cells. Mutated and
fused genes of IKKA responsible for the activation of IKKα are
frequently observed in breast cancers. These aberrations promote

the self-renewal of cancer progenitors and augment pro-
carcinogenic effects of progesterone in breast cancer (Stratton
et al., 2009). Evidence supports that constant activation of NF-κB
is more prevalent in tumours than subfraction of malignancies with
confirmed mutations in NF-κB or IκB-encoding (Ben-Neriah and
Karin, 2011). Hyperactivation of NF-κB signalling has the potential
to promote atypical cell proliferation, differentiation, metastasis and
chemotherapy resistance in breast, colon and lymphatic cancer
(Walther et al., 2015; Forlani et al., 2016; Sau et al., 2016).
Similar activation is observed in Epstein–Barr virus (EBV)-
induced T- and NK-cell neoplasms. Interestingly, LMP1 viral
protein closely resembles the TNF-receptors domains. It interacts
with TRAF and TRADD signal transducers (Luftig et al., 2004;
Kieser, 2008) and promotes EBV-positive T- and NK-cell neoplasms
via NF-κB activation (Takada et al., 2017). Greten et al. (2004)
suggested that conditional silencing of intestinal epithelial IKKβ is
effective in suppressing the NF-κB activation and disease
progression in colitis-associated colon cancer.

Silencing of BRCA1-induced phosphorylation of Ser536 site of
p65 and p100/p52 activates the NF-κB canonical (p65/p50) and
non-canonical pathway (p100/p52), nuclear translocation, p52/RelB
coupling and proliferation of MCF1 breast cancer cell lines (Sau
et al., 2016). Mesenchymal trans-differentiation and radiotherapy
resistance increase with MLK4 binding and IKKα phosphorylation
and NF-κB nuclear translocation in glioma stem cells (Kim et al.,
2016). LMP1-induced mTORC1 activation plays a significant role in
modulating NF-κB pathway in nasopharyngeal carcinoma cells
(NPC). Moreover, Glut1 transcription inhibition and LMP1-
induced inactivation negatively affect the aerobic glycolysis in
MTORC1 gene knockout NPC HONE1, which also defines the
NF-κB role in regulating energy metabolism required for the
cancerous survival and growth, as observed in NPC (Zhang et al.,
2017).

Hypoxia-inducible factor 1-alpha (HIF-1α) and NF-κB
mediators, including cytokines, matrix metalloproteinase (MMP)
and oncogenes, increase the VEGF production and support tumour
angiogenesis (Forsythe et al., 1996). NF-κB-driven MMP-2, MMP-3
and MMP-9 potentially degrade the basement membrane, perform
remodelling of the extracellular matrix and facilitate angiogenesis
and metastasis of endothelial cells and tumour cells, respectively
(John and Tuszynski, 2001), On the contrary, NF-κB inactivation is
reported to abrogate the production of VEGF, supplementary
fibroblast growth factor (bFGF), IL-8 and MMP-9 (Huang et al.,
2001). For tumour metastasis, subsequent activation of NF-κB,
TNF-α and Twist1 is required to modulate the epithelial-
mesenchymal transition (EMT) (Figure 3). COP9 signalosome 2
(CSN2) is known for its role in ubiquitin-proteasome pathway
stabilises snail (zinc-finger transcription repressor) and activates
NF-κB in inflammation-induced cell migration and invasion (Wu
et al., 2009). Hiratsuka et al. (2006) further suggested that serum
amyloid A3 (SAA3)-TLR4 signalling-induced NF-κB activation
establishes an inflammatory state, which facilitates the metastasis
of epithelial and myeloid cells in premetastatic lungs. Total
suppression of NF-κB via upregulation of IκBα super-repressor
or silencing RelA/IKK2 has shown promising results in reducing
the tumour size. Nevertheless, no alternation in apoptotic pathways
was observed in KRAS-induced lung adenocarcinoma (Bassères
et al., 2010). Moreover, deletion of IKK2 and NF-κB inhibition
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exhibit impaired tumour cell proliferation and KRAS-ERK-NF-κB-
Timp1-CD63-FAK-ERK positive feedback loop in pulmonary
cancer animal model (Xia et al., 2012).

4.3 Janus Kinase (JAK)/signal transducer and
activator of transcription (STAT) pathway

The JAK family consists of JAK1, JAK2, JAK3 and TYK2. Although
the two tyrosine kinase domains JH1 and JH2 are laid adjacent to each
other but in terms of functionality, they are discrete. JH1 carry out the
phosphorylation and activate the pathway, whereas JH2 reciprocally
regulate the functions of JH1. Inactive JAK dimers are part of the cell
surface complexes, which closely bind to transmembrane region of the
receptors. Tyrosine residues present at the intracellular receptor tail are
phosphorylated by activated JAKs. The binding of legend to the

receptor alters the JAKs positioning, brings the confirmational
change and results in phosphorylation and activation of the tyrosine
kinases (Brooks et al., 2014). Transcriptional protein family of STAT
consist of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and
STAT6. Cytosolic STATs serve as a JAK substrate and avidly bind with
the phosphorylated receptors (Kaplan, 2013). Phosphorylated STAT
form dimers and translocate into the nucleus and upregulate the
expression of transcriptional genes (Thomas et al., 2015). JAK/STAT
pathway regulates numerous physiological functions such as embryonic
development, stem cell modulation, haematopoiesis, inflammation, cell
survival, proliferation, differentiation, and apoptosis (Richard and
Stephens, 2014; Garrido-Trigo and Salas, 2020).

Activated JAK/STAT has been detected frequently in cancer-
related inflammation; however, the underpinning for dysregulated
activation has yet to be identified. IL-6 serves as a key stimulator of
STAT3. The binding of IL-6 allows phosphorylated STAT3 to

FIGURE 3
Inflammatory cell signalling pathways and tumorigenesis. Cross talk of cell-centric and -extrinsic interactions pave theway for tumorigenesis. These
processes propagate cancer-associated mutations, which give rise to genetic volatility, hyperproliferation, restructured stromal milieu and poorly
differentiated states of epithelial and mesenchymal cells. Inflammatory cells have a unique potential to trigger essential molecular processes that are
prerequisites of tumorigenesis. Inflammatory cytokine produced by tumour-infiltrating myeloid cells allows cancer cells to evade apoptosis and
promote cell growth via activating transcriptional factors, including signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B
(NF-κB). Activated STAT3 and NF-κB coordinate the production of IL-6 and transforming growth factor beta (TGF-β), which downregulates the epithelial
differentiationmarkers expression (e.g., E-cadherin) and promotes epithelial-mesenchymal transition (EMT). Genetic instability is augmented by hypoxia-
induced suppression of DNA repair mechanisms and ectopic expression of activation-induced cytidine deaminase (AID). IL-6-induced STAT3 activation
by myeloid cells supplements the pre-malignant cell proliferation and anti-apoptotic activities by upregulating the expressions of the proto-oncogene
MYC and cell cycle regulators such as cyclin D1, cyclin D2 and cyclin B. MYC-induced BCL2 and BCL2-like1expressions are also responsible for
significantly increasing the cell survival and anti-apoptotic activities. Likewise, IL-1α/IL-1R (TNF receptor) autocrine loop signalling and myeloid
differentiation primary response 88 (MYD88) results in the activation of NF-κB. MYD88 also actively participate in the development and expansion of
tumours by controlling the production of IL-6 in leukocytes. The tumour-promoting role of NF-κB (cell-centric and -extrinsic) during inflammation is
further validated by the Toll-like receptor 2 (TLR2)-mediated STAT-3 activation in gastric tumorigenesis.
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completely activate the NF-κB (Figure 3) (Jin et al., 2013). Activated
transcription factors translocate into the nucleus and promote the
production of cytokines, chemokines and growth factors involved in
tumour proliferation, survival and angiogenesis (Fan et al., 2013).
Accordingly to Yu et al. (2009), STAT5 and STAT6 have been
associated with to upregulation of the genes required for
haematopoietic tumour survival and proliferation.
STAT4 increases cancer-associated fibroblasts (CAF) that
supports the production of CXCL12, IL-6 and VEGF and
promotes the metastasis of ovarian cancer (Zhao et al., 2017).
Although, STAT1 and STAT2 are known for fostering
smouldering inflammation in TME by increasing the production
of inflammatory cytokines and chemokine (Zhang et al., 2017).
Contrarily, Stephanou and Latchman (2005) suggest that the
accumulation of STAT1 and STAT2 in the nucleus encourages
cell cycle arrest and bolsters anti-tumour innate immunity.

In atopic dermatitis model, JAK/STAT is reported to increase
the VEGF production from mast cells and promote angiogenesis
(Bao, Zhang and Chan, 2013). The oncogenic effect of JAK starts
with the gain-of-function mutations that result in the activation of
pathways involved in haematological malignancies. These mutations
augment the phosphorylation of JAK1 and STAT3 and promote
cytokine-dependent growth. Additionally, STAT3 prevents
apoptosis by activating cyclin-dependent kinases (CDKs), which
increase the transcription of positive regulators such as cyclin
D2 and downregulate transcription of CDK inhibitors such as
p21 (Figure 3). Together with STAT5, they activate transcription
of Bcl-x, producing the anti-apoptotic protein Bcl-xL. As the Bcl-xL
production goes up, it facilitates the tumour cells to adapt to a
hypoxic environment, promotes angiogenesis and suppresses anti-
tumour immune responses (Thomas et al., 2015). It is worth
mentioning that JAK2, an autoregulator of JAK/STAT pathway,
has been excessively reported in the chromosomal locus of gastric
adenocarcinoma. As the JAK2 activity increases, it reciprocates the
JAK/STAT turnover and simultaneously induces phosphorylation of
STAT5, which is an important mediator for the micro-metastasis,
tumour invasion and expansion (Bass et al., 2014; Pencik et al.,
2016).

4.4 Mitogen-activated protein kinases
(MAPKs)

MAPKs are a family of highly conserved serine or protein
kinases involved in various processes such as gene induction, cell
proliferation, differentiation, cellular stress and inflammatory
responses (Zhang and Liu, 2002; Kostenko et al., 2011). MAPKs
are classified into four major kinases groups; the extracellular signal-
regulated kinases (ERKs), also known as p42/44 MAP kinase, c-jun
N-terminal kinase (JNK), commonly referred to as stress-activated
protein kinase-1 [SAPK1] and Big MAP kinase (BMK) alternatively
known as ERK5 and p38 MAPK (Koul et al., 2013). Mitogens serve
as the activator of primary transducers ERK1 and ERK2, which
promote cell proliferation and growth upon activation. Oxidative
stress and growth factors serve as the primary inducer of BMK. JNK/
SAPKs and p38 respond profoundly to stress signals and
inflammatory cytokines, but unlike other kinases, they respond
poorly towards growth factors (Vassalli et al., 2012).

The signal transfer between MAPK and upstream kinase
(MAPKK) is highly specific in nature. MAP/ERK kinase (MEK)
1 and 2 phosphorylates p42/p44 (ERK) MAP kinases. MAP kinase
kinase (MKK) 3 and 6 exclusively activate p38MAP kinase.Whereas
MKK7 andMKK4 only activate JNK. However, in exceptional cases,
MKK4 gains add-on potential to activate p38 MAP kinase based on
its overexpression (Vander Griend et al., 2005). 4p38 MAPK family
members are phosphorylated by MKK6, where
MKK3 phosphorylates all p38α, p38γ, and p38δ expect p38β.
These stimuli are received at the plasma membrane, which
results in the activation of MAP kinase kinase kinase (MKKK).
MKKK further activates the MKK, which consequently ends up
activating MAPK (Cuadrado and Nebreda, 2010). During this
process, the threonine and tyrosine residues in a TXY motif of
theMAPK are dually phosphorylated by theMKK. ActivatedMAPK
targets and process MAPKAP-K2, c-Jun and c-myc, c-Jun, Tau and
IκBα for p38, ERK and JNK, respectively (Boutros et al., 2008).
Whereas the mitogen-activated protein kinase phosphatases
(MKPs) serve as the negative regulator that suppresses the
kinases activity under resting conditions. Of interest, altered
expression of MKPs, including MKP-1, MKP-2 and MKP-3, have
been frequently reported in non-small cell lung cancer and breast
cancers (Wang et al., 2019), where other studies have associated
these aberrations with chronic inflammatory disorders,
autoimmune diseases, and tumour-promoting inflammation (Wu,
2007; Wancket et al., 2012; Lang and Raffi, 2019).

According to Thalhamer et al. (2008), proinflammatory
mediators, including TNF-α, IL-1 and IL-6 serve as major
inducers of MAPK pathway. It is also suggested that ERK-MAPK
regulates IL-6, IL-12, IL-23, TNF-α biosynthesis and promotes
phospholipase A2 induction, PGs production and chemotaxis of
immune cells, creating an inflammatory microenvironment for
tumorigenesis. JNK-MAPK regulate the expressions and
activation of TNF-α, IL-2, E-selectin and MMPs. MAPKs,
p38 serves as the master activator and recruiter of leucocyte and
regulates the expressions of IL-6, IL-8 and COX-2 (Kaminska, 2005;
Huang P. et al., 2010). The ERK signalling pathway promotes cancer
cell migration through the phosphorylation of myosin and light
chain focal adhesion kinases. JNK-MAPK pathway ensures cancer
cell survival by increasing the anti-apoptotic protein MCL-1
production. Besides that, MMPs induced by JNK help in the
degradation of extracellular matrix proteins, which facilitate
tumour invasion and expansion through metastasis (Kim and
Choi, 2010). On the contrary, p38 exhibits a dual function as it
can suppress and simultaneously promote cancer development
(Koul et al., 2013). Its activation leads to the epithelial-
mesenchymal transition (EMT) of cells in the primary tumour,
which enhances their invasion potential and makes extravasation
easier for the migrating tumour cells (Bhowmick et al., 2001). Cheng
et al. (2004) suggested that inhibition of p38 MAPK augment the
circulating cancer cell’s survival by enhancing their resistance to
anoikis (Cheng et al., 2004). The low to high activity ratio of p38 and
ERK1/2 pathway is one of the significant contributing factors for
tumour cell dormancy. In contrast, tumour suppressor activity of
p38 MAPK has also been highlighted by studies which analysed the
phenotype of mice with disrupted MEK3, MEK6 and p38α genes.
Interestingly, the fibroblast cells of these animal models exhibited
enhanced transforming potential of oncogenes. Likewise, the
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tumorigenic potential in nude mice was also recorded exceptionally
high (Bulavin et al., 2002; Brancho et al., 2003; Bulavin and Fornace,
2004; Timofeev et al., 2005). Down the lane, the p38 tumour-
suppressing function upregulated p53 activation, potentiates p53-
induced apoptosis, and serves as a cell cycle negative regulator
(Bradham and McClay, 2006).

4.5 PI3K/Akt/mTOR pathway

Phosphatidyl-inositol-3-kinases (PI3Ks) are kinases with
inositol 3′-OH moiety attached to inositol phospholipids. PI3K
catalytic and regulatory subunits are known as class I PI3Ks
heterodimers that are further subdivided into IA (PI3Kα, β, and
δ) and IB (PI3Kγ). Former is activated by the tyrosine kinase
coupled receptors, while later is activated by G proteins coupled
receptors (Akinleye et al., 2013). Autophosphorylation of the
tyrosine residues results in the activation of tyrosine kinases of
growth factor receptors. PI3K binds with phosphotyrosine
consensus residues. Interaction of SH2 domains with the growth
factor receptor adaptor subunit results in CAT subunit allosteric
activation and PI3K enrolment to the plasma membrane. The
phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) responds to
PI3K and activates the second messenger phosphatidylinositol-
3,4,5-triphosphate (PI3,4,5-P3) (Waugh et al., 2009). PI3,4,5-P3
synthesis increases serine/threonine kinase-3′-phosphoinositide-
dependent kinase 1 (PDK1) and Akt/protein kinase B (PKB)
containing pleckstrin homology (PH) domains. Together, Akt/
PKB regulates the cell cycle, survival and proliferation.
Additionally, activated Akt/PKB is also implicated for
maintaining the inflammatory cells activity within the TME
(Vara et al., 2004; Tang et al., 2018).

Akt kinases are functionally related to AMP/GMP and protein
kinase C which falls under the umbrella of the AGC kinase family.
Akt kinases consist of three common domains, including the
N-terminal PH domain, central kinase CAT domain and
C-terminal extension (EXT) containing a regulatory hydrophobic
motif (HM) (Kumar and Madison, 2005). Activated Akt/PKB
significantly hampers the activities of pro-apoptotic factors,
including Bad and Procaspase-9, promoting anti-apoptotic
activity and cell survival. In addition, it abrogates TNF-induced
apoptosis, which consequently increases the apoptotic resistance of
prostate cancer cells (Chen et al., 2001). The parallel activation of
IκB kinase with Akt/PKB creates a cross-talk between NF-κB and
PI3K/Akt/mTOR pathways, which has been reported to aggrandize
the inflammogenesis and anti-apoptotic activity in lymphoma cells
(Hussain et al., 2012; Li et al., 2018). With regards to cell cycle
progression and growth, Akt modulates protein synthesis and
glycogen metabolism via interacting with glycogen synthase
kinase-3 (GSK3) and mammalian target of rapamycin (mTOR).
Regulation of G1/S cell cycle progression is positively controlled by
Akt/PKB cascade via inactivating GSK3-β. This inactivation results
in the complete abrogation of fork head family transcription factors
and tumour suppressor tuberin (TSC2). Increased cyclin
D1 production alleviates p27Kip1, promoting cell cycle and
growth progression (Liang and Slingerland, 2003). Interestingly,
PI3K/AKT is crucial for macrophage survival, migration and
proliferation in cancer-related inflammation (Vergadi et al.,

2017). Likewise, PI3K is a key player in regulating the
extravasation and migration of innate immune cells to the
inflammatory microenvironment of various tumours (Hawkins
and Stephens, 2015). The gene amplification of the PI3K and
AKT is said to increase the incidences of cervix and ovarian
cancers, while the amplification of the AKT2 gene is commonly
observed in ovarian, pancreas, breast and gastric tumours (Vara
et al., 2004).

mTORC1 and mTORC2 complexes modulate the activity of the
mTOR pathway. Raptor, mLST8 and PRAS40 make the
mTORC1 complex highly sensitive to rapamycin and first-
generation mTOR inhibitors (Szwed et al., 2021). On the
contrary, mTORC2 consists of mTOR, Rictor, Sin1, and mLST8.
Due to a change in configuration, mTORC2 losses its rapamycin
sensitivity but still retains its contribution to numerous cellular
processes (Jhanwar-Uniyal et al., 2019). Mitogen-induced PI3K/Akt
and Ras/MEK/ERK activate the mTOR canonical and non-
canonical pathways and participate in tumorigenesis, insulin
resistance, osteoporosis and arthritis (Memmott and Dennis,
2009; Zou et al., 2020). A recent study has suggested that
activation of mTORC1 by extracellular growth signals and
intracellular LKB1 mutations alleviate the histone H2A and H2A
ubiquitination following the DNA damage caused by
RNF168 phosphorylation. This severely affects the DNA repair
mechanism of the hepatocytes and promotes malignant cell
transformation and oncogenesis (Xie et al., 2018). According to
Chen et al. (2009) activated PI3K/PTEN/Akt/mTOR pathway
facilitates tumour metastasis and invasion by upregulating the
expression of MMP-9. Likewise, PI3K/Akt/mTOR signalling
supports the survival and proliferation of colon cancer stem cells
(CCSC) and plays a key role in the remission and metastasis of
sporadic colon cancer (Chen et al., 2017).

5 Signalling cross-talks in tumour
microenvironment

5.1 Hepatocellular carcinoma

Unresolved inflammation is the root cause of hepatic damage
and the contemporaneous regeneration serves as a key propagator of
hepatic fibrosis and cirrhosis (Kwon et al., 2015; Karin and Clevers,
2016). Despite the endogenous variability among numerous
etiological factors, parenchymal cell death-induced inflammatory
cascades and incessant wound healing remain the major
implications of hepatocellular carcinoma (HCC) (Karin and
Clevers, 2016). Cancer stem cells (CSCs) are responsible for
tumour survival, proliferation, growth, metastasis, and remission
after chemotherapy in HCC (Hanahan and Coussens, 2012). Active
immune cells assist the survival and proliferation of CSCs by
continuously secreting pro-inflammatory mediators that favour
preneoplastic niches in TME. According to Tanimizu et al.
(2017), hepatic progenitor cells exhibit malignancy when
transplanted into a chronically injured liver or harvested in a
similar inflammatory microenvironment. In dysplastic lesions,
signs of malignancy are not apparent until the autocrine IL-6 or
paracrine IL-6/STAT3 signalling is established in progenitor cells.
These signalling pathways are also reported to expand the HCC-
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CSC phenotypes driven by TAMs (Wan et al., 2014) and propagate
the hepatic progenitor cell in HBx-transgenic mice (Wang et al.,
2012). The cross-talk interactions of IL-6/STAT3 and TNF-α/NF-κB
by long noncoding RNA lnc-DILC further fortifies the implication
of hepatic inflammation in the expansion of HCC-CSC (Wang et al.,
2016). NF-κB and STAT3 have strikingly similar target genes
responsible for cellular proliferation, survival, and stress-coping
mechanisms. Cross-talks between these transcriptional factors
were previously identified in the diethylnitrosamine (DEN)-

induced liver carcinogenic injury model, and later the
epidemiological data supported these signalling interactions in
HCC- and prostate-related inflammation. In Kupffer cells, IL-1α
released during DEN-induced injury induces IL-6 production via
activating NF-κB (Maeda et al., 2005; Sakurai et al., 2008). At the
same time, IL-6 activates the STAT3, upregulates target gene
expression and increases the hepatocyte turnover to compensate
for the cell damage. Interestingly, this hyperproliferation, which
started as a coping mechanism for the damage, subverbally

FIGURE 4
Reactive oxygen species and proinflammatory cytokines produced by tumour-associated macrophages (TAMs) and myeloid-derived suppressor
cells (MDSCs) cause direct DNA damage and strand breaks. Numerous cytokines produced by TAMs and MDSCs impact the differentiation and
proliferation of normal and neo-malignant cells. For instance, IL-23 produced by MDSCs prompts oxidative DNA damage, DNA mis-repairs and induce
double-strand breaks (DSBs) and AR target genes by activating JAK-STAT-RORγ-mediated androgen receptor (AR) signalling. Nuclear AR signalling
summons the topoisomerase 2β (TOP2B) to the promoter regions, resulting in the chromosomal co-localization of AR target genes and other
transcriptional factors. Non-random rearrangements and AR-induced gene fusions occur due to the accumulation of DSBs at the target gene, mimicking
the androgen-regulated TMPRSS2 to ERG. Aberrations in homologous recombination result in chromosomal proximation and sole dependency on
error-prone non-homologous end-joining for DSB repairs. Malfunctioning tumour suppressor gene, AR targeted gene and DNA repair genes (BRCA1-2,
ATM, PALB2, CHEK1-2) prompt the extravasation of immune cells, genome destabilisation and tumour antigen production. Inflammation-induced
oxidative stress possesses the highest damage to DRGs and AR-target genes and perpetuates a never-ending loop of DNA damage and mis-repairs.
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promotes liver tumorigenesis (Naugler et al., 2007; He et al., 2010).
Additionally, activated STAT3 is also responsible for retaining the
p65 in nucleus and ensuring the perpetual activation of NF-κB (Lee
et al., 2009). On the contrary, dephosphorylation of activated JAK2/
STAT3 by ROS-mediated oxidizing protein tyrosine phosphatases
(PTPs) also governs a negative NF-κB/STAT cross-talk in HCC and
plays a significant role in tumorigenesis (Sakurai et al., 2006).
Aberrant methylation of suppressors of cytokine signalling
(SOCS) 1 and 3 have been frequently observed in human
primary HCC tumours, impeding their ability to negatively
regulate cytokine signalling. Reinstating activities in cells lacking
SOCS 1 and 3 expressions result in the suppression of cell growth
and reversal of constitutive STAT3 phosphorylation. Conclusively,
SOCS 1 and 3 methylation and its tumour growth suppression
activity demonstrate the importance of the constitutive activation of
the JAK2/STAT3 pathway in the development of HCC (Yoshikawa
et al., 2001; Niwa et al., 2005).

5.2 Prostate cancer

Genetic epidemiological data have suggested that germline
mutations that occur during chronic inflammation significantly
upregulate the risk factor of prostate cancer (Torkko et al., 2015).
This genomic and cellular damage orchestrates prostate cancer by
inducing somatic gene mutations responsible for tissue recovery
against inflammatory storms (Torkko et al., 2015; de Bono et al.,
2020). Additionally, the molecular characterisation of proliferative
inflammatory atrophy-associated precursor lesions with prostate
intraepithelial neoplasia and prostate cancer shares strikingly similar
molecular traits (De Marzo et al., 2007). Tissue microenvironment
enriched with cytokines and growth factors augments cell proliferation
via supporting replication and angiogenesis (Palapattu et al., 2005;
Nakai and Nonomura, 2013). Inflammatory myeloid cells, including
myeloid-derived suppressor cells (MDSCs) andTAMs, are infamous for
damaging and breaking DNA stands. Elevated IL-6 levels and ROS
change the course of cell differentiation and function, while the
malignant cells take direct advantage of these alterations (de Bono
et al., 2020). MDSCs-driven IL-23 production activates the JAK-STAT-
RORγ-mediated androgen receptor (AR) signals. Upon activation,
nuclear AR signalling summons the topoisomerase 2β (TOP2B) to
the promoter regions of AR target genes (Calcinotto et al., 2018). The
recruitment of TOP2B enzymatically hastens the double-strand breaks
(DSBs), resulting in DNA mis repairs and creating a disparity between
error-prone non-homologous end-joining and homologous
recombination (Figure 4). As the DSBs start congregating at the
target gene, non-random rearrangements and fusion occur.
Altogether, these events propagate the extravasation of immune
cells, genetic instability and tumour antigen production (Lin et al.,
2009; Haffner et al., 2010). Chronic inflammation is a driving force for
DNA damage, but transcriptionally active AR targets and DNA repair
genes bear the highest damage tool. Numerous studies have supported
the IL-6 role in prostate cancer by reporting upregulated IL-6R
expression and elevated IL-6 levels in prostatic intraepithelial
neoplasia (PIN) and hormone-refractory prostate cancer (Ouyang
et al., 2005; Markowski et al., 2008). These elevated levels also serve
as a principal activating factor for AR and inducible enzymes such as
COX-2. The latter is overexpressed predominately in proliferative

inflammatory atrophic (PIA) regions, a predicted risk factor lesion
to prostate cancer (Shinohara et al., 2013; Ashok et al., 2019). Lastly, IL-
6 promotes the epigenetic transformed states by establishing cross-talk
interaction between STAT3 and NF-κB.

5.3 Colorectal cancer

Chronic ulcerative colitis (UC) and Crohn’s disease (CD) are
two major divisions of inflammatory bowel disease (IBD). These
progressive inflammatory conditions have the potential to further
transform into colorectal cancer (CRC) (Long et al., 2017). Of all
CRC etiological factors, chronic inflammation and elevated
epithelial turnover remain the most significant due to their
putative role in dysplastic precursor lesion development
(Ullman and Itzkowitz, 2011). Activated immune cells pose
direct DNA damage by producing genotoxic ROS and reactive
nitrogen intermediates (RNI) in epithelial cells. Chronic
inflammation-induced perforations allow the food-borne
mutagens to breach the protective intestinal barriers and
interact with inflamed epithelium (Long et al., 2017).
Proinflammatory cytokines such as IL-1 and IL-6 induce
chromatin modifiers, upregulate miRNA and pose epigenetic
changes by activating JAK/STAT3 and NF-κB (Ding et al.,
2019). In return, these transcriptional factors increase the
turnover of mediators involved in angiogenesis (VEGF, IL-8,
PGE2), metastasis (MMP9) and proliferation (CyclinD1) by
establishing cross-talk interactions between COX2/PGE2, PI3K-
AKT, ERK and Wnt-β-catenin (Wang et al., 2009; Oshima et al.,
2011; Long et al., 2017). The cross-talk begins with Wnt/β-catenin
that, upregulates the Notch expression and triggers the Jagged-1
activation (Bertrand et al., 2012). Notch simulates the EGRF
pathways in colonic carcinogenesis and simultaneously activates
PI3K/AKT and MAPK/ERK pathways (Staudacher et al., 2017).
Transcription factor hairy and enhancer of split-1(HES-1) with
direct inhibitory effect on phosphatase and tensin homolog
(PTEN) activates PI3/AKT pathway (Rajendran et al., 2017).
Additionally, PI3K and β-catenin suppress glycogen synthase
kinase 3 beta (GSK3β) and APCAxin/GSKb3 complexes along
with their downstream target genes that regulate the activities of
suppressor of mothers against decapentaplegic (SMADs). Lastly,
Notch signalling upregulate anti-apoptotic gene expression of Bcl-
2, Bcl-XL, XIAP and survivin (Hristova et al., 2013). According to
Wu et al. (2013) cross-talk of PI3K/Akt, MAPK, Notch andWnt/β-
catenin is reported to regulate survivin and XIAPs in a positive
manner. TGF-β signalling is said to downregulate the anti-
apoptotic gene expressions (Wu et al., 2013). Collectively, these
events allow the epithelial cells to circumvent the cell cycle
checkpoint, evade apoptosis and proliferate without check and
balance in CRC (Bertrand et al., 2012).

5.4 Squamous and non-squamous cell lung
carcinoma

Chronic bronchitis (CB) refers to airway inflammation that
leads to mucus production, shortness of breath, dyspnoea,
wheezing and chest tightness. Nevertheless, the differential

Frontiers in Pharmacology frontiersin.org11

Attiq and Afzal 10.3389/fphar.2023.1255727

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1255727


diagnosis of CB is difficult since these symptoms overlap with
chronic obstructive pulmonary disease (COPD) (Durham and
Adcock, 2015; Park et al., 2020). The key association between
chronic bronchitis and pulmonary cancer lies in the
hyperactivation of NF-κB by ROS and pro-inflammatory
cytokines (Karin, 2009; Liu et al., 2017). These hyperactivated
states are frequently reported in the inflammatory cells of lower
airway bronchial epithelium in CB, premalignant lesions of the
pulmonary epithelium and neoplastic cells of squamous cell lung
carcinoma (Sheller et al., 2009). Chronic bronchitis and squamous
cell lung carcinoma (SCLC) are cross-linked with NF-κB-associated
transactivation of inflammation-related genes (Zaynagetdinov et al.,
2016; Rasmi et al., 2020). COPD patients with a long history of
smoking are at the highest risk. Cigarette smoke promotes NF-κB-
dependent inflammatory response and establishes interactions with
other signalling pathways, including peroxisome proliferator-
activated receptors (PPARs), PI3K/AKT, p38 MAPK and JAK/
STAT. These cross-talk interactions with the continuous
assistance of IL-6 give rise to anti-apoptotic activity, poor
differentiation and drug resistance in SCLC (Huang W.-L. et al.,
2010; Adcock et al., 2011). The late study of Yoshida et al. (2008)
reported that chronic nicotine exposure increases acetylcholine
(ACh) production and cholinergic receptor (AChR) activity,
which are reported as key cell proliferation enhancers in non-
squamous cell lung carcinoma. Moreover, excessive ACh release
facilitates tumour angiogenesis by increasing the production of
hypoxia-inducible factor (HIF)-1 and VEGF (Zhang et al., 2007;
Rooney and Sethi, 2011). Additionally, by establishing cross-talks
with MAPK and NF-κB, activated nicotine receptors upregulate the
activity of gene responsible for survival in neoplastic cells (Carlisle
et al., 2007). Nevertheless, late studies of Rooney and Sethi (2011)
and Zhang et al. (2007) suggested that darifenacin M3 mAChR
antagonist activity has the potential to abrogate the AChR-driven
cell proliferation and growth via abolishing AChR-MAPK cross-talk
in SCLC.

Hypermethylation of SOCS 3 promoter is known for initiating
the cross-talks between NF-κB and JAK/STAT in numerous lung
cancers. Erythropoietin receptor pathways, activated nicotinic
receptors and EGFR are potential activators of STAT3 (He et al.,
2004; Lai and Johnson, 2010). Nevertheless, IL-6 plays a pivotal role
in activating STAT3 and establishing the interaction between PI3K/
Akt and NF-κB. Activated STAT3 enters the perpetuating cycle of
IL-6 autocrine production. It creates a positive feedback loop with
the JAK/STAT activation, thus promoting progression and
chemotherapy resistance in lung cancers (Huang W.-L. et al.,
2010). It is worth mentioning that therapeutic strategies based on
JAK/STAT inhibition have shown success in promoting apoptosis
and anti-proliferative activities in SCC, suggesting that these
pathways are the potential target sites for the treatment of lung
cancers, including NSCLC and SCLC (He et al., 2004).

Peroxisome proliferator-activated receptors (PPARs) belong to
the nuclear hormone receptor superfamily (Afzal et al., 2020). These
ligand-activated transcription factors bind with the promoter region
of the targeted gene at PPAR specific sequence of response elements
(Afzal et al., 2021; Afzal et al., 2022). Other than metabolism, PPAR
has a putative role in cell differentiation and apoptosis via mediating
the activities of transcriptional factors, including NF-κB. According
to Belvisi and Mitchell (2009), proinflammatory cytokine from the

airway epithelium and epithelial cell differentiation are regulated by
PPAR ligands. For instance, PPAR agonist rosiglitazone is reported
to increase the neutrophil count and suppress chemoattractant
production in lipopolysaccharide-induced COPD-like airway
inflammatory animal models (Belvisi and Mitchell, 2009). Hence,
it is unsurprising that downregulated PPAR expression has been
frequently observed in numerous lung cancers, including SCC and
NSCLC (Li et al., 2010; Adcock et al., 2011).

5.5 Head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma (HNSCC) is derived from
the oral cavity, larynx and pharynx mucosal epithelium. Frequent
consumption of tobacco, alcohol abuse, human papillomavirus
(HPV) infection and chronic mucosal epithelial inflammation is
generally associated with HNSCC (Johnson et al., 2020; Esteban
et al., 2021). Upregulated EGFR expression and activation of EGFR-
mediated STAT3, RAS-ERK and PI3K-AKT pathways are frequently
reported in HNSCC (Amornphimoltham et al., 2004; Geiger et al.,
2016). Nevertheless, few studies have supported the EGFR-independent
activation of the said signalling pathways (Sriuranpong et al., 2003;
Amornphimoltham et al., 2005). The activation of STAT3-dependent
genes starts with tyrosine705 phosphorylation of STAT3 by EGFR.
Sriuranpong et al. (2003) suggested that the rapid tyrosine
phosphorylation followed by the STAT3-DNA complex formation is
unaffected by the EGFR inhibition in HNSCC cell lines. Of interest, the
proposed EGFR-independent STAT3 mechanism involves the
activation of the gp130 cytokine receptor subunit, which propagates
the tyrosine705 phosphorylation via activating the intracellular JAK
tyrosine kinases. It is worth mentioning that IL-6 secreted in HNSCC
serves as a key activator of gp130 by binding with the IL-6 receptor-
gp130 complex present on the surface of HNSCC cells. While few other
studies have proposed that dysregulated EGFR activity or tumour-
released cytokines in an EGFR-independent fashion are mainly
responsible for the perpetual activation of STAT3 in HNSCC
(Siavash et al., 2004). These findings, together with the published
report of Squarize et al. (2006) suggested that upregulated
expression of IL-6 increases the transcription by involving IL-6
promoter. However, the presence of intact NF-κB response elements
of IL-6 transcription initiation site is a prerequisite for optimal IL-6
promoter functioning. In the same study, NF-κB inhibition decreased
IL-6 production, downregulated its expression and suppressed the
secretion of IL-8, IL-10, GM-CSF and G-CSF. Furthermore,
STAT3 reciprocates to NF-κB inhibition by decreasing the
tyrosine705 phosphorylation, interfering with the STAT3 activation
in nontumorigenic epithelial cells in a paracrine manner. The proposed
cross-talk interaction of NF-κB and STAT3 pathways driven by IL-6
release and IL-6 promoter activation serves as an excellent example that
the aberration of multiple interrelated signalling pathways, instead of
only one deregulated biochemical route, contributes to the squamous
cell carcinogenesis.

5.6 Ovarian cancer

Pathogenic infections are the major cause of pelvic inflammatory
disease (PID) that pose harmful effects on female reproductive organs,
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including the cervix, fallopian tubes and ovaries (Brunham et al., 2015).
Mounting evidences have suggested a strong correlation of PID with
increasing incidence of ovarian cancer (OvCa) (Rasmussen et al., 2013;
Rasmussen et al., 2017). The cross-talk PI3K and NF-κB have been
implicated in the decease survival rate of OvCa patients. Activation of
NF-κB takes place by interacting with PI3K p110a and p85 regulatory
subunits (Sizemore et al., 1999; Koul et al., 2001). Upregulated p110α
expression directly activates the p65/RelA by phosphorylating the IKK
complex and promoting nuclear translocation. Activated PI3K-
dependent AKT phosphorylation further activates the p65/RelA
subunit. At this point, phospho-AKT driven IKKα phosphorylation
paves the pathway for the concurrent IkB phosphorylation, which
further promotes the NF-κB nuclear translocation (Takada et al., 2007).
Nevertheless, Madrid et al. (2001) proposed an alternative IKK-
independent pathway, which involves AKT-induced NF-κB
activation and phosphorylation of the p65/RelA subunit. It is worth
mentioning that cross-talk of PIK3CA, AKT1/2/3 and NF-κB subunits
have also been repeatedly highlighted in the data analysis of Cancer
Genome Atlas (Ghoneum and Said, 2019). Based on the premise,
therapeutic strategies targeting the PI3K/AKT/mTOR/NF-κB axis have
shown promising results against OvCa in pre-clinical models. Recently
Wei et al. (2019) suggested that PI3K/AKT/mTOR regulationwith YAP
inhibitor peptide 17 is reported to suppress the malignancy and
progression of OvCa. Likewise, OvCa cell survival and cisplatin
resistance are reported to be significantly suppressed with the PI3K
and ghrelin receptor blockade with [D-Lys3]-GHRP-6 and LY294002,
respectively. On the contrary, activation of PI3K/AKT/mTOR/NF-κB
axis with growth hormone secretagogue receptor (GHSR) ligand ghrelin
is suggested to augment cell survival and augment cisplatin resistance in
OvCa (El-Kott et al., 2019).

6 Cross-talk interaction targeted
therapies; friend and foe

6.1 Therapeutic opportunities

Over the past few decades, cancer treatments have been designed
to target specific signalling pathways involved in cell survival and
proliferation. Henceforth, the usage of non-selective cytotoxic drugs
has been significantly reduced with the emergence of targeted
therapies focusing on specific molecular pathways with enhanced
biochemical and cancer selectivity. Tumour-driven mutations are
easier to identify with next-generation DNA sequencing, making
targeted therapy effective and the development of precision
medicine expeditious (The Cancer Genome Atlas Research
Network, 2008; Alifrangis and McDermott, 2014). For
inflammation-associated cancers, targeted therapies focusing on
the signalling pathways and gene mutations responsible for
feedback regulations have shown promising therapeutic results.
However, it is anticipated that the effectiveness of drug therapies
varies, and drug resistance arises due to tumour genomic variability,
intralesional heterogeneity and cross-talk between signalling
pathways (Prahallad and Bernards, 2016).

Alternatively, these cross-talks can be used strategically as a valuable
tool to promote synthetic lethality, in which inhibition of two individual
pathways (gene) shows no fatal response, but simultaneous inactivation
of two pathways exhibits significant lethality (Ashworth, 2008). For

instance, in the presence of a mutated cancer signalling pathway, the
inactivation of a second pathway bearing a cancer-specific defect will
theocratically be lethal to the cancer cells. The clinical application of this
concept was established by Rehman et al. (2010) and colleagues with a
conscientious observation that mutant BRCA1 is highly sensitive to
poly ADP-ribose polymerase (PARP) inhibitors. Also, if a substitute
pathway is available to repair damaged DNA, BRCA1 mutant tumours
will tolerate homologous recombination defects. However, when PARP
1 and 2, key enzymes of the alternative pathways involved in double-
stranded DNA repair are blocked with PARP inhibitor, it will result in
the instantaneous BRCA1mutant tumour cell death. Similarly, in colon
cancer, the categorical suppression of all kinases results in EGFR
attenuation, implicated as synthetic lethal with BRAF(V600E)
inhibition. Of interest, ERK and the PI3K signalling pathways are
reactivated due to the BRAF(V600E) inhibition which paves the way for
EGFR feedback activation (Corcoran et al., 2012; Prahallad et al., 2012).
The approval of PARP inhibitor Olaparib for BRCA-mutated ovarian
cancer treatment has substantiated the future clinical applications of this
synthetic lethality.

An alternative coping strategy is to address tumour and
inflammatory microenvironment collectively. With this approach,
complex signalling communication between tumour-infiltrating
immune cells responsible for angiogenesis, proliferation and
metastasis becomes addressable altogether. Numerous studies have
already been discussed, which highlighted the intricate interactions
between resident macrophages, IL-6, COX-2/PGE2 and CXCL12 in the
breast cancer microenvironment (Garcia-Tuñón et al., 2005; Martinet
et al., 2010; Chow and Luster, 2014). Moreover, aberrant transcriptional
activities of MAPK and NF-κB upregulate the expression of growth-
stimulating genes. Regarding vascularisation, CXCL12 and CCL2 are
the most potent angiogenic chemokine, which enables the adequate
oxygen supply required in metastatic breast cancer. Moreover,
CCL2 release from mammary tumours attracts the CCR2-expressing
monocytes produced by bone marrow. According to Bonapace et al.
(2014) and team, upregulated expression of CCR2 is correlated with
decease chemotherapy sensitivity and poor clinical outcomes. In their
study findings, an anti-CCL2-neutralising antibody was an effective
treatment in obstructing the release of monocytes and abrogating
metastasis. In contrast, few studies have implicated TME in
decreasing cancer cells’ sensitivity towards targeted or conventional
chemotherapies (Straussman et al., 2012). Based on the premise, it is
established that the effectiveness of the target therapies is affected and
governed by the complex interactions of epithelial tumours and their
undisciplined microenvironment.

6.2 Therapeutic restraints

The drug combinations seem to be an optimistic approach to
block core or multiple signalling pathways (cross-talk) and improve
clinical outcomes. Practically, combinations of targeted therapies are
far from ideal when factors like secondary gatekeeper mutations,
toxicity and tolerability are to be dealt with frequently in clinical
settings. In the current scenario, there are three main strategies for
combining target agents; multiple drugs aiming same target site
(trastuzumab and pertuzumab to target HER2 in breast cancer),
aiming multiple target sites on the same pathway (AKT and MEK
inhibitors in HCC) and using multiple targeted drug combinations

Frontiers in Pharmacology frontiersin.org13

Attiq and Afzal 10.3389/fphar.2023.1255727

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1255727


simultaneously aiming numerous cellular mechanisms (alkylating
agents promoting cell cycle progression and pro-apoptotic activities)
(Dancey and Chen, 2006; Kummar et al., 2010). Nevertheless, the
lack of comprehensive knowledge regarding the intricacy of
signalling pathways considerably undermined the risk-to-benefit
ratio of the proposed strategies. To fill this knowledge gap, these
combination strategies were tested against four different types of
cancers, including solid tumours, melanoma, glioma and renal cell
cancer, in pilot clinical trials (Kummar et al., 2010). The interim
analyses of these trials have exhibited promising clinical efficacy for
some combinations but not for others, suggesting the empirical
nature of this mix-and-match combination process. For instance,
the mixture of multi-kinase inhibitors sorafenib and bevacizumab
showed some promising results in ovarian cancer and renal cell
carcinoma treatment, but the clinical trial was terminated earlier due
to dose-limiting toxicities associated with drug combination therapy
(Azad et al., 2008; Sosman, 2008). Similarly, when sorafenib and
temsirolimus (mTOR inhibitor) combinations were explored for
glioblastoma multiforme management, the development of grade
3 thrombocytopenia at the maximum tolerated dose led to the
termination of the trial (Lee et al., 2012). It is evident from the
above-stated studies that any clinical trial with a lack of
understanding of signalling cross-talk interactions and molecular
rationale will have a limited chance of success.

7 Concluding remarks

Over the past few decades, the conceptualisation of inflammation-
induced cancers and the functional relationship between inflammation
and cancer has been well recognised. The key orchestrators of the
signalling pathways that drive the molecular events and establish the
cross-talk interactions between stromal, tumour and inflammatory
immune cells in the microenvironment have been firmly established.
Of interest, we have gasped a vast array of knowledge on the resident
cells and signalling pathways involved in cancer-promoting
inflammation, intrinsic and extrinsic (inflammatory) pathways,
tumour suppressor gene dysfunction, neoplasm, metastasis, and
prognosis. Despite these establishments, key molecular mechanisms
that connect the immune-modulatory effects of inflammation with the
various stages of cancer development remain elusive. Elucidation of
these molecular gateways is decidedly warranted because they hold the
answer key to the fundamental questions that incapacitate our absolute
knowledge about cancer-related inflammation. For instance, if chronic
inflammation eternally promotes pro-tumour activity, then as Nickoloff
et al. (2005), why does inflammation defiantly decrease cancer in
chronic inflammatory diseases such as psoriasis? Moreover, how
come the late study of Mantovani et al. (1992) reported that densely
populatedmicroenvironments with eosinophil and TAMs lead to better
prognosis in colon and breast tumours? These erratic observations are
concerning but should not be casually ignored since these
counterintuitive studies challenge our limited knowledge and force
us to revisit our oversimplified explanations of cancer-promoting
inflammatory processes.

The cross-talks of signalling pathways, developed initially to
support homeostasis during inflammatory processes, change their
role and promote atypical proliferation, survival, angiogenesis, and
subversion of adaptive immunity in TME. These transcriptional and

regulatory pathways invariably contribute to cancer-promoting
inflammation in chronic inflammatory disorders and foster
smouldering inflammation in the microenvironment of various
tumour types like breast tumours (Balkwill et al., 2005). Besides the
identification of common target sites of numerous cancers, these
signalling programs and cross-talks governing immune cells’
plasticity and functional diversity can be used to develop new fate-
mapping lineage-tracing mechanisms.

Cancer precision therapies targeting signalling pathways and
corresponding genetic mutation involved in feedback regulations
have shown promising future prospects. Nevertheless, devising drug
combinations to cater for neoplasm, secondary gatekeeper mutations,
and toxicity by conventional “trial and error” testing has shown
marginal success. One effective strategy to develop a powerful drug
combination is synthetic lethality genetic screening, but this approach
has its demerits. Firstly, investigational studies do not consider the
clinical effectiveness of proposed synthetic lethal interactions, and their
acknowledgements were merely context-driven (Barbie et al., 2009; Luo
et al., 2009; Singh et al., 2012). Secondly, it is challenging to foresee
synthetic lethal drug interactions if cancer genotype is a decisive factor
in targeted therapy selection. Considering these scepticisms, the first
drug using the concept of synthetic lethal has been approved, paving the
way formany others to follow. Lastly, we need to completely reassess the
practice of qualifying a drug for combination therapy based on its
single-agent activity. In their recent study, Rudalska et al. (2014) and
colleagues skilfully demonstrated this unorthodox paradigm by
employing the concept of synthetic lethal interaction. They
successfully transformed MAKP14 inhibitors with poor anticancer
activity (as a single agent) into a strong chemotherapeutic candidate
by adding these drugs in combination with sorafenib.
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