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The paraventricular nucleus (PVN) of the hypothalamus plays a vital role in
maintaining homeostasis and modulates cardiovascular function via autonomic
pre-sympathetic neurones. We have previously shown that coupling between
transient receptor potential cation channel subfamily V Member 4 (Trpv4) and
small-conductance calcium-activated potassium channels (SK) in the PVN
facilitate osmosensing, but since TRP channels are also thermosensitive, in this
report we investigated the temperature sensitivity of these neurones.

Methods: TRP channel mRNA was quantified from mouse PVN with RT-PCR and
thermosensitivity of Trpv4-like PVN neuronal ion channels characterised with
cell-attached patch-clamp electrophysiology. Following recovery of
temperature-sensitive single-channel kinetic schema, we constructed a
predictive stochastic mathematical model of these neurones and validated this
with electrophysiological recordings of action current frequency.

Results: 7 thermosensitive TRP channel genes were found in PVN punches.
Trpv4 was the most abundant of these and was identified at the single channel
level on PVN neurones. We investigated the thermosensitivity of these Trpv4-like
channels; open probability (Po) markedly decreased when temperature was
decreased, mediated by a decrease in mean open dwell times. Our neuronal
model predicted that PVN spontaneous action current frequency (ACf) would
increase as temperature is decreased and in our electrophysiological experiments,
we found that ACf from PVN neurones was significantly higher at lower
temperatures. The broad-spectrum channel blocker gadolinium (100 µM), was
used to block the warm-activated, Ca2+-permeable Trpv4 channels. In the
presence of gadolinium (100 µM), the temperature effect was largely retained.
Using econazole (10 µM), a blocker of Trpm2, we found there were significant
increases in overall ACf and the temperature effect was inhibited.

Conclusion: Trpv4, the abundantly transcribed thermosensitive TRP channel gene
in the PVN appears to contribute to intrinsic thermosensitive properties of PVN
neurones. At physiological temperatures (37°C), we observed relatively low ACf
primarily due to the activity of Trpm2 channels, whereas at room temperature,
where most of the previous characterisation of PVN neuronal activity has been
performed, ACf is much higher, and appears to be predominately due to reduced
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Trpv4 activity. This work gives insight into the fundamental mechanisms by which
the body decodes temperature signals and maintains homeostasis.
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Introduction

Prolonged deviation in core body temperature (Tc) outside a
narrow range, results in serious physiological issues incompatible
with life, and therefore, it is tightly regulated by a homeostatic
system (Morrison and Nakamura, 2011; Gomez, 2014). Changes in
environmental temperature produce reflex responses to maintain Tc

in an optimal range (Kanosue et al., 1991; Kanosue et al., 1994),
however, how the brain coordinates such responses is a longstanding
and unresolved question.

Early models of temperature regulation were based around the
existence of a central integrator comprised of hypothalamic
neurones that orchestrate homeostatic responses around a set-
point temperature (Hardy, 1961; Hammel and Pierce, 1968). An
alternative theory proposes that the brain has no central integrator
for Tc but instead, various thermoregulatory effectors are thought to
be regulated independently, giving the appearance of coordinated
action without the existence of a single so-called ‘controller’
(Satinoff, 1978; Romanovsky, 2007; McAllen et al., 2010). Central
nervous system (CNS) level control of Tc is mediated by a
combination of negative feedback and feed-forward mechanisms
that share common peripheral thermal sensory inputs (Kanosue
et al., 2010; Morrison and Nakamura, 2011). Feedback responses are
those that are triggered when Tc deviates away from the optimal
range, for example, exercise induces an increase in Tc by
approximately three degrees Celsius (Fuller et al., 1998; Walters
et al., 2000). Feed-forward mechanisms on the other hand, are
preventative, and are triggered prior to any change in core
temperature. The most common feed-forward example is the
detection of changes in air temperature (by thermoreceptors in
the skin) which trigger thermoregulatory responses that prevent any
significant change in Tc (Nakamura and Morrison, 2008; Nakamura
and Morrison, 2010; Romanovsky, 2014). The hypothalamus
contains the primary integrative and rostral efferent components
of these circuits, but local thermal stimulation of other areas in the
CNS, including several brain-stem neuronal groups and the spinal
cord also trigger autonomic thermoeffector responses.
Thermosensitive neurones in the preoptic area (POA) of the
hypothalamus have been the most studied to date (Kanosue
et al., 1991; Kanosue et al., 1994; Kazuyuki et al., 1998;
Nagashima et al., 2000; Nakamura and Morrison, 2010;
Romanovsky, 2014).

Early experiments showed that stimulation (warming) of the cat
(Magoun et al., 1938; Hemingway et al., 1954) and rat (Carlisle and
Laudenslager, 1979) POA could trigger dramatic thermoregulatory
responses that were similar to those observed by heating the entire
animal. Cooling of the POA promotes vasoconstriction, brown
adipose tissue (BAT) thermogenesis and shivering in dogs and
baboons (Hammel et al., 1960; Gale et al., 1970) and results in
baboons signalling for rapid heat reinforcement. Lesioning of the cat

POA has been shown to abolish thermoregulatory responses in
animals subjected to temperature challenge (Teague and Ranson,
1936; Clark et al., 1939). Direct sensing of changes in skin
temperature has been shown to activate POA efferent signals that
control thermal effector organs (Morrison et al., 2014; Morrison,
2016). Electrophysiological studies have characterised the intrinsic
temperature-sensitive properties of POA neurones in rabbit
(Boulant and Hardy, 1974), rat (Hori et al., 1980; Baldino and
Geller, 1982), mice (Tan et al., 2016) and dogs (Hardy et al., 1964),
however, there are many reports of temperature sensitive neurones
outside of the POA (Nakayama and Hardy, 1969; Edinger and
Eisenman, 1970; Simon and Iriki, 1970; Wünnenberg and Hardy,
1972; Kobayashi and Murakami, 1982). The neuronal circuitry and
projections of the POA are not fully understood but several
additional brain regions including the dorsomedial hypothalamus
(DMH), the paraventricular nucleus of the hypothalamus (PVN),
and the raphe pallidus nucleus have been proposed to act alongside
the POA to regulate Tc (Morrison et al., 2014; Morrison, 2016; Zhao
et al., 2017). The DMH is also recognised as another key player in
thermoregulation (Dimicco and Zaretsky, 2007; Morrison and
Nakamura, 2011; Heeren and Münzberg, 2013) and stimulation
of rat DMH neurones was shown to increase in BAT sympathetic
nerve activity (SNA), BAT temperature and Tc (Zaretskaia et al.,
2002; Cao et al., 2004; de Menezes et al., 2006).

Several studies using cFos as a marker of activation have shown
that mouse PVN neurones respond to both warm and cold ambient
temperature change (Bachtell et al., 2003; Bratincsák and Palkovits,
2004). Exposure to a hot environment (39°C) increased cFos
expression of rostral ventrolateral medulla (RVLM) –projecting
(Cham and Badoer, 2008) and spinally-projecting neurones in
the rat PVN (Cham et al., 2006). Anatomical studies using
transneuronal viral tracing approaches show that post injection
of pseudorabies virus into the rat tail, within the hypothalamic
area, the majority of labelled neurones were located in the PVN
(Smith et al., 1998). Injection of glutamate in the PVN leads to an
increase in BAT temperature in rats and on the other hand, lesioning
of the PVN reduced febrile-evoked increases in body temperature,
suggesting a role for the PVN in driving sympathetic outflow to
BAT, at least in the context of fever (Amir, 1990; Horn et al., 1994;
Caldeira et al., 1998; Lu et al., 2001; Leite et al., 2012). Furthermore,
more generally, Cabral et al. (2012) showed that TRH (a
neuropeptide necessary for cold-induced thermogenesis)
-neurones in the rat PVN are activated when animals are
exposed to short-term cold conditions (Cabral et al., 2012).

Electrophysiological studies have been pivotal to not only
characterising the biophysical profile of PVN neurones, but also
understanding how the PVN plays a role in the regulation of
homeostatic functions. The PVN is typically divided into the
parvocellular and magnocellular regions, both with many
subdivisions (Paxinos and Watson, 1986; Koutcherov et al., 2000)
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but in its most simplistic representation, the PVN is divided loosely into
the parvocellular area, posterior magnocellular lateral area and the
intermediocellular region (dorsal and caudal PVN) where pre-
autonomic neurones are most abundant (Kiss et al., 1991; Chen et al.,
2014). To date, three distinct electrophysiological phenotypes have been
described in PVN neurones (reviewed in Feetham et al. (2018));
magnocellular (type I) PVN neurones have phasic bursting patterns
and express a rapidly inactivated, or “A-type,” potassium conductance
(Tasker andDudek, 1991; Sonner and Stern, 2007). Parvocellular (type II)
PVN neurones express a slowly inactivating delayed rectifier potassium
conductance and it is suggested that the differences between types I and II
cells may be explained by differential expression of voltage-gated
potassium and calcium channels (Luther et al., 2002). Furthermore, in
the parvocellular area, there appears to be two different neuronal
phenotypes; 1) exhibiting electrophysiological properties similar to
neuroendocrine magnocellular cells (Tasker and Dudek, 1993; Stern,
2001) and 2) pre-autonomic/spinally projecting neurones which show a
slowly inactivating potassium conductance (Tasker and Dudek, 1993;
Barrett-Jolley et al., 2000). In regards to thermosensitivity, Inenaga et al.
(1987) was the first study to confirm the inherent thermosensitivity of
PVN neurones and characterised separate intrinsically “cold-sensitive”
and “warm-sensitive” neurones (Inenaga et al., 1987). To our knowledge,
this is the only electrophysiological study investigating the temperature
sensitivity of PVN neurones, and to date, there has been no molecular
characterisation.

The cellular pathways involved in thermo-sensation are well
conserved and consist of a set of specialised temperature-gated ion
channels that are highly sensitive to a wide temperature range. The
thermo-transient receptor potentials (TRPs), a recently discovered
family of ion channels activated by temperature, are expressed in
primary sensory nerve terminals where they provide information
about thermal changes in the environment. There are 4 heat thermo-
sensitive TRP ion channels; Trpv1 (activated with
temperature >43°C) (Everaerts et al., 2011), Trpv2 (activated with
temperature >52°C) (Liu and Qin, 2016), Trpv3 (activated with
temperature >32°C) (Peier et al., 2002), TRPM2 (activated with
temperature >35°C) (Lamas et al., 2019) and Trpv4 (activated with
temperature >27°C) (Güler et al., 2002). In addition, there are
2 identified cold thermo-sensitive TRP ion channels; Trpm8
(activated with temperature <28°C) (McKemy et al., 2002) and
Trpa1 (activated with temperature <17°C) (Laursen et al., 2014).
PVN ion channels, including those that are thermo-sensitive have
recently been summarised in (Feetham et al., 2018).

We have previously shown that Trpv4 is expressed on PVN
neurones of CD1mice (Feetham et al., 2015a; Feetham et al., 2015b).
Originally, these channels were considered sensors of cell volume
(Liedtke et al., 2000) and in the PVN, we have shown that
Trpv4 channels functionally couple to a subtype of Ca2+-activated
K+ channel (SK channel) to sense changes in osmolality, probably
mediated by subtle changes in cellular volume (Feetham et al.,
2015b). We also found that ICV injection of hypotonic artificial
cerebrospinal fluid (ACSF) into CD1 mice decreased mean blood
pressure, but not heart rate and this effect was abolished by
treatment with the Trpv4 inhibitor RN1734 (Feetham et al.,
2015a). In another recent study, we found that systemic
administration of the highly selective lipid-soluble
Trpv4 antagonist GSK2193874 resulted in tail blood-flow
dynamics that were in-compatible with a local (vascular smooth

muscle or endothelial cell) mechanism (O’Brien et al., 2022). In light
of the data reported here, we hypothesised that PVN Trpv4 ion
channels also play a role in thermoregulation.

Many studies have shown that Trpv4 can be activated by heat >27°C
(Güler et al., 2002; Watanabe et al., 2002; Clapham, 2003) as well as
mechanical stimuli. Trpv4 immunoreactivity is present in a number of
brain regions known for producing thermoeffector responses including
the POA (Güler et al., 2002), the PVN (Feetham et al., 2018; Shenton and
Pyner, 2018), but also in the vasculature where its activation produces
vasodilation (Filosa et al., 2013).

Therefore, the aim of this study was to characterise the
thermosensitivity of a subpopulation of PVN neurones; we have
already shown that Trpv4 channels are present in the PVN but here,
we used RT-PCR to identify additional thermosensitive targets. We
pharmacologically identified Trpv4-like channels from PVN neurones
and characterised their intrinsic thermosensitive properties at the single-
channel level. We built on our previous mathematical model to predict
that neuronal activity should increase as temperature is decreased; we
validate this model with recordings from PVN neurones. We show that
the temperature-sensing capabilities of PVN neurones is complex, and is
likely to involve multiple ion channels, including Trpv4, and another
known thermosensitive ion channel, Trpm2.

Methods

Animals

CD1 mice were housed at 22°C–24°C in a 12 h light/dark cycle-
controlled facility with ad libitum access to food and water. Animals
were sacrificed by UK Home Office approved “Schedule 1”methods
(see details below) for all in-vitro work and all experiments were
approved by the Home Office, UK. We present data from a total of
31 mice. For ethical reasons we used male mice so that the females
could be reserved for breeding programs to reduce over-all animal
usage within the facility.

Quantitative PCR

Young adult (6–8 months) and old (24 months) mice were killed
by Schedule 1 methods (cervical dislocation followed by
exsanguination) and the hypothalamic area was blocked and
transversely sliced (600 μM thickness). The PVN was identified
using the third ventricle and fornix as markers and was punched
out using a 1.5 mm biopsy punch. PVN punch biopsies were
suspended RNA-free water and homogenised by passing the
lysate through 20-gauge needle multiple times. To obtain the
required volume of mRNA, samples were pooled, with between
2-3 PVN punch biopsies pooled together. RNA extraction was
carried out using the RNeasy Plus Micro kit, together with
gDNA eliminator and MinElute spin columns (Qiagen, UK) and
analysed for concentration, purity and quality using the
NanoDrop™ 2000 (Thermo Scientific, UK). cDNA synthesis
(mRNA) was performed using the RT2 First Strand kit (Qiagen,
NL) according to the manufacturer’s protocol. Using the Neuronal
ion channel plate (Qiagen, UK), 84 ion channels as well as
housekeepers were measured in each sample. qPCR analysis was
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performed using the Stratagene MX3000P RT-PCR System
(Stratagene, La Jolla, CA) in a 25-μL reaction mixture.
Expression relative to mean of 3 housekeeper genes (Actb, Ldha,
Rplp1) cycle thresholds (Ct) for that sample is presented as the ΔCt.

Brain slice preparation

CD1 mice aged 2–3 weeks were killed by Schedule 1 methods
(cervical dislocation and exsanguination) and the brain was swiftly
removed and placed in ice-cold low Na+/high-sucrose artificial
cerebrospinal fluid (ACSF) and sliced as previously described
(Feetham et al., 2015b). In brief, coronal PVN slices were
prepared using a Leica VT1000S and stored in a multiwell dish
containing physiological ACSF. Slices were kept at 35°C–37°C with
continuous perfusion of 95% O2/5% CO2 and left to recover for at
least 1 h before recording.

Electrophysiology

Thick-walled patch-pipettes were fabricated using fire-polished
1.5 mm o. d. borosilicate glass capillary tubes (Sutter Instrument,
Novato CA, United States ) using a two-step electrode puller
(Narishige, Japan), final resistance when filled 5–8MΩ. Neurones
were visualised using a Hitachi KP-M3E/K CCD camera attached to
a Nikon Eclipse microscope with an effective magnification of ~1,000x.
Cell-attached patch clamp electrophysiologywas performed as previously
described using an Axopatch 200b amplifier (Molecular Devices Axon
Instruments, United States ) (Feetham et al., 2015b). Theory and
justification of action current measurement is given by Fenwick et al.
(1982). For spontaneous action current recordings, analogue data were
further amplified with a Tektronix FM122 (Beaverton, OR, United States
) AC-coupled amplifier. The temperature of the recording bath was
maintained using the npi electronic TC-10 (Scientifica, UK). In all cases,
data were low-pass filtered at 1 kHz and digitised at 5 kHz with a Digi
Data 1200B interface. Recording solutions are described below and
junction potentials were calculated using JpCalc (Barry and Lynch,
1991). Slices were allowed to equilibrate for 15 min in the recording
chamber prior to recording. Temperature was controlled using a
commercial feedback temperature control unit (Thermoclamp,
AutoMate Science, Berkeley, California, United States), with
thermocouple placed within the recording chamber alongside the
PVN slice. Temperature was changed in 5°C increments.

Analysis of electrophysiological recordings

Single channel recordings were digitally filtered at 1 kHz inWinEDR
(University of Strathclyde, UK). Open and closed levels were assessed by
all-points amplitude histograms and were used to create current-voltage
IV) curves. Single channel events were idealized using the segmental K
means (SKM)methods (Qin, 2004) using QuB software (SUNY, Buffalo,
NY) and open probability (Po) was determined from the idealised record
as previously described (Lewis et al., 2013). For dwell time analysis, dead-
timewas set to three sample intervals (0.3 ms) and recordings where only
a single channel was gating were used. Open and closed dwell times were
log binned according to the methods of (Sigworth and Sine, 1987) and

fitted with an exponential log probability density function (pdf) in
Clampfit 10.3 (Molecular Devices, Sunnydale California). The number
of time constants for each distribution was determined using a log-
likelihood ratio test in Clampfit 10.3 at a confidence level of p = 0.95.

Individual sets of model kinetic rates were obtained by fitting the
idealised data using theMIL algorithm implemented in QuB.Missed
events during maximum interval likelihood (MIL) rate optimisation
were automatically accounted for in QuB by computation of a
corrected Q matrix in the MIL algorithm.

Analysis of action current frequency was performed using WinEDR
for acquisition of data and then a custom program designed to detect
action currents based on an adaptive threshold routine.

Solutions

Cell-attached patch recordings were made using the following
solutions: ACSF composition (mM): 127 NaCl, 1.8 KCl,
1.2 KH2PO4, 2.4 CaCl2, 1.3 MgSO4, 26 NaHCO3 and 5 glucose.
Pipette solution for action current and single channel recordings
composition (mM): 35 KG; 5 KCl; 100 NaCl and 10 HEPES (pH 7.4)
with NaOH. All experiments were performed in the daytime (11:
00–17:00 h) to limit the effects of circadian rhythm on activity of the
cells used (Belle et al., 2009).

Design of the computer model

Mathematical models were constructed in Python using
open-source NEURON libraries (Hines and Carnevale, 1997;
Hines et al., 2009). Our model was based on that of Feetham
et al. (2015b) (Feetham et al., 2015b); in brief, inputs arise from
both excitatory ‘Netstim’ neurones and inhibitory interneurones,
see Figure 5A. The interneurones are also driven by excitatory
‘Netstim’ neurones. Since computer power has increased
significantly, the model has been updated in several ways: a)
The new model uses stochastic channels rather than “density”
(deterministic equations), since the noise added by stochastic
simulation allows for more authentic simulation (Cannon et al.,
2010). To obtain single channel rate constants for Kv channels we
fitted our whole-cell Kv data using a Monte Carlo bootstrap
approach within Python. Netstim activities are also now scattered
stochastically around the fixed means previously used by Feetham
et al. (2015b) (Feetham et al., 2015b). b) We replaced osmotic
sensitivity of Trpv4 with a temperature-sensitive channels, using
our experimentally measured rate constants, stochastic model
and conductance, see (Figure 3A). Temperature dependence was
included by applying Q10 to each of the forward rate constants.
We also added stochastic SK channels from the model of
Moczydlowski and Latorre (Moczydlowski and Latorre, 1983)
and a hypothetical TRPM2-like channel using arbitrary base rate-
constants, but Q10 (15.6) measured by Togashi et al. (2006). Ion
channel permeabilities were from Alexander et al. (2015). c) We
replaced the former bulk Ca2+ accumulation mechanism
(Feetham et al., 2015b) with a new reaction diffusion (RXD)
model (McDougal et al., 2013) including central Ca2+ ion
buffering. All code will be made freely available on GitHub,
and if possible, ModelDB.
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Data analysis

All data on graphs are shown as mean ± SEM. Simple
comparisons were made using a two-tailed Student’s paired t-test.
Unless otherwise stated, multiple comparisons were made using a
repeated measures ANOVA with multiple comparisons by Tukey’s
post hoc test or against control levels using Dunnett’s post hoc test
where appropriate. A value of p < 0.05 was taken as significant.

Materials

GSK2193874 (80 nM, included in the patch pipette), gadolinium
(100 μM) and Econozole (10 μM) were applied to the perfusion
solution where stated. All drugs were purchased from Sigma-Aldrich
and were all dissolved in DMSO and diluted to a final working
concentration of no more than 0.01% DMSO (0.01% DMSO had no
effect alone).

Results

Gene expression levels of thermosensitive
TRP channels in punches of mouse PVN

We measured mRNA (by quantitative qPCR) of the warm
activated Tprv1 (ΔCt 11.50 ± 2.97, n = 3), Tprv2 (ΔCt 5.29 ±
0.32, n = 3), Tprv3 (ΔCt 9.39 ± 0.35, n = 3), Tprv4 (ΔCt 4.46 ± 0.22,
n = 3) and Trpm2 (ΔCt 4.04 ± 0.36, n = 3) channels and mRNA
levels of the cold activated Trpm8 (ΔCt 8.78 ± 1.50, n = 3) and Trpa1

(ΔCt 8.48 ± 2.34, n = 3) channels (Klein et al., 2015; Nazıroğlu and
Braidy, 2017). Note lower ΔCt means higher mRNA abundance.
Therefore, in young mice (the age used in the rest of this work)
Trpv4 and Trpm2 were the most abundantly expressed of these
thermosensitive TRP channels (Figure 1), with Trpv2 also being
highly expressed across age groups. Full datasets for a set of 84 ion
channel genes including these, in both young adult and old mice are
included in the Supporting Material.

Identification of Trpv4 channels on PVN
neurones

To identify and characterise the single-channel gating of PVN
Trpv4 channels, we used cell attached electrophysiology on PVN
neurones. In control conditions, a Trpv4-like channel was identified
in 62% of useable recordings with a conductance of 59.7 ± 1 pS and
Vrev of −18.89 mV (95% CI: −26 to −10 mV, at 22°C) (Figure 2Ai, n =
10). This channel was absent when cells were patched in the presence of
the specific Trpv4 antagonist GSK2193874 (80 nM, Figure 2Bii)).

PVN Trpv4-like channels are sensitive to
temperature

Decreasing temperature dramatically reduced the open
probability (Po) of this Trpv4-like channel (*p < 0.05, ***p <
0.001, Figure 2A and B, n = 9). As shown in Figure 3A, at 37°C,
Trpv4-like channels were predominately open with only brief
closing events and at lower temperatures, there was an apparent

FIGURE 1
Thermosensitive TRP channel gene expression in PVN punches from young mice. Matlab heatmap standardized (by column) difference ((delta)) in
cycle threshold (ΔCt) levels for seven known TRP channel mRNA in punches of the PVN (from 6 animals, 3 young adult and 3 old adults). Red genes are
relatively highly expressed and the green are low expression. Mean ΔCt was lowest (highest mRNA abundance) for Trpv4 (see values in the text). A full
dataset of 84 ion channel mRNA ΔCt levels measured in younger (6–8months) and older (26months) mice are given together with heatmaps in the
Supporting Material.
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reduction in open durations. We found that the decrease in mean Po
was mediated by profound decrease in the mean open time (***p <
0.001, Fig. 3D, n = 9) with no change in mean closed time. We also
observed a small but significant decrease in Trpv4-like channel
conductance when temperature was decreased (Figure 3B, n = 9,
blue line).

To investigate changes in gating further, we performed detailed
analysis of the open and closed dwell-time distributions. Data were
fit with 3 open and closed states. A representative example is shown
in Figure 4. Lower temperatures markedly reduced 2 out of 3 open
taus (tauO2 and tauO3), with no significant change in any of the
closed taus (Table 1). Thus, the mechanism for the temperature
evoked decrease in Trpv4-like Po observed when cooled is a decrease
in mean open dwell times.

In silico analysis of Trpv4 inhibition and
prediction of PVN action current frequency

Characterisation of precise single ion channel gating
facilitates the computation of neuronal action potential firing
properties, which may correlate to how sympathetic output may

be controlled. Our working hypothesis of PVN neurones is that
as temperature decreases, decreasing activity of calcium
permeable TRP channels leads to a decrease in the activity of
nearby Ca2+-activated potassium channels (KCa), respectively,
without causing biologically significant changes in global [Ca2+]
(Feetham et al., 2015b). We therefore hypothesized that the
reduction in Trpv4 activity observed at cooler temperatures
would result in an increase in the frequency of spontaneous
action currents (ACf) from PVN neurones (Figure 5B). To test
the plausibility of this hypothesis quanitatively, we constructed
a mathematical model of a PVN neurone cell based on our
previous model (Feetham et al., 2015b), as shown in Figure 5A.
Our stochastic model predicted that decreasing temperature
from 37°C to 22°C would increase the ACf from PVN neurones
(*p < 0.0001, n = 5, Figures 5C,D).

PVN neuronal action current frequency is
increased at low temperatures

To validate our mathematical model, we used cell-attached
patch-clamp electrophysiology on PVN neurones. Neurones were

FIGURE 2
Single channel properties of Trpv4-like channels from PVN neurones (A). Representative single-channel current fluctuations through Trpv4-like
channels from mouse PVN neurones. Holding potentials are indicated on the trace. The open and closed channel levels are indicated by O and C,
respectively. This trace is representative of 10 experiments where Trpv4-like channels were observed and these currents were absent in the presence of
the Trpv4 inhibitor GSK2193874. (B). The amplitude histogram is shown for ion channels shown A, at Vm −70 mV. (C). Current-voltage relationship
for Trpv4-like channels. Mean ± SEM is shown (n = 9).
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patched in the PVN using cell attached-patch methods and ACf
recording; we selected neurones on the basis that they were firing
action currents at rest. We found that ACf was significantly higher at
lower temperatures (***p < 0.001, Figure 6, n = 7). The maximum
effect was observed at room temperature (22°C) where there was a
10-fold increase in ACf (***p < 0.001, Figure 6F, n = 7). It is worth
nothing that 27°C (the temperature threshold for Trpv4 activation),
is where we observed the largest increase in ACf compared to control
(**p < 0.01, Figure 6C, n = 6).

Temperature sensitivity of PVN neurones

At lower recording temperatures, we observed an increase in
ACf which is likely mediated by a decrease in KCa activity. In this
temperature range, a decrease in activity of any of our identified
warm-activated Ca2+-permeable TRP channels (Trpv4, Trpv3 and
Trpm2) could account for this phenomenon (see Figure 1B). We
therefore repeated our temperature protocol in the presence of
gadolinium (100 µM) which inhibits both Trpv4 (Liedtke et al.,
2000) and Trpv3 (Tousova et al., 2005) and found that while the
temperature response persisted from 37°C to 27°C (**p < 0.01,
Figure 7C, n = 6) it did not increase further as the temperature
was lowered to 22°C.

We also recorded ACf at different temperatures in the presence
of econazole (10 µM) which is known to block the thermosensitive
Trpm2 channel (Hill et al., 2004). We found that ACf no longer
changed with recording temperature, indicating that the
temperature response was inhibited, (Figure 7B, n = 5). However,
at the higher temperatures of 37°C and 32°C, ACf was markedly
higher to that recorded in control conditions (no drug) (**p < 0.01,
Figure 7C, n = 5).

Discussion

In this study, we identify thermosensitive TRP channels in the
PVN using RT-PCR, of which, Trpv4 is one of the most abundantly
expressed. We characterised the single-channel properties of
pharmacologically identified Trpv4-like channels on PVN
neurones. We report that these channels are thermosensitive,
with decreased activity at lower temperatures, and although our
mathematical model predicts that our single channel results could
account for the increase in neuronal PVN activity we observed at
lower temperatures, we find that the temperature sensitivity of PVN
neurones is complex and is likely mediated by the cooperated
orchestration of multiple thermosensitive channels, including
Trpv4 and Trpm2. Our experiments detected the mRNA of

FIGURE 3
The gating of PVN Trpv4-like channels is temperature sensitive. (A) Representative single-channel current fluctuations through Trpv4-like channels
from mouse PVN neurones at 37°C, 32°C and 22°C. The open and closed channel levels are indicated by O and C, respectively. (B). Current-voltage
relationship for Trpv4-like channels at 37°C (red circles) and 22°C (blue circles). (C). The Po of Trpv4-like channels at 37°C, 32°C and 22°C is shown. (D).
Mean open and closed times for Trpv4-like channels. Mean ± SEM is shown (n = 7 at 22°C, n = 7 at 32°C and n = 9 at 37°C).
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7 TRP channel genes in total in mouse PVN punches. Whilst
Trpv4 and Trpm2 were highly expressed with ΔCt of
approximately 4, others were present at lower expression;
Trpm2≥Trpv4 > Trpv2 >> Trpa1≥Trpm8 > Trpv3 >> Trpv1.
With ΔCt of over 11, there may be a question as to whether the
lowest of these, Trpv1, was genuinely expressed in mouse PVN.
Whilst it was reported to be present in rat PVN Trpv1, specifically in
autonomic spinally projecting neurones (Li et al., 2004), elsewhere it
was reported to be absent from adult mouse PVN using in situ
hybridisation (Cavanaugh et al., 2011). One possibility is that the
mouse punches may have clipped the neighboring DMH, and other
would be simply that transcription levels are low and variable.

Several TRP channels are temperature sensitive (Figure 8) and
our results here confirm that Trpv4-like channels are present on

PVN neurones; we have previously illustrated the expression profile
of Trpv4 within the PVN using immunohistochemistry (Feetham
et al., 2015b) and have shown that application of the selective
Trpv4 agonist GSK1016790A decreased the firing rate of PVN
neurones (Feetham et al., 2015b). At the whole animal level, we
have shown that ICV injection of the Trpv4 inhibitor
RN1734 prevents the effect of hypotonic ASCF on blood pressure
(Feetham et al., 2015a) and centrally located Trpv4 channels may be
responsible for the vasodilatory effect of systemic injection of a
Trpv4 agonist (O’Brien et al., 2022).

In this paper, we characterize the biophysical properties of
Trpv4-like channels from PVN neurones using patch-clamp
electrophysiology. A Trpv4-like channel was pharmacologically
identified with conductance and reversal potential similar to

FIGURE 4
Kinetics of Trpv4-like channels from PVN neurones. Kinetic analysis of Trpv4-like channel dwell-times from PVN neurones recorded in cell
attached-patch mode at 37°C (A), 32°C (B) and 22°C (C). Closed (left) and open (right) dwell-times were fitted with 3 exponentials (solid lines). Data are
transformed with log-binning (x-axis) and square root of frequency (y-axis) so that exponential time constants are visible as peaks (Sigworth and Sine,
1987). Mean values are given in Table 1 and a kinetic schema in Figure 5.
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TABLE 1 Time constants and percentage areas are shown as obtained from maximum likelihood fitting of pdfs to closed and open lifetime distributions of Trpv4-
like channels from PVN neurones at 22°C, 32°C, and 37°C. Data are presented as mean ± SEM for 7-9 experiments (*p < 0.05, **p < 0.01, ***p < 0.0001).

Closed state dwell times

22°C 32°C 37°C

tau (ms) Area (%) tau (ms) Area (%) tau (ms) Area (%)

0.58 ± 0.01 58 0.75 ± 0.02 65 1.24 ± 0.3 69

5.26 ± 0.02 30 5.87 ± 0.2 27 7.28 ± 2.3 24

71.22 ± 3.9 12 49.96 ± 6.9 7 82.19± 7

Open state dwell times

22°C 32°C 37°C

tau (ms) Area (%) tau (ms) Area (%) tau (ms) Area (%)

1.32 ± 0.68 40 1.88 ± 0.41 38 2.73 ± 0.32 28

3.99 ± 1.65 39 14.14 ± 2.3** 39 40.07 ± 8.22*** 49

41.51 ± 12.06 21 106.55 ± 19.36* 23 224.57 ± 48.17** 23

FIGURE 5
In silicomodel of PVN neurones. (A) The simple scheme adapted from (Feetham et al., 2015b) whereby influx of Ca2+ increases KCa channel activity
which hyperpolarizes the cell and increases the inward flux of Ca2+, by increasing the driving force for Ca2+ entry. (B). A computer model was adapted
from (Feetham et al., 2015b) in NEURON,which includes thermosensitive TRP channels and allows an accumulation of Ca2+ into the cell, which is linked to
a KCa channel. Within the model, we can change temperature and simulate action currents, shown in (C). (D). Increase in action potential frequency
when temperature is decreased (n = 5 simulation runs, mean and SD of the 5 runs shown in (D).
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those reported for recombinant Trpv4 channels (Watanabe et al.,
2002).

Our results are in agreement with several other studies reporting
Trpv4 expression in the PVN; Carreño et al. (2009) show Trpv4-
positive cells colocalised with vasopressin (AVP) in both the
magnocellular and parvocellular rat PVN (Carreno et al., 2009).
However, Shenton & Pyner (2018) reported that Trpv4-
immunopositive spinally projecting (pre-autonomic) neurone cell
bodies were rare in the rat PVN, with immunoreactivity
predominately within the magnocellular area (Shenton and
Pyner, 2018). This is rather in contrast to our mouse data, both
previously (Feetham et al., 2015b) and in this paper where we find
Trpv4-like channel activity in 62% (10/16) of our anatomically and
morphologically defined neurones in the parvocellular PVN area.
That said, there are major differences between the mouse and rat
PVN, for example, unlike the rat PVN, the mouse PVN is not well
differentiated and magnocellular and parvocellular neurones are
often indistinguishable (Biag et al., 2012). It would now be
fascinating to see co-staining of Trpv4 and retrogradely labelled
mouse PVN too since such data can identify spinally projecting (pre-
autonomic) neurones directly. In addition, there have been reported
mechanistic species differences too, for example, acute leptin
injection induced significant pSTAT3 (a marker of leptin-

responsive cells) expression in the rat PVN but not in the mouse.
They also reported that the rat PVN exhibited a denser
proopiomelanocortin (POMC) innervation compared to the
mouse (Campos et al., 2020). In addition, major differences in
neuronal populations in different areas of the brain have been
reported between species, for example, numerous CRF-ir
neurones in the medial preoptic area of rats were barely observed
in mice and numerous CRF-ir neurones in the dorsal nucleus of
vagus nerve (DMN) of mice that were not present in rats (Wang
et al., 2011). In addition, Trpv4 channels have been shown to
translocate; Baratchi et al. (2016) showed that in human
umbilical vein endothelial cells (HUVECs) and in human
embryonic kidney 293 cells (HEK293) transfected with Trpv4,
sheer stress triggered translocation of Trpv4 to the plasma
membrane within seconds of treatment (Baratchi et al., 2016).
Again, in a later publication, they demonstrated that in
HUVECs, upon application of shear stress, clusters of
Trpv4 channels dispersed into individual channels and
translocated from the basolateral to the basal membrane
(Baratchi et al., 2017). It is therefore plausible that any shear
stress or mechanical perturbation may cause additional
Trpv4 channels to be translocated to the plasma membrane and
be observed more easily at the single channel level.

FIGURE 6
Temperature decreases action current frequency of PVN neurones. (A).Representative spontaneous firing of action currents fromPVNneurones are
shown at physiological temperature (37°C) and at lower temperatures of 32°C (B), 27°C (C) and 22°C (D). (E). Representative frequency histogram showing
action current response of a PVN neurone to decreasing temperature. (F). The mean temperature responses are shown for PVN neurones. Data is
presented as mean ± SEM (n = 6, ***p < 0.001, Friedman Test).
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We find that the gating of Trpv4-like channels is profoundly
affected by temperature; Po decreased when the temperature was
lowered, mediated by a decrease in mean open durations. Trpv4-like
channels on PVN neurones were almost maximally activated at
normal physiological body temperature, which has been reported
elsewhere for TRPV4 channels expressed in HEK293 cells
(Watanabe et al., 2002) and for Trpv4 in isolated hippocampal
pyramidal neurones (Shibasaki et al., 2007). The general consensus
is that at physiological temperatures, Trpv4 channels may serve as
constitutively open Ca2+ entry channels that are sensitive to small
deviations in temperature (Watanabe et al., 2002) and control
neuronal excitability in vitro and in vivo (Shibasaki et al., 2007;
Shibasaki et al., 2015).

Although the molecular dynamics behind heat activation of
Trpv4-like channels in the PVN is not known, Watanabe et al.

(2002) illustrated that whilst 4αPDD can activate Trpv4 channels in
both the cell-attached and cell-free patch clamp configurations, heat
application could only activate channels in the cell-attached mode,
suggesting that there might be an intrinsic heat sensitive ligand or
messenger that can active Trpv4 channels from the inside rather
than heat activating the channel directly (Watanabe et al., 2002). We
do not know the mechanism behind the heat activation of
Trpv4 channels on PVN neurones as we only patched in the cell-
attached mode but we could hypothesise that there may be a similar
mechanism here. Furthermore, given the limitations of our own
study here, it is possible that rather than including a specific
temperature sensible domain, the channel could be responding to
changes in temperature via changes in membrane fluidity that
increases with temperature, as proposed for other ion channels
many years ago (Romey et al., 1980).

FIGURE 7
Pharmacological inhibition of various TRP channels on temperature sensitivity of PVN neurones. Representative spontaneous firing of action
currents from PVN neurones are shown at physiological temperature (37°C) and at lower temperatures of 32°C, 27°C and 22°C in the presence of bath
applied (A) gadolinium or (B) econazole. In (C), the mean temperature responses are shown for PVN neurones in the presence of the non-specific
inhibitor gadolinium, 100 µM (brown) or the Trpm2 blocker econazole, 10 µM (green). Data is presented as mean ± SEM (n = 6 for control, n = 4 for
gadolinium, n = 5 for econazole, *p < 0.05, **p < 0.01, Friedman Test).
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We have previously shown that pharmacological activation of
Trpv4 decreases spontaneous ACf of PVN neurones, mediated by
the Ca2+-induced (Romey et al., 1980) activation of KCa channels
(Feetham et al., 2015b). Activation of KCa channels induces
hyperpolarisation, which in turn, draws greater Ca2+ into the cell
by increasing the driving force for Ca2+ entry, setting up a positive
feedback loop (Guéguinou et al., 2014; Feetham et al., 2015b). In our
paper and in others, our mathematical model showed that even in
the absence of large global changes in Ca2+, Trpv4 could permit entry
of sufficient Ca2+ to activate local SK channels, due to a
combinational of local Ca2+ signaling domains that limit the
diffusion of Ca2+ ions after they have entered the cell and the
close proximity that often exists between the Ca2+ permeable
channel (Trpv4 channel) and the Ca2+ signaling system (KCa

channel) (Neher, 1998; Augustine et al., 2003; Fakler and
Adelman, 2008).

We have made fundamental changes to our mathematical
model. Firstly, we added probabilistic or stochastic gating of ion
channels (gating between open and closed states) which attributes to
‘channel noise’ in neuronal activity (White et al., 2000; Goldwyn and
Shea-Brown, 2011). It has been demonstrated that the Hodgkin-
Huxley derived neuronal models with discrete Markovian ion
channel kinetics instead of the usual rate equations can lead to
spontaneous generation of action potentials (Lecar and Nossal,
1971; Skaugen and Walløe, 1979; Strassberg and DeFelice, 1993;
Hänggi, 2002). In addition, including stochastic behaviour of ion
channel gating imparts neuronal noise (Cannon et al., 2010) that has
been shown to effect the variability of spike timing (Schneidman
et al., 1998), firing coherence (Sun et al., 2011) and the regularity of
spontaneous spike activity (Ozer et al., 2009). We therefore
employed stochastic channels where possible, using the
established architecture in NEURON (Hines and Carnevale,
1997). Also, in the previous model we used intracellular Ca2+

buffering that was available in NEURON (Hines and Carnevale,
1997) but here, we updated to the newer reaction diffusion (RXD)
meshwork within pyNeuron (McDougal et al., 2013; Newton et al.,
2018). This allowed us to model very local changes of Ca2+ ions in

the direct region of the TRP channel-Ca2+-activated potassium
channel microdomain. This microdomain approach is critical for
understanding functional couplings. Clearly Ca2+ concentration
does not need to increase across the entire body of the cell, and
indeed this is an observation that has been verified in other cell types
(Fakler and Adelman, 2008).

Our mathematic simulations predicted that the reduction in
Trpv4 Po observed at lower temperatures would decrease ACf if the
same Trpv4/SK mechanism was at play. In our electrophysiology
experiments on neurones in the parvocellular PVN area, we
observed a higher ACf at lower temperatures (Figure 6). At 37°C,
these neurones have little spontaneous activity Figure 6C), which
was 1.8-fold higher even when temperature was only 5°C cooler. Our
previous work (Feetham et al., 2015b) was performed at room
temperature and therefore in this study, we included bath
temperatures as low as 22°C for comparative reasons.

In the presence of gadolinium, which blocked warm activated
Ca2+-permeable Trpv4 (Liedtke et al., 2000), Trpv3 (Tousova et al.,
2005) and Trpm2 (Kraft et al., 2004) channels, we found the overall
temperature response was largely still present; we observed higher
ACf at lower temperatures, however, the effect plateaued after 27°C
in that we did not see higher ACf at 22°C. We hypothesize that
gadolinium is targeting Trpv4 in these experiments; at temperatures
of 22°C, 27°C and 32°C, in the presence of gadolinium we see an
increase in ACf compared to control, which fits our Trpv4/SK
functional coupling model of PVN neurones where a reduction
in Trpv4 Po would lead to an increase in ACf. Surprisingly, at 37°C,
where we know Trpv4 Po would be very high, we did not see any
increase in ACf when Trpv4 was inhibited, indicating that another
ion channel may be involved.

The remaining target, Trpm2, has been identified as a heat
sensor in the POA (Song et al., 2016), is gadolinium insensitive
(Harteneck, 2005) and is activated by temperatures >35°C
(Togashi et al., 2006). We therefore repeated our temperature
procedure in the presence of 10 μM econazole which is known to
inhibit Trpm2 currents (Hill et al., 2004) and found that the
temperature effect on ACf at all temperatures was blocked,

FIGURE 8
Thermosensitive TRP channel genes. Established distribution of transient receptor potential (TRP) channels in PVN tissue as a function of their
temperature threshold. TRP channels may be activated by increases in temperature (orange) or by lowering the temperature (blue) (Klein et al., 2015).
Image modified under BY4.0 Creative Commons Licence from (Lamas et al., 2019).
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indicating a role for Trpm2 in thermosensing in the PVN. In the
presence of econazole, compared to control recordings (no drug),
we found that ACf was increased at all temperatures apart from
room temperature (22°C) and the effect was most pronounced at
37°C which is just above is the temperature activation threshold
of Trpm2.

Interestingly, Song et al. (2016) suggested that Trpm2 in
preoptic hypothalamic neurones modulates fever responses via
the PVN (Song et al., 2016). They found that inhibition of
Trpm2+ POA neurones resulted in a significant increase in
Tc. This may fit in with our results; we did not patch isolated
PVN neurones, but PVN neurones in their somewhat native
neuronal environment and thus, any interference from
neighboring hypothalamic nuclei such as the POA may be
preserved in our brain slice experiments. We show that at
37°C, inhibition of Trpm2 results in a 10-fold increase in
ACf, which we hypothesize would lead to an increased
sympathetic output and vasoconstriction, which may result in
an increase in Tc. In our single channel electrophysiology
experiments, we did not observe a Trpm2-like channel, so we
cannot comment on the presence of Trpm2 on PVN neurones or
add to the kinetic profile of Trpm2.

We propose that both Trpv4 and Trpm2 are necessary in
combination to account for our electrophysiological results; at
physiological temperatures we know Trpv4 activity will be high
(Figure 3A) and we assume that Trpm2 will be active as we are
over the temperature activation threshold. This hypothesis is
somewhat dependent on the assumption that Trpv4 properties
are similar in our slice preparation to that of recombinant
channels in expression systems. Since (as discussed above)
some properties of Trpv4 are dependent upon intracellular co-
factors, this is not necessarily the case (Watanabe et al., 2002).
However, we used exclusively cell-attached patch recording
which has the advantage over whole-cell or cell-free patch
clamp that the native intracelllular mileu does remain intact.
We found inhibiting Trpv4 (with gadolinium) had no effect on
ACf, presumably because Trpm2 is still active and conducting
enough Ca2+ to maintain SK channel activity. This may be
surprising considering Trpv4 has a permeability ratio Ca2+ to
Na+ (PCa/Pna) of 6 (Clapham et al., 2003), whereas Trpm2 PCa/
PNa is approximately only 0.7 (Sano et al., 2001; Kraft et al.,
2004) but we know from our mathematical model that only a
small about of Ca2+ entry is required to activate nearby KCa

channels. Further work is necessary to confirm the presence of
Trpm2 (as opposed to a closely related channel) in the PVN and
to determine the comparative expression profile of Trpv4 and
Trpv2. As we cool to room temperature, we presume Trpm2 will
be switched off first (sub 35°C) whereas Trpv4 will be
constitutively active even at room temperature, albeit with low
Po (Figure 3A). Inhibiting Trpm2 at room temperature has no
significant effect on ACf (presumably as Trpm2 is already
switched off), whereas inhibition of Trpv4 results in a
significant increase in ACf, suggesting that Trpv4 plays a role
in determining neuronal activity at 22°C. We find that blocking
Trpm2 with econozole appears to inhibit the temperature effect;
ACf is markedly increased (compared to control) at 37°C and

remains consistently high as the temperature is lowered. In
addition, in our mathematical model, both the presence of
Trpv4 and Trpm2 were necessary to account for our
physiological data, further suggesting that multiple TRP
channels orchestrate the observed response.

In conclusion, our data suggest that cooling temperature
challenge inhibits multiple TRP channels including Trpv4 and
Trpm2. Our mathematical model predicts that resulting decreases
in intracellular Ca2+ would inhibit local SK channels, depolarise
neurones and hence increase ACf and our experimental patch-
clamp data validates this. Together, these data give insight into
the important fundamental mechanisms by which the body decodes
temperature signals and maintains homeostasis in an area of the
brain adapted to control of the cardiovascular control system.
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