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1 Introduction

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a mitochondrial one-carbon
(1C) metabolism enzyme that is overexpressed in cancer cells and barely expressed in most
healthy adult tissues (Nilsson et al., 2014; Jha et al., 2023). The overexpression of
MTHFD2 could provide the basis for biosynthesis of pyrimidine and purine during
rapid proliferation of cancer cells which is widely needed for the growth of all tumors
(Kim et al., 2016; Zhao et al., 2021; Bonagas et al., 2022; Zhao et al., 2022). Inhibition of
MTHFD2 leads to imbalance of NADPH and redox homeostasis, which inhibits tumorigenic
proliferation and growth, and increases cancer cell death under hypoxia (Ju et al., 2019). The
knockdown of MTHFD2 leads to decreased expression of cell cycle genes suggesting
interference with cell cycle progression (Yu et al., 2020). Because of the low expression
of MTHFD2 in most adult tissues, targeting MTHFD2 is unlikely to produce significant side
effects and MTHFD2 could be as a novel target for cancer therapy (Nishimura et al., 2019;
Cuthbertson et al., 2021; Yang et al., 2021).

Recent research found that MTHFD2 was consistently overexpressed in many diseases,
including ulcerative colitis, Celiac’s disease, systemic lupus erythematosus (SLE), psoriatic
arthritis, Sjogren’s syndrome, multiple sclerosis (MS) and so on (Sugiura et al., 2022).
Inhibition of MTHFD2 promotes regulatory CD4 T cell (Treg) activity, which suppresses the
immune response. Does MTHFD2 play a new role from anticancer targets to inti-
inflammatory disease?

2 A new role on anti-inflammatory disease and
proposed mechanisms

In fact, what we are more interested in is that MTHFD2 deficiency can reduce disease
degree in various inflammatory condition models. T-cell dependent Delayed Type
Hypersensitivity (DTH) mouse models trials showed that MTHFD2 inhibitors did not
increase inflammatory symptoms in mice, and increase animal weight, suggesting that the
inhibitor has a protective effect on inflammation extending to B cell function (Sugiura et al.,
2022). MS is an inflammatory demyelinating disease originating in the central nervous
system. Compared to control group, Experimental Autoimmune Encephalomyelitis (EAE)
model using with MTHFD2 inhibitors (MTHFD2i) resulted in significantly lower disease
degree and cumulative clinical score. The infiltration of CD4st, CD4+ and CD8+ cells in the
spinal cord of mice was significantly reduced after MTHFD2i treatment (Sugiura et al.,
2022). In two other different inflammatory models-inflammatory bowel disease (IBD) and
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allergic airway disease, mice receptor of CD4ΔMthfd2 T cells continued
gaining body weight, the number and frequency of CD4ΔMthfd2 T cells
in spleen and mesenteric lymph nodes (MLNs) were significantly
reduced. Meanwhile, the neutrophil richness in the bronchioalveolar
lavage fluid (BALF) of CD4ΔMthfd2 mice affected by Alternaria-
induced allergic airway disease showed a decreasing tendency
(Sugiura et al., 2022). The sensitivity of T-cell to MTHFD2i
might provide an efficacious strategy of immunotherapy for
CD4+ T-cell-driven inflammation, and produce fewer adverse
reactions than presently usable therapeutics. It should be worth
studying whether T cell nucleus carries MTHFD2 and whether
MTHFD2 is a therapeutic target for inflammatory disease.

CD4+ T cells are the key mediators and adaptive immunity
which play a crucial role in host defense against pathogens (Candia
and Matarese, 2022). CD4+ T cell subpopulations need MTHFD2 to
varying degrees for activation, proliferation, survival, and cytokine
production (Sugiura et al., 2022). Sugiura et al. (2022) have found
that MTHFD2 in patients with inflammatory disease continues to
upregulate combined with cell CRISPR-based screening and genetic

test. The research showed that MTHFD2 may function as a
metabolic checking point for the Th17/Treg cell axis and
highlight its potential as a target for anti-inflammatory
immunotherapeutic treatment. Meanwhile, MTHFD2i raised the
basal and maximal oxygen consumption rate (OCR) of Th17 cells
and decreased the expression of interferon-gamma (IFN-g) and
interleukin (IL)-17 in Th1 and Th17 cells, which appears to alter the
counterbalance between the pathogenic and anti-inflammatory
state.

MTHFD2 has been shown to regulate de novo purine synthesis
and signal transduction in activated T cells, promoting proliferation
and the production of inflammatory cytokine (Ducker et al., 2016).
MTHFD2 has been reported to transport to the nucleus and is
presumed regulate gene expression (Gustafsson Sheppard et al.,
2015). The lack of MTHFD2 could lead to the accumulation of
intermediates in the purine synthesis pathway, which activates
AMP-activated protein kinase to inhibit the mechanistic target of
rapamycin (mTORC)1 (Su et al., 2019). The mTORC1 pathway
plays a crucial role in promoting synthetic metabolism, driving a

TABLE 1 Novel MTHFD2 inhibitors.

Name Target Structure Pathology

LY345899 Dual MTHFD1/
2 inhibitor

LY345899 treatment statistically significantly suppresses tumor growth
and decreases the tumor weight in CRC patient-derived xenograft models

TH7299 Dual MTHFD1/
2 inhibitor

(−)

TH9028 Dual MTHFD1/
2 inhibitor

TH9028 and TH9619 showed overall strong antiproliferative efficacy in
acute myeloid leukemia (AML) cells and T-ALL Jurkat cells comparable to
standard-of-care compounds, with reduced effect on lymphoblastoid cell
line (LCL) viability

TH9619 Dual MTHFD1/
2 inhibitor

DS44960156 MTHFD2 inhibitor DS44960156has > 18-fold selectivity for MTHFD2 over MTHFD1, with a
low molecular weight and a good ligand efficiency

DS18561882 MTHFD2 inhibitor DS18561882, combined with enzalutamide can signifcantly inhibit CRPC
cell proliferation in vitro and tumor growth in vivo. DS18561882 has also
been shown to reduce disease degree in variety of inflammatory disease
models in vivo

Frontiers in Pharmacology frontiersin.org02

Tang and Hou 10.3389/fphar.2023.1257107

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1257107


mass of the transcription factor ATF4 and inducing the expression
of MTHFD2 (Ben-Sahra et al., 2016). Inhibition of
mTORC1 signaling transduction might lead to changes in the
metabolic process from glycolysis to mitochondrial respiration,
and alter T cell receptor cycle metabolites (Shang et al., 2021).

3 Novel MTHFD2 inhibitors

One possible mechanism is that MTHFD2i damages T cell
expansion through inadequate nucleotide production. Scientists
have been working on the design and development of MTHFD2i
as anticancer drugs (Table 1). Tricyclic coumarins and xanthine
compounds are the only selective inhibitors of MTHFD2 reported to
date (Jha et al., 2023). Comprehensive searches of English databases,
including PubMed, Scopus, and Web of Science, and the time of
index was from inception to 30 April 2023 for each database. Full-
text searches were performed using “MTHFD2 inhibitors” in all
fields (Figure 1). The dual MTHFD1/2 inhibitor
LY345899 synthesized in 2017 has been demonstrated efficacy in
improving disease conditions in the EAE model (Gustafsson et al.,
2017; Ju et al., 2019). A simplification of the tricyclic core of
LY345899 shows that TH9028, TH9619 and TH7299 are actually
more active against MTHFD1 and MTHFD2L (Bonagas et al., 2022;
Scaletti et al., 2022; Green et al., 2023). A novel isozyme-selective
MTHFD2 inhibitor DS44960156 might provide further
optimization options due to its >18-fold selectivity for
MTHFD2 over MTHFD1, with a smaller molecular weight and
favorable ligand efficiency (Kawai et al., 2019a). Subsequently, the
same team developed an effective, selective, and oral MTHFD2i
(DS18561882) which has favorable oral pharmacokinetic
characteristics with the strongest cell activity and tumor growth
inhibition (Kawai et al., 2019b; Lee et al., 2021). Most importantly,
DS18561882 has been shown to reduce disease degree in variety of

inflammatory disease models in vivo (Sugiura et al., 2022), which
leads us to believe that MTHFD2 may be an anti-inflammatory and
autoimmune target in vivo in the future.

4 Conclusion

MTHFD2 is a mitochondrial one-carbon metabolism enzyme
highly expressed in several human tumors, and targeting
MTHFD2 has been used as the target of tumor therapy. Recent
research suggests that MTHFD2 inhibitors appear to reduce
inflammatory disease severity and alter the counterbalance between
the pathogenic and anti-inflammatory state, whichmay serve as an anti-
inflammatory and autoimmune target in vivo in the future. The research
of anti-inflammatory drugs is expected to be promoted and developed.
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FIGURE 1
Study flow diagram of literature search.
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