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Background: Alzheimer’s disease (AD) is a debilitating neurodegenerative condition
with few treatment options available. Drug repurposing studies have sought to identify
existing drugs that could be repositioned to treat AD; however, the effectiveness of
drug repurposing for AD remains unclear. This review systematically analyzes the
progress made in drug repurposing for AD throughout the last decade, summarizing
the suggested drug candidates and analyzing changes in the repurposing strategies
used over time. We also examine the different types of data that have been leveraged
to validate suggested drug repurposing candidates for AD, which to our knowledge
has not been previous investigated, although this informationmay be especially useful
in appraising the potential of suggested drug repurposing candidates. We ultimately
hope to gain insight into the suggested drugs representing the most promising
repurposing candidates for AD.

Methods: We queried the PubMed database for AD drug repurposing studies
published between 2012 and 2022. 124 articles were reviewed. We used RxNorm
to standardize drug names across the reviewed studies, map drugs to their
constituent ingredients, and identify prescribable drugs. We used the
Anatomical Therapeutic Chemical (ATC) Classification System to group drugs.

Results: 573 unique drugs were proposed for repurposing in AD over the last
10 years. These suggested repurposing candidates included drugs acting on the
nervous system (17%), antineoplastic and immunomodulating agents (16%), and
drugs acting on the cardiovascular system (12%). Clozapine, a second-generation
antipsychotic medication, was the most frequently suggested repurposing
candidate (N = 6). 61% (76/124) of the reviewed studies performed a validation,
yet only 4% (5/124) used real-world data for validation.

Conclusion: A large number of potential drug repurposing candidates for AD has
accumulated over the last decade. However, among these drugs, no single drug has
emerged as the top candidate, making it difficult to establish research priorities.
Validation of drug repurposing hypotheses is inconsistently performed, and real-
world data has been critically underutilized for validation. Given the urgent need for
new AD therapies, the utility of real-world data in accelerating identification of high-
priority candidates for AD repurposing warrants further investigation.
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia
among older adults, affecting an estimated 6.7 million individuals age
65 and older in the United States (US) in 2023, with a projected
prevalence of 13.8 million by 2060 (Alzheimer’s and Dementia, 2023).
Currently, only seven drugs are approved by the U.S. Food and Drug
Administration (FDA) for the treatment of AD: three cholinesterase
inhibitors (donepezil, rivastigmine, galantamine); a glutamate regulator
(memantine); a combination of a cholinesterase inhibitor and glutamate
regulator (donepezil/memantine); and two amyloid β-directed
monoclonal antibodies (aducanumab and lecanemab) (Medications
for Memory Loss, 2022). To date, limited progress has been made
in developing new treatments for AD. From 2003 to 2022, only one new
drug, aducanumab, was controversially approved for use in AD
(Mukhopadhyay and Banerjee, 2021). The most recently approved
drug, lecanemab, was granted accelerated FDA approval for AD
treatment in January 2023 despite controversy—although lecanemab
showed modest success in slowing cognitive decline, it also raised safety
concerns related to serious adverse events such as brain swelling and
hemorrhage (van Dyck et al., 2022). Lecanemab has since received full
FDA approval.

New AD drug development has faced many obstacles, including
high monetary and time costs and high failure rates in preclinical
and clinical trials (Cummings et al., 2014; Yiannopoulou et al.,
2019). The complex and incompletely understood pathogenesis of
AD, along with its heterogeneous clinical presentation and
numerous associated comorbidities, have made developing new
therapies for AD an incredibly challenging endeavor. In light of
these difficulties, researchers have begun to pursue additional
strategies to identify potential treatments for AD. Drug
repurposing, the process of exploring additional uses for existing
drugs, represents one of such supplemental strategies. Drug
repurposing offers several advantages compared to new drug
development, including reduced development time frames, lower
costs, and importantly, increased assurance of drug safety
(Pushpakom et al., 2019), making it an attractive approach for
investigating potential AD treatments.

Throughout the last decade, countless drugs have been suggested
for repurposing in AD using a wide range of approaches. This review
aims to understand the current status of drug repurposing for AD,
including the progress made in identifying drug candidates and how
the research has changed over time. We mined the scientific
literature for AD drug repurposing studies published between
2012 and 2022, and appraised the drug repurposing strategies
employed and the drug candidates proposed. Importantly, we
examined how studies validated the efficacy of proposed
candidates, particularly in terms of validation quality and
relevance of validation data to AD, which has not previously
received attention. We hope that this review can provide insight
into promising repurposing candidates for AD, as well as the data
used to suggest and support their therapeutic potential.

2 Materials and methods

To identify articles for review, we queried the PubMed database
using a full-text search (i.e., search not restricted to title/abstract)

with the keywords “Alzheimer’s” AND “drug repurposing”. We
limited the search to articles published within the last 10 years (May
2012-May 2022). This query returned 353 results (Supplementary
Table S1). Lifting the search time restriction yielded only seven
additional results; therefore, our analysis focused on the articles
published in the last decade.

2.1 Eligibility criteria

We manually screened the 353 articles and excluded review
articles (N = 72) and out-of-scope articles (N = 157). The literature
review workflow is summarized in Figure 1. Articles outside the
scope of the research question included studies investigating drug
repurposing opportunities for diseases other than AD, studies
focusing on designing new compounds or modifying existing
compounds (for example, synthesizing and evaluating
nitazoxanide-based derivatives for potential use in AD treatment
(Li et al., 2020) or preparing and assessing a novel ibuprofen
microemulsion (Wen et al., 2021)), studies suggesting possible
gene targets for AD therapies without mention of existing drugs
acting on those targets, and study protocols and other descriptions
of planned work. We applied a broad definition of AD in identifying
relevant studies, including not only those studies with the primary
aim of identifying drug repurposing candidates for AD, but also
studies with indirect relationships to AD. For instance, we included
studies developing general drug repurposing tools and making
predictions for AD (Wu et al., 2013; Croset et al., 2014; Issa
et al., 2016; Liu et al., 2016; Jiang et al., 2019; Yu and Gao, 2019;
Zeng et al., 2019; Cai et al., 2021; Chen et al., 2021; Tsuji et al., 2021;
Muslu et al., 2022), as well as studies suggesting drug repurposing
candidates with uses not limited to AD (for example, drugs with
potential for treating both AD and depression (Fukuchi, 2020)).

2.2 Data extraction

After removing non-qualified articles, we included
124 relevant articles for this review. For each of the
124 studies, we collected information on the repurposing
strategy, suggested drug repurposing candidates, and
validation plan. The type of repurposing strategy
(experimental, computational, or combination) was identified
based on the preliminary evidence used to suggest drug
candidates (e.g., in vitro screening and in vivo assays were
considered experimental drug repurposing approaches; virtual
screening, network models, machine learning models, gene
signatures, and data mining were considered computational
drug repurposing approaches). The seven drugs currently
approved for the treatment of AD (donepezil, rivastigmine,
memantine, galantamine, memantine/donepezil, aducanumab,
and lecanemab) were excluded from the analysis.

For each study, we documented positive and negative findings.
We considered positive findings to be drugs reported as potentially
effective in AD (with or without validation of these effects). We
interpreted negative findings as drugs found to increase AD risk or
drugs with no impact on AD risk, depending on the study authors’
interpretation provided in the discussion of the study findings. We
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did not independently attribute negative findings based on the study
validation (or lack thereof).

We also recorded the journal that each study was published in
and the publication year. We collected the most recent impact factor
of each journal from Journal Citation Reports (JCR); for journals
without an impact factor in JCR, we used the most recent Scopus 2-
year impact score, as JCR and Scopus impact factors have been
found to be similar (Gray and Hodkinson, 2008). One journal did
not have an impact factor available (Nature Aging).

The data extracted during literature review is available in
Supplementary Table S2.

2.3 Characterization of validation

We defined validation as confirmation of a previously identified
signal using an intentionally designed study with well-defined
outcome measures. We categorized the validation as in vitro, in
vivo, or other. In vivo validation included animal models,
randomized controlled trials, and real-world data (defined as
patient data collected outside of clinical trials—e.g., data from
electronic health records [EHRs] and health insurance claims
data (Park, 2021)). The “other” category of validation included
computational experiments such as molecular docking
simulations or queries of drug perturbation databases. We did
not consider use of existing literature support to fall within our
definition of validation, as this shows replication of results rather
than true validation. We also did not consider gene set enrichment
analysis and pathway analysis to serve as validation, requiring a
more direct link between the suggested drugs and AD to be

considered validation. For studies with validation, we assessed
whether the validation was specific to AD, defined as validation
studies using cellular or animal models of AD or evaluating clinical
outcomes of AD. Validation not specific to AD included animal or
cellular models unrelated to AD and molecular investigations of
proposed drugs.

2.4 Drug standardization and classification

We used RxNorm (Nelson et al., 2011), a standardized
nomenclature for clinical drugs maintained by the National
Library of Medicine, to normalize the names of the drug
repurposing candidates so that all drugs were referred to by their
generic names. As drug repurposing involves identifying novel
therapeutic applications for existing drugs, we used the
Prescribable RxNorm API (Prescribable RxNorm API, 2022) to
identify the currently prescribable drugs among the suggested drug
candidates. We first mapped drug names to RxNorm Concept
Unique Identifiers (RxCUIs). To account for differences in
reporting of drug names across studies (for example, two studies
suggesting different salt forms of the same drug), we mapped the
drug RxCUIs contained in the RxNorm Prescribable subset to their
ingredient RxCUIs. For example, we mapped the drug valproic acid
(RxCUI = 11118) to its ingredient valproate (RxCUI = 40254).
Similarly, we mapped the drug glatiramer acetate (RxCUI = 84375)
to its ingredient glatiramer (RxCUI = 214582). While some drugs
map to multiple ingredients in RxNorm, we only encountered drugs
that had a one-to-one mapping between the original drug RxCUI
and the ingredient RxCUI.

FIGURE 1
Flow diagram for literature review.
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We then used the Anatomical Therapeutic Chemical (ATC)
Classification System to group the drugs at five different levels
(Anatomical Therapeutic Chemical ATC, 2022). The Level 1
ATC codes group drugs into fourteen groups based on anatomical
system of action (e.g., C for cardiovascular system) and pharmacological
properties (e.g., L for antineoplastic and immunomodulating
agents); ATC Levels 2–5 further categorize drugs into therapeutic,
pharmacological, and chemical subgroups. We extracted ATC
codes for the ingredient RxCUIs using the RxNorm API. The
drug-ATC code mapping is a one-to-many relationship, as a
single drug with multiple therapeutic uses can map to multiple
ATC codes.

3 Results

The number of AD drug repurposing publications increased
dramatically over the last decade. No primary drug repurposing
studies were published in 2012 and only one study was published in
2013, compared with 44 studies published in 2021 (Figure 2).

3.1 Drug repurposing approaches

The drug repurposing strategies utilized by the reviewed studies
varied widely. Out of the 124 studies reviewed, 71 employed
computational (in silico) repurposing strategies, 48 involved
experimental repurposing approaches (in vitro and/or in vivo),
and five used a combined approach (Figure 2). There was a
marked increase in the number of studies using computational
drug repurposing strategies between 2012 and 2022, with

26 computational studies published in 2021, compared to sixteen
experimental studies and two combination studies.

Out of the 48 studies using experimental drug repurposing
approaches, 22 used in vitro methods and 20 used in vivo
methods, while the remaining six studies used a combination of
the two. Out of the computational drug repurposing studies,
network modeling was the most common approach (N =
21 studies). Other common computational approaches were
machine learning (N = 15), genetic signatures (N = 14),
structure-based analyses (N = 14), and non-NLP data mining
(N = 13). Mendelian randomization was the most infrequently
used computational approach (N = 4). Eight studies used a
combination of different computational approaches.

We found that most of the reviewed studies (98/124) focused
exclusively on drug repurposing for AD, with the exception of eleven
studies which developed general tools for drug repurposing and
fifteen studies which suggested drug repurposing candidates for
other diseases in addition to AD. The studies that used
computational repurposing approaches identified an average of
13 ± 18 drug candidates, compared to an average of 2 ± 2 drug
candidates for experimental studies and 9 ± 9 drug candidates for
combination studies.

3.1.1 Frequently suggested drugs
Eighteen of the reviewed studies proposed only preclinical drugs

and other non-prescribable drugs, which were excluded from our
analysis. Still, 106/124 (85%) of the reviewed studies proposed at
least one prescribable drug candidate, with a total of 573 unique
drugs suggested over the 10-year period. 65% (370/573) of these
drugs were only suggested by a single study (Figure 3). Notably, eight
studies suggested drug combinations rather than single drugs.

FIGURE 2
Breakdown of AD drug repurposing studies published between 2012 and 2022. The studies are colored by repurposing strategy (computational,
experimental, or combination). Studies with validation are shown with hatching. The total number of studies published each year is shown in bold text,
with the number of studies with validation provided in parentheses.
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The most frequently suggested AD repurposing candidate was
clozapine, a second-generation antipsychotic, which was proposed
by six unique literature studies. Nine drugs had five supporting
studies: the second-generation antipsychotic medications
aripiprazole and risperidone, the tyrosine kinase inhibitors
sunitinib and vandetanib, the histone deacetylase inhibitor
vorinostat (used to treat cutaneous T-cell lymphoma), the
antidiabetic drug pioglitazone, the selective estrogen receptor
modulator tamoxifen, the calcium channel blocker and
antihypertensive medication verapamil, and adenosine (used in

treating certain types of cardiac arrhythmia). These top ten
highly suggested drugs are described further in Table 1.

3.1.2 Drug classification
We mapped 531 of the 573 prescribable drugs to their ATC

codes (42 drugs did not have an ATC code). A single drug can map
to multiple ATC codes; we took all possible mappings into
consideration. As shown in Figure 4, the proposed AD
repurposing candidates fell within a variety of anatomical and
pharmacological classifications (based on Level 1 ATC code),

FIGURE 3
Number of unique studies supporting each drug repurposing candidate.

TABLE 1 Frequently suggested AD repurposing candidates. The number of supporting studies and Level 1 and Level 3 ATC classifications are indicated for each
drug.

Drug Number of supporting studies ATC classification (Level 1) ATC classification (Level 3)

Clozapine 6 Nervous system Antipsychotics

Adenosine 5 Cardiovascular system Other cardiac preparations

Aripiprazole 5 Nervous system Antipsychotics

Pioglitazone 5 Alimentary tract and metabolism Blood glucose lowering drugs, excluding insulins

Risperidone 5 Nervous system Antipsychotics

Sunitinib 5 Antineoplastic and immunomodulating agents Protein kinase inhibitors

Tamoxifen 5 Antineoplastic and immunomodulating agents Hormone antagonists and related agents

Vandetanib 5 Antineoplastic and immunomodulating agents Protein kinase inhibitors

Verapamil 5 Cardiovascular system Selective calcium channel blockers with direct cardiac effects

Vorinostat 5 Antineoplastic and immunomodulating agents Other antineoplastic agents
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FIGURE 4
Original therapeutic indications of drugs suggested for repurposing in AD. Drug therapeutic indications are represented using their Level 1 ATC
codes.

FIGURE 5
Further breakdown of unique prescribable drug candidates suggested for AD repurposing. (A) Proposed drugs acting on the nervous system (ATC
code N). (B) Antineoplastic and immunomodulating repurposing candidates (ATC code L). (C) Repurposing candidates acting on the cardiovascular
system (ATC code C). Drugs in classes accounting for less than 5% of the total drug count have been classified as “Other unspecified”.
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with drugs acting on the nervous system (ATC code N),
antineoplastic and immunomodulating drugs (ATC code L), and
drugs acting on the cardiovascular system (ATC code C)
cumulatively comprising nearly half of the suggested candidates
(17%, 16%, and 12%, respectively).

Within distinct anatomical and pharmacological categories,
there was still significant variability among the therapeutic
subgroups of the suggested repurposing candidates, although

some drug classes were more well-represented than others. For
instance, antipsychotic medications (19%), antidepressants (17%),
and antiepileptic agents (15%) represented around half of the
suggested drug candidates acting on the nervous system
(Figure 5A). Protein kinase inhibitors constituted 26% of the
antineoplastic and immunomodulating drugs suggested as AD
repurposing candidates, followed by other antineoplastic agents
(18%) and immunosuppressants (15%) (Figure 5B). ACE

FIGURE 6
Changes in the AD drug repurposing landscape over time. The outermost ring of the sunburst plot represents drugs suggested by studies published
between 2012 and 2016, with the size of each drug slice weighted by the number of unique supporting studies published during that time period. The
innermost ring cumulatively adds drugs suggested by studies published in the last 5 years (between 2017 and 2022), providing a comprehensive
breakdown of the AD repurposing candidates suggested between 2012–2022 and their literature support. Drug candidates are colored by their
Level 1 ATC classification as shown in the center pie chart; for the purposes of this figure, drugs with more than one possible ATC code weremapped to a
single code chosen at random. The drug slices corresponding to clozapine and demecarium are labeled. A high-resolution version of Figure 6 with all
drug slices labeled is available as Supplementary Figure S1.
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inhibitors (15%), lipid-modifying agents (15%), and angiotensin II
receptor blockers (10%) were among the most frequently suggested
drugs with actions on the cardiovascular system (Figure 5C).

3.1.3 Temporal changes in suggested drugs
The expansion in the number and variety of AD repurposing

candidates suggested between 2012 and 2022 is illustrated in
Figure 6. Between 2012 and 2016, 184 unique prescribable drugs
were proposed for repurposing in AD; between 2017 and 2022,
482 drugs were suggested. However, interestingly, only 93 drug
candidates overlapped between the two time periods. Clozapine, the
most frequently suggested AD repurposing candidate, is an example
of one of such drugs with temporal continuity. Clozapine was
initially proposed by a study published in 2016 (Issa et al., 2016),
with subsequent support in five studies published between 2017 and
2022 (Choi et al., 2017; Chen et al., 2021; Chrétien et al., 2021;
Gerring et al., 2021; Soleimani Zakeri et al., 2021). On the other
hand, demecarium, a cholinesterase inhibitor used for topical
treatment of glaucoma, is a representative example of a drug
without temporal continuity—demecarium was first suggested as

an AD repurposing candidate in 2014 (Croset et al., 2014), with
subsequent support in two studies (Jamal et al., 2015; Zhang et al.,
2016); however, after 2016, the drug was not mentioned again.

3.2 Validation strategies

61% (76/124) of the studies used additional data to validate the
potential efficacy of their proposed AD repurposing candidates.
Most of the experimental repurposing studies (45/48, or 94%)
performed a validation, whereas only 44% (31/71) of the
computational repurposing studies reported a validation.

The 76 studies with validation employed a wide range of
validation methods, categorized as in vitro, in vivo, and other
(Figure 7A). In vivo validation in the form of animal models was
the most popular validation method, used by 31 (25%) of the
reviewed studies. Figure 7B shows the validation distribution for
the six studies that suggested clozapine as a potential AD
repurposing candidate. Only two of these studies performed a
validation, one using in vitro data and one with in vivo data.

3.2.1 Alzheimer’s-specific validation
Only 39 studies (31% of the total studies, or 51% of the studies

with validation) performed validation using a system intended to
reflect the characteristics of AD (Figure 8). Out of these studies with
“AD-specific” validation, 25 used animal models of AD,
neurodegeneration, neurotoxicity, or cognitive decline; seven used
cell-based models; five used real-world data; and three were clinical
trials. Together, the studies with AD-specific validation suggested
31 unique prescribable drugs. Only four drugs had two supporting
studies with AD-specific validation: the antibiotic doxycycline, the
nonsteroidal anti-inflammatory drug etodolac, the
immunomodulatory drug fingolimod, and the antiemetic
granisetron.

FIGURE 7
(A) Sankey diagram showing the breakdown of the validations
performed across the studies. Validation is classified as in vitro, in vivo,
other, or none. In vivo validation is further subdivided into animal
models, clinical trials, and patient data. Three studies used two
different types of validation (counted separately in the figure). (B)
Breakdown of repurposing strategy and validation for the six studies
suggesting clozapine as a repurposing candidate for AD. Repurposing
strategy is classified as experimental or computational. Validation is
classified as in vitro, in vivo, or none.

FIGURE 8
Breakdown of validation data types (AD-specific and
nonspecific). 76 studies performed a validation; one study used two
different types of AD-specific validation (N = 77 for entire pie chart).
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3.2.2 Real-world data
Notably, only five studies (4%) utilized real-world data to

validate their drug repurposing signals, and all were reported in
the last 2 years (two published in 2021, three in 2022). Four of these
studies performed pharmacoepidemiologic investigations, three
leveraging the MarketScan Medicare Supplementary Material
(Fang et al., 2021; Xu et al., 2021; Fang et al., 2022) and the
fourth utilizing Medicare claims data (Desai et al., 2022). The fifth
study used one EHR database to identify medications enriched
among AD cases and controls, with validation in an independent
EHR (Tang et al., 2022). Still another study used patient data from
the Alzheimer’s Disease Neuroimaging Initiative ADNIMERGE
dataset to identify potential drug repurposing candidates via
association rule mining; however, the authors did not validate
their findings in another clinical dataset (Prakash et al., 2021).

The AD repurposing candidates suggested and validated by the
five studies using real-world data for validation included fluticasone
and mometasone (inhaled corticosteroids) (Xu et al., 2021),
dexamethasone (a systemic corticosteroid) (Tang et al., 2022),
pioglitazone (an antidiabetic drug) (Fang et al., 2022), febuxostat
(a uric acid-lowering drug used in treatment of gout) (Fang et al.,
2022), atenolol (a beta blocker) (Fang et al., 2022), and sildenafil (a
phosphodiesterase inhibitor used for treatment of erectile
dysfunction) (Fang et al., 2021). One of the studies failed to
validate their initial drug repurposing signal for disease-
modifying antirheumatic drugs (Desai et al., 2022).

3.3 Role of journal impact

Finally, we explored the relationship between journal impact
and signal quality to determine whether drug repurposing studies
published in journals with higher impact factors were more likely to
perform validation. Considering all journals with an impact factor
available, we computed the mean impact factor for studies with
validation compared to studies without validation. We found that
studies without validation (N = 48) were published in journals with
an average impact factor of 6.33 ± 3.61, while studies with validation
(N = 75) were published in journals with an average impact factor of
6.17 ± 3.61. Using the categorized validation, we found that the
studies with in vivo validation had an impact factor of 7.24 ± 4.27,
whereas studies with in vitro validation had an impact factor of
4.94 ± 2.04. Studies with AD-specific validation were published in
journals with only a slightly higher impact factor than studies
without AD-specific validation (average impact factor 6.99 ±
3.94 compared to 5.89 ± 3.40).

4 Discussion

Drug repurposing for AD is an area of research that has
experienced much growth throughout the last decade, with over
100 papers published since 2012. However, there remains minimal
consensus among the hundreds of drug repurposing candidates that
have been suggested for AD. Although drugs acting on the nervous
system, antineoplastic and immunomodulating drugs, and drugs
acting on the cardiovascular system represent general areas of highly

suggested candidates, ultimately a wide range of medications with a
variety of mechanisms of action and distinct therapeutic indications
has accumulated, with considerable variability in the supporting
evidence provided and no clear paths for prioritizing the suggested
drugs.

4.1 Prioritizing the suggested drugs

Determining high-priority candidates remains a challenging
task in drug repurposing for all diseases and was clearly
demonstrated in this review. In terms of ATC classification,
drugs acting on the nervous system (ATC code N, 17% of the
suggested candidates) may be a particularly favorable class of
drugs for AD repurposing—AD is a disease of the brain, and
effective treatments for AD will need to cross the blood-brain-
barrier. On the other hand, antineoplastic and immunomodulatory
drugs may be less favorable for treatment of AD (ATC code L, 16%
of the suggested candidates), given that many anticancer therapies
and immunosuppressive agents carry significant adverse effects
that may cause more harm than benefit in a long prescription
period. However, these are still very broad categories, as
demonstrated in Figure 5–drugs acting on the nervous system
include antipsychotics, antidepressants, antiepileptics, and opioids;
antineoplastic and immunomodulatory drugs encompass protein
kinase inhibitors, monoclonal antibodies, hormone antagonists,
and immunosuppressants, among others.

While the wide array of repurposing candidates for AD offers
multiple potential therapeutic options to explore, it also presents
challenges for identifying the most promising drugs among the
many possibilities. Over half of the drugs (65%) had only a single
study suggesting their utility in AD. Among all 124 reviewed studies,
clozapine was most frequently proposed as a repurposing candidate
for AD (N = 6); other frequently suggested drugs were aripiprazole,
risperidone, sunitinib, vandetanib, vorinostat, pioglitazone,
tamoxifen, verapamil, and adenosine (N = 5). Even among this
high frequency subset, there is substantial variety—three are
antipsychotics acting on the nervous system (clozapine,
aripiprazole, risperidone); four are antineoplastic and
immunomodulating agents (two protein kinase inhibitors:
sunitinib and vandetanib, one hormone antagonist: tamoxifen,
and one other antineoplastic agent: vorinostat); two act on the
cardiovascular system (one calcium channel blocker: verapamil
and one other cardiac preparation: adenosine); and one acts on
the alimentary tract and metabolism (the blood glucose lowering
drug pioglitazone). However, when using validation as an indicator
of high-quality drug repurposing signals, the list changes—the most
frequently suggested drugs with AD-specific validation were
doxycycline (an antibiotic), etodolac (a non-steroidal anti-
inflammatory drug), fingolimod (an immunomodulating
medication used in the treatment of multiple sclerosis), and
granisetron (used as an antiemetic to treat nausea and vomiting)
[N = 2]. Further, when focusing solely on the drugs with real-world
data validation, yet another list of drugs emerges: fluticasone,
mometasone, dexamethasone, pioglitazone, febuxostat, atenolol,
and sildenafil. The only point of overlap between these three lists
is the antidiabetic drug pioglitazone.
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4.1.1 Antipsychotics
Among the suggested AD drug repurposing candidates acting

on the nervous system, 19% were antipsychotics, including
clozapine, aripiprazole, and risperidone. While the precise
mechanisms of these drugs are largely unknown (Seeman,
2002), they are thought to act primarily on dopaminergic (D2)
and serotonergic (5-HT2A) receptors, with additional effects on
adrenergic, cholinergic, and histaminergic receptors. Many of the
existing drugs for AD are directed at neurotransmitters, namely,
acetylcholine (i.e., donepezil, rivastigmine, galantamine) and
glutamate (i.e., memantine), thus it is possible that
antipsychotic medications have a higher frequency of
suggestion due to an overlap in neurotransmitter imbalances
between schizophrenia and AD. Despite their high frequency of
suggestion, however, there has been limited investigation of
antipsychotic medications in clinical trials of AD. Neither
clozapine nor aripiprazole have been studied in clinical trials
of AD reported in ClinicalTrials.gov. While several trials have
investigated risperidone use in AD, this has been in the context of
alleviating behavioral and psychological symptoms (e.g.,
agitation, hallucinations, and delusions) observed in some
individuals with AD, rather than as a potential treatment for
AD (Brodaty et al., 2003; Mintzer et al., 2006). The limited
clinical investigation of antipsychotics in AD may be related
to their adverse effects, which include increased risk of
cardiovascular and cerebrovascular events, metabolic
syndrome, extrapyramidal symptoms, and for clozapine
specifically, agranulocytosis, and may be more severe in older
adults. (Stroup and Gray, 2018).

4.2 Variability in validation

We found that validation was inconsistently performed
among the reviewed studies, with only 61% (76/124) of the
studies conducting additional investigations to support their
preliminary drug repurposing candidates. Animal models and
in vitro studies were most commonly used for validation, which
may explain the particularly high validation rate among the
experimental studies (94%). Interestingly, no combination
studies performed a further validation, although this may have
been an artifact resulting from how we defined this repurposing
strategy (computational and experimental studies performed in
tandem to suggest two different types of drugs, rather than
performed sequentially to filter down a drug list).

4.2.1 Alzheimer’s-specific validation
Among the studies with validation, only roughly half (51%)

were determined to have AD-specific validation. This is likely due
to the broad definition of AD applied in this study—again, we
included studies that developed general drug repurposing tools
and applied them to AD, as well as studies suggesting
repurposing candidates for diseases including but not limited
to AD. We observed that many of the studies with nonspecific
validation relied on mechanistic hypotheses about AD,
particularly in investigating molecular targets of AD. These
molecular investigations included well-known targets such as
amyloid β (Aβ), acetylcholinesterase (AChE), and β-secretase

(BACE-1), but also several lesser known targets such as EPHA4
(Gu et al., 2018) and MARK4 (Hruba et al., 2022). There was a
very slight difference in journal impact factors for studies with
and without AD specific validation (6.99 vs 5.89), suggesting that
the journal of publication is of little use in distinguishing high-
quality drug repurposing signals. However, we also acknowledge
that our analysis of AD-specific validation was limited by the lack
of existing comprehensive experimental models for AD
(Drummond and Wisniewski, 2017).

4.2.2 Limited use of real-world data
Real-world data, defined as patient health data from non-

clinical trial sources, were surprisingly rarely used for validation
of drug repurposing candidates (4%). Four of the studies used
health insurance claims data (Fang et al., 2021; Xu et al., 2021;
Desai et al., 2022; Fang et al., 2022), and one study leveraged data
from two large-scale independent EHR databases (Tang et al.,
2022). The use of real-world data to investigate drug repurposing
signals has become an appealing approach (Xu et al., 2015; Park,
2021; Liu and Panagiotakos, 2022; Zong et al., 2022), particularly
in light of the 21st Century Cures Act enacted in 2016, which set
forth a framework for use of real-world evidence in drug
repurposing (Center for Drug Evaluation and Research, 2021).
Real-world data has certain advantages, notably larger sample
sizes, more representative patient populations, increased speed of
investigation, and lower costs compared to clinical trials. EHRs
represent a particularly promising source of real-world data with
rich longitudinal medication information tied to real-time
clinical outcomes that can be leveraged to confirm (or
disprove) the expected effects of repurposing candidates. The
full potential of real-world data in drug repurposing for AD
should be thoroughly explored in future studies, as drugs with
promising signals may represent strong repurposing candidates
warranting further investigation in clinical trials.

4.3 Negative and contradictory findings

The large number of AD repurposing studies presents
possibilities for negative and contradictory results, which must
be carefully considered. Only one of the reviewed studies
reported evidence of increased AD risk associated with drug
use, specifically for the PCSK9 inhibitors evolocumab and
alirocumab (Williams et al., 2020). These results were not
directly contradicted by any of the other reviewed studies,
which did not suggest either evolocumab or alirocumab as
potential AD repurposing candidates. Several studies reported
evidence of drug candidates likely to have little to no effect on AD
risk. These drugs included lipid-lowering agents (ezetimibe,
mipomersen, and statins) (Williams et al., 2020),
antihypertensives (Walker et al., 2020), dimethyl fumarate
(approved for the treatment of multiple sclerosis) (Möhle
et al., 2021), and drugs commonly used in treatment of
rheumatoid arthritis (tofacitinib, tocilizumab, and TNF
inhibitors) (Desai et al., 2022). Still, statins (atorvastatin,
simvastatin, rosuvastatin, fluvastatin) and ezetimibe were
suggested as viable AD repurposing candidates by other
studies, suggesting that reported negative outcomes may not
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entirely discredit the candidacy of certain drugs (Cheung et al.,
2014; Croset et al., 2014; Kondo et al., 2017; Bauzon et al., 2020;
Wu et al., 2021).

4.4 Limitations

Our study has several limitations. Importantly, we focused our
literature search on PubMed, which is largely regarded as the
primary database for biomedical literature. As a result, we may
have missed some AD drug repurposing candidates discussed in
journals from other fields, such as computer science (e.g., IEEE
Journals, which are indexed by Google). In addition, we found that
very few studies reported explicitly negative outcomes (i.e., a drug
candidate found to have paradoxical effects or even no effect),
suggesting potential selective reporting bias, which may have
impacted our results.

4.5 Challenges

Given the large number of AD drug repurposing studies and
suggested repurposing candidates, consolidating the evidence to
identify high-priority drugs for subsequent investigation in
clinical trials has proven to be a major challenge. Validation
represents one approach to prioritizing among the suggested
drugs, as the drugs with high-quality validation data should
intuitively be more promising repurposing candidates.
However, as demonstrated in this study, validation is
inconsistently performed—39% of the reviewed studies did not
perform a validation, and the studies that did perform a
validation used a variety of different approaches, roughly half
of which had limited relevance to AD. Furthermore, the
complexity of the mechanisms underlying the pathogenesis of
AD and its clinical heterogeneity have made it incredibly difficult
to develop robust models of AD for use in validation, potentially
limiting the generalizability of the drug repurposing studies that
sought to perform AD-specific validation. Finally, the clinical
viability of the suggested drugs requires deeper exploration, as
many studies neglected to consider possible safety concerns
associated with drug use when providing repurposing
candidates (e.g., immunosuppressants and antineoplastic
agents).

4.6 Future directions

Despite its challenges, drug repurposing for AD still holds
much promise, particularly in expanding the scope of possible
AD therapies beyond drugs targeting amyloid β. However, future
drug repurposing studies will need to make a concerted effort to
narrow down the list of candidates, which will require thorough
validation. Real-world data, particularly from EHRs, represents
an especially valuable tool for investigating long-term drug
effects in real-time patient health outcomes but was rarely
used for validation in the reviewed studies. Going forward,
leveraging this big data from diverse datasets (e.g., the

National Institutes of Health All of Us Research Program, UK
Biobank, and local EHRs) will be critical to identify clinically
meaningful drug repurposing candidates for AD. The
incorporation of EHR data into drug repurposing pipelines
may also transform the process of identifying drug
repurposing candidates, transitioning from primarily
hypothesis-driven studies to non-hypothesis-driven
approaches relying on pattern identification in large EHRs.

5 Conclusion

Given limited successes in new drug development for AD,
there has been growing research interest in finding existing drugs
that can be repurposed for AD treatment. Between 2012 and
2022, 124 studies cumulatively suggested 573 drugs as potential
AD repurposing candidates. However, identifying the most
promising candidates remains a challenging task, as the
suggested drugs vary widely in terms of their therapeutic
indications and studies do not consistently validate
preliminary drug repurposing signals. Importantly, real-world
data has seldom been used to validate AD drug repurposing
candidates, despite the enormous potential of EHRs and other
large-scale repositories of clinical data to confirm the expected
treatment effects of suggested drug repurposing candidates.
Future AD drug repurposing studies should aim to establish
best practices for validation, including investigating
opportunities for leveraging EHRs and other sources of real-
world data to prioritize among suggested drug candidates.
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