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Glioma represents the most common primary cancer of the central nervous
system in adults. Glycosylation is a prevalent post-translational modification that
occurs in eukaryotic cells, leading to a wide array of modifications on proteins. We
obtained the clinical information, bulk RNA-seq data, and single-cell RNA
sequencing (scRNA-seq) from The Cancer Genome Atlas (TCGA), Chinese
Glioma Genome Atlas (CGGA), Gene Expression Omnibus (GEO), and
Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. RNA
sequencing data for normal brain tissues were accessed from the Genotype-
Tissue Expression (GTEx) database. Then, the glycosylation genes that were
differentially expressed were identified and further subjected to variable
selection using a least absolute shrinkage and selection operator (LASSO)-
regularized Cox model. We further conducted enrichment analysis, qPCR,
nomogram, and single-cell transcriptome to detect the glycosylation signature.
Drug sensitivity analysis was also conducted. A five-gene glycosylation signature
(CHPF2, PYGL, GALNT13, EXT2, and COLGALT2) classified patients into low- or
high-risk groups. Survival analysis, qPCR, ROC curves, and stratified analysis
revealed worse outcomes in the high-risk group. Furthermore, GSEA and
immune infiltration analysis indicated that the glycosylation signature has the
potential to predict the immune response in glioma. In addition, four drugs
(crizotinib, lapatinib, nilotinib, and topotecan) showed different responses
between the two risk groups. Glioma cells had been classified into seven lines
based on single-cell expression profiles. The five-gene glycosylation signature can
accurately predict the prognosis of glioma and may offer additional guidance for
immunotherapy.
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Introduction

Histologically, there exist over 100 distinct primary brain and
central nervous system tumors (Davis, 2018). Glioma is the most
prevalent form of primary cancer in the central nervous system of
adults, with an annual diagnosis rate of 2.96 cases per
100,000 individuals in the United States (Fogh et al., 2010),
accounting for 15% of all brain tumors (Ostrom et al., 2018).
However, despite surgery, radiotherapy, and chemotherapy, most
gliomas inevitably recur (Barthel et al., 2019). Approximately 52%–
62% of patients have a recurrence within 5 years. Patients with
glioblastoma multiforme (GBM), the most malignant glioma
(World Health Organization [WHO] grade IV), using the current
standard of care, have an average lifespan of 14 months after
diagnosis (Van Meir et al., 2010). There are still fatal prognoses
and high rates of mortality and recurrence (Wang et al., 2017).

Glycosylation is one of the most abundant and diverse forms of
post-translational modification of proteins in eukaryotic cells, where
sugar molecules are attached to nascent proteins (Schjoldager et al.,
2020). The formation of glycosidic bonds is a dynamic process
regulated by various enzymes, such as glycosyltransferases and
glycosidases. The nitrogen of asparagine (N-glycans) or the
oxygen of serine or threonine (O-glycans) is usually responsible
for attaching glycan chains to their polypeptide backbone in
glycoproteins (Rodrigues et al., 2018). Glycosylation plays a
crucial role in the molecular and cellular mechanisms of
tumorigenesis. Tumor growth relies on cancer cells’ ability to
bypass cellular division checkpoints, evade immune surveillance
and death signals, and migrate to metastatic sites. Glycosylation
plays a critical role in all of these processes (Reily et al., 2019).
Although glycosylation has been implicated in various biological
processes and diseases, the specific role of glycosylation in glioma
remains a relatively unexplored area. Investigating the functional
roles of the identified gene signature can provide insights into the
underlying mechanisms through which glycosylation influences
glioma development, invasion, and therapeutic response. In this
study, we investigated the roles of core glycosylation genes in glioma
and established a glycosylation gene model to predict glioma patient
survival and tumor immune microenvironment, elucidating that the
underlying correlation is of great clinical significance. To the best of
our knowledge, this is the first paper to investigate the relationship
between glioma and glycosylation, and we hope our research can fill
the research gap and inspire others.

Methods

Data collection

We retrieved clinical and mRNA sequencing data from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),
Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/),
and Repository of Molecular Brain Neoplasia Data (Rembrandt,
https://gtexportal.org/home/) databases. RNA sequencing data for
normal brain tissues were obtained from the Genotype-Tissue
Expression (GTEx) database. Raw data were collected from the
corresponding databases, filtered, and normalized using the EDASeq
package (Bullard et al., 2010) (version 3.15). Batch effects were

corrected using the R package ComBat (Martin et al., 2015)
(version 3.15).

Univariate Cox regression analysis and
differential expression analysis

We obtained 168 glycosyltransferase-related genes through
public databases. Then, we performed univariate Cox regression
with the genes of interest in TCGA and CGGA cohorts. Genes that
showed an adjusted p-value of less than 0.05 were considered
significantly correlated with survival. In addition, we conducted a
differential expression analysis of gliomas and normal brain tissue
using TCGA and GTEx datasets. The R package edgeR (Robinson
et al., 2010) (version 3.15) was used to verify the expression fold
change value (expressed as a logFC value) and statistical significance.
Genes with an absolute logFC value greater than 1 and a false
discovery rate less than 0.05 were regarded as
differentially expressed.

Construction and validation of the model

The overlapping genes were subjected to variable selection using
a least absolute shrinkage and selection operator (LASSO)-
regularized Cox model. We randomly divided TCGA dataset into
a training set and a testing set with a ratio of 4:1. The C-index was
used for model performance evaluation. A bidirectional step-wise
variable selection was performed. We used the R packages glmnet
(Simon et al., 2011) (version 4.1-4), StepReg (Variyath and Brobbey,
2020) (version 1.4.3), and survival (Bair and Tibshirani, 2004)
(version 3.3-1) for fitting and establishing the survival model.
The forest plot was performed using the R package “survminer.”
The risk score for each patient was calculated as follows:

RiskScore � ∑
n

i�1
Coef *xi( ).

The median risk score served as the threshold for classifying
patients into high- or low-risk groups. The model was then validated
in TCGA testing set and externally validated through CGGA and
Rembrandt sets. ROC curves and AUC values were generated using
the R package timeROC (Blanche et al., 2013) (version 0.4).

Construction and evaluation of a nomogram

A nomogram was constructed to clarify whether the risk score
was an independent prognostic predictor of glioma. Univariate and
multivariate Cox regression analyses were performed to identify the
independent prognostic factors for TCGA and CGGA datasets. We
investigated the probability of 1-, 3-, and 5-year OS rates of patients
with glioma based on the glycosylation score combined with clinical
information including tumor grade, patient age, MGMT
methylation, and IDH mutations. Then, we constructed a
nomogram using the regplot package (version 1.1). The
calibration plot and ROC curve were also performed to assess the
accuracy of the nomogram for OS prediction.
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Pathway enrichment analysis and GSEA

We conducted a differential analysis between high-risk and low-
risk groups using edgeR. Genes that met the criteria of absolute
logFC value > 1 and false discovery rate <0.05 were identified as
differentially expressed. We then conducted Gene Ontology and
KEGG pathway enrichment analyses for the top differentially
expressed genes. In addition, GSEA was also conducted. The R
package clusterProfiler (Wu et al., 2021) (version 3.15) was used for
all the above-mentioned enrichment analyses. These enrichment
analyses aimed to identify molecular mechanisms that indicate a
worse prognosis between the two subgroups.

Cell line culture, qPCR, and IHC

We used quantitative polymerase chain reaction (qPCR) to
detect glycosylation genes in cell lines. Glioma cell lines, namely,
U87, T98G, A172, U251, HMC3 microglial cell line, and HA
1800 normal human astrocyte cell line, were obtained from
ScienCell Research Laboratory, Cell Bank of the Chinese
Academy of Sciences, and ATCC. The cells were cultured and
maintained in DMEM supplemented with 10% fetal bovine
serum. We extracted RNA using an mRNA extraction kit
(Yeasen) following the instructions of the manufacturer. RNA
was then reverse-transcribed. We used the qPCR SYBR Green
Master Mix (Yeasen Biotechnology Co., Ltd., China) as a PCR
indicator, and the qPCR process was performed using the
QuantStudio Q5 Real-Time PCR System. The column plot was
made using GraphPad Prism 8 software. After accessing the IHC
images for each candidate glycosylation gene in glioma and normal
tissue samples from The Human Protein Atlas database (HPA
database, https://www.proteinatlas.org/), we assessed the staining
intensity of each tissue according to the HPA database standards.

Mutation burden and waterfall plot

We acquired the single nucleotide variation data with aliquot
ensemble somatic variant merging and masking workflow from
TCGA database through the TCGAbiolinks package (Colaprico
et al., 2016). The mutation burden was calculated and then
plotted using the ggbetweenstats package. The GenVisR package
(Skidmore et al., 2016) was used to produce waterfall plots with the
top 15 most commonly mutated genes in each group.

Immune filtration

To study the immune infiltration level of gliomas, we applied
the ESTIMATE algorithm (Yoshihara et al., 2013) to predict the
immune fraction and stromal fraction for each sample. In
addition, the fraction of each major immune cell was
predicted and calculated through the xCell (Aran et al., 2017)
algorithm. We created a heatmap to assess the differences
between the high-risk and low-risk groups in the abundance
of 32 immune cells and the stromal score, immune score,
ESTIMATE score, and tumor purity.

Drug sensitivity analysis

Cancer Cell Line Encyclopedia (CCLE) and Drug Sensitivity in
Cancer v2 (GDSC2) were downloaded through the “PharmacoGx”
package (Smirnov et al., 2016). This package enables efficient
implementation of curated annotations of compounds, cell lines, and
molecular features, facilitating integration and comparisons between
different pharmacogenomic datasets. In vivo drug responses in cancer
patients were predicted using the “oncoPredict” package (Maeser et al.,
2021). The calcPhenotype function is capable of predicting the half-
maximal inhibitory concentration (IC50) of drugs for glioma patients by
fitting a ridge model, in which the testing sets are RNA-seq profiles of
glioma patients in TCGA or CGGA and the training sets are the gene
expression profiles of tissues and IC50 of the cancer cell lines to drugs
from GDSC2 and CCLE. Drugs with the consistent direction of
response (resistant or sensitive) in different combinations of training
and testing sets were finally selected. The IC50 values from experiments
of selected drugs between different tissues were then visualized using
PharmacoDB 2.0 (https://pharmacodb.ca/) (Feizi et al., 2022).

scRNA-seq data processing and cell–cell
communication of glioma samples

Single-cell transcriptomes of glioma samples were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
(GSE167960). One WHO grade IV glioma and five WHO grade III
gliomaswere used for the analysis of cell populations and the expression
of themarkers of glial lineage. A total of 28,298 cells were analyzed using
the R package “Seurat.”The FindIntegrationAnchors and IntegrateData
functions were applied to remove the batch effect among different
samples. Cells were clustered using FindNeighbors and FindClusters
functionswith a resolution of 0.5. The uniformmanifold approximation
and projection (UMAP) algorithm was used to reduce dimensionality.
Cell types were identified through the use of marker genes from the
CellMarker database (http://xteam.xbio.top/CellMarker). We used the
“CellChat” packages to create CellChat objects. Then, the major
ligand–receptor interactions in humans were evaluated using the
“CellChatDB.human” database to perform the analysis of
intercellular communication networks from annotated scRNA-seq
data for seven cell clusters in all glioma samples. We then conducted
intercellular communication networks on tumor-associated pathways.

Results

Identification and construction of a
glycosylation gene prognostic model

The flow chart of our study is shown in Figure 1A. First, we
chose genes that are differently expressed in normal brain tissue and
glioma using normal brain tissue expression data from the GTEx
dataset and glioma expression data from TCGA dataset. Genes with
an absolute logFC value greater than 1 and a false discovery rate
below 0.05 were identified as differentially expressed. The gene
expression heatmap is shown in Figure 1B. Univariate Cox
regression analysis was conducted to investigate prognostic-
related gene analyses using TCGA dataset. We chose
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32 glycosylation genes shared by the three datasets. The forest plot of
the selected genes is shown in Figure 1C. Then, we performed a
LASSO regression with fit measured by the C-index. The model fit
across different lambda values is shown in Figure 1D. The coefficient

plot is shown in Figure 1E. The selected five-gene model with their
corresponding HR value is plotted in Figure 1F. The Venn plot of
overlapping genes between TCGA, CGGA, and GTEx datasets is
shown in Supplementary Figure S1.

FIGURE 1
Identification of the glycosylation gene signature using LASSO-Cox regression. (A) Flow chart of our study. (B) The protein–protein interaction
network was performed on theMetascapewebsite. (C)GeneOntology enrichment analysis was performed on theMetascape website. (D)Heatmap of all
glycosylation genes between the normal brain and glioma tissues. (E) Forest plot of univariate Cox regression of differentially expressed glycosylation
genes. (F) LASSOwas used to conduct the log (lambda) sequence plot of glycosylation genes. (G) LASSO coefficient profiles of glycosylation genes in
TCGA training dataset. (H) Forest plot of five glycosylation signature genes. LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer
Genome Atlas. **p < 0.01, ***p < 0.001.
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FIGURE 2
Relationship between the tumor grade and prognosis and the expression status of the glycosylation gene signature. (A–E) Expression level of mRNA
of the glycosylation gene signature in different cell lines using qPCR. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, without label: no significant
difference between the cell line and HA 1800). (F–J) Kaplan–Meier survival curves of different glycosylation gene signatures in glioma patients. (K–N)
Protein expression images of different glycosylation gene signatures in the HPA database. (O) Histogram of glycosylation gene signature-related
protein expression levels in the HPA database. qPCR, quantitative polymerase chain reaction; HPA, Human Protein Atlas.
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FIGURE 3
Prognostic risk model analysis of the glycosylation gene signature in TCGA-train, TCGA-test, CGGA, and Rembrandt datasets. (A) ROC curves
demonstrate the predictive efficiency of the glycosylation gene signature on the 1-, 3-, and 5-year survival rates in TCGA-train, TCGA-test, CGGA, and
Rembrandt datasets. (B) Survival curve of the glycosylation gene signature in these datasets. (C) PCA of the glycosylation gene signature in these datasets.
(D) t-SNE analysis of the glycosylation gene signature in these datasets. (E) Distributions of survival time, survival status, and glycosylation risk score
in these datasets. TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; PCA, principal component analysis; t-SNE, t-distributed
stochastic neighbor embedding.
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The relationship between the expression status of
the glycosylation gene signature and the tumor
grade and prognosis

We assessed the correlation between the expression status of
the five genes and both tumor grade and prognosis. As to
prognosis, higher expression of CHPF2, PYGL, and EXT2 was
associated with a worse prognosis, while that of COLGALT2 and
GALNT13 was associated with a better prognosis. Furthermore,
the mRNA expression of the five genes was measured in different
cell lines using qPCR assays. The RNA expression levels were
determined in glioma cell lines to verify our result. Five cell lines
were used to replicate experiments and improve reliability. The
results are shown in Figures 2A–E. The Kaplan–Meier survival
curves of each gene in TCGA dataset are shown in Figures 2F–J.
The Kaplan–Meier survival curves of the five genes are shown in
Supplementary Figure S2. The Kaplan–Meier survival curves of
each gene in the CGGA dataset (Supplementary Figures S3A–F)
and REMx dataset (Supplementary Figures S4A–F) were made to
further evaluate the relationship between the selected genes and
prognosis. Moreover, we investigated the protein expression
levels in glioma patients obtained from the Human Protein
Atlas database and found greater staining intensity in glioma
compared to normal brain tissues (Figures 2K–N). The
corresponding statistical histogram is shown in Figure 2O.

Construction and validation of the
prognostic glycosylation genes

Based on the constructed signature, which is the summing up
of each selected glycosylation gene expression level and
corresponding coefficients, all the glycosylation scores of
patients were calculated. Afterward, the patients with glioma
were divided into high- and low-risk categories using the median
glycosylation score as the threshold value (Figure 3A). The
heatmap of the five selected genes between the high- and low-
risk groups at the CGGA (Supplementary Figure S5) and TCGA
(Supplementary Figure S6) datasets was used to screen the
differential gene expression. The Kaplan–Meier survival curves
indicate that the overall survival (OS) of the low-risk group
patients in the CGGA cohort was significantly longer than
that of the high-risk group patients. (p < 0.001). Subsequently,
the same analyses were performed on TCGA-test cohort as well
as in Rembrandt databases. The study revealed a noteworthy
difference (p < 0.001) between the low-risk and high-risk groups
(Figure 3B). PCA (Figure 3C), t-SNE analysis (Figure 3D), and
the distribution plot of survival time, survival status, and
glycosylation risk score (Figure 3E) also confirmed that the
prognostic glycosylation genes could stably and accurately
predict the prognosis of glioma patients.

Evaluation of the correlation between
glycosylation gene risk score and
clinicopathologic characteristics

Heatmaps depict the correlation between risk groups of
glycosylation genes and various clinical characteristics in TCGA

(Figure 4A) and CGGA (Figure 4B) datasets. Violin plots indicate
that the glycosylation risk score is highly related to these important
clinicopathologic characteristics (Figures 4C–N), including age,
gender, tumor grade, MGMT methylation, IDH mutation, and
1p19q co-deletion in TCGA and CGGA datasets.

Establishment and evaluation of a
nomogram based on independent
prognostic factors for OS

The study performed univariate and multivariate Cox regression
analyses to identify glycosylation signatures as independent
prognostic OS-related factors of glioma patients in TCGA
database (Figures 5A–C). Then, a nomogram of TCGA cohort
(Figure 5A) based on clinical characteristics, including WHO
grade, IDH mutation, MGMT promoter methylation, age, and
glycosylation score, was established. The calibration plots
presented a concordance between the predicted probabilities from
the nomogram and the observed 1-, 2-, and 3-year OS rates in TCGA
cohort (Figures 5B, C). It is crucial that the nomogram has the ability
to serve as a quantitative tool for forecasting survival outcomes in
glioma patients. Our nomogram attained a greater net benefit than
the single independent clinical feature. Meanwhile, the efficiency of
the prognostic nomogram was clarified from multiple aspects.

Functional enrichment analyses

To further clarify the functional mechanism of glycosylation
genes and prognosis of glioma patients, we performed GO and
KEGG enrichment analyses to characterize the biological functions
of DEGs between the low-risk and high-risk groups. GO analyses in
TCGA database (Figure 6A) revealed significant enrichment of
biological processes, including response to the bacterium and
immune effector process, and that in the CGGA database
presented gene enrichment in immune regulation, including cell
activation and response to cytokine (Figure 6B). At the same time,
the KEGG pathway analysis revealed the enrichment of immune-
related pathways in both databases (Supplementary Figures S7, S8).
To confirm these results, we conducted GSEA in both the CGGA
and TCGA datasets. We identified significant enhancement of
multiple immune processes in the high-risk group in both
cohorts, for example, adaptive immune response and response to
the bacterium in TCGA cohort (Figure 6C) and cell activation,
response to the bacterium, and positive regulation of the immune
system in the CGGA cohort (Figure 6D). In addition, multiple
neuron-related signatures were enriched in the low-risk group
(Figures 6E, F).

Immune filtration and tumor
microenvironment

We used the xCell algorithm to eliminate the cellular component
of tumor samples from bulk sequencing data and analyzed the
immune cell types between the high- and low-risk groups. In
general, the high-risk group showed an enrichment of immune
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cells related to innate immunity, while the low-risk group showed an
enrichment of adaptive immune cells (see Figure 7A). Then, we
examined the correlation between glycosylation score and immune
infiltration via stromal score, immune score, ESTIMATE score, and
tumor purity. We found that the glycosylation score was
significantly positively related to the stromal score, immune
score, and ESTIMATE score and negatively related to tumor
purity (Figures 7B–I), indicating that the glycosylation score was
strongly correlated with local immune cell infiltration.

Single nucleotide variation

First, we investigated the correlation between glycosylation
score and mutation burden in glioma patients in TCGA cohort.
As shown in Figure 8A, the glycosylation score was positively
related to mutation burden. In addition, patients in the high-risk
group have significantly increased mutation burden (Figure 8B).
Then, we explored the specific mutation type and host genes in
the high- and low-risk groups. In the low-risk group, the
predominant mutation is the missense mutation of IDH1,
which appeared in over 80% of all samples, followed by
TP53 mutations, indicating a generally benign disease course
(Figure 8C). However, in the high-risk group, the TP53 mutation

is the most frequent mutation, accounting for only 40% of all
mutations (Figure 8D).

Identification of appropriate drugs for
glioma patients in different risk groups

To select appropriate drugs for patients in different risk groups,
we used the oncoPredict algorithm to predict the IC50 value of
glioma patients in TCGA and CGGA cohorts. In the
GDSC2 pharmacogenomic dataset, 131 drugs were identified to
show different responses in both TCGA and CGGA datasets,
including 35 drugs that have been approved by the FDA
(Figure 9A). Among them, 22 drugs were resistant in the high-
risk group and 13 drugs were sensitive in the high-risk group. The
pathways of these drug targets are shown in Figure 9A. Four drugs
(crizotinib, lapatinib, nilotinib, and topotecan) have been identified
after taking intersections in four databases (Figure 9B). To further
explore the relationship between the predicted IC50 values of these
four drugs and five glycosylation signatures, we performed
Spearman’s correlation analysis in the permutation and
combination of these four datasets. (Figures 9C–F). The IC50

values from experiments of these four drugs in different cancer
tissues were visualized using PharmacoDB 2.0 (Figures 9G–J).

FIGURE 4
Correlation between the glycosylation gene risk score and clinicopathologic characteristics. (A)Heatmap of correlation between glycosylation gene
risk groups with age, gender, tumor grade, MGMT methylation, IDH mutation, and 1p19q co-deletion and glycosylation signature gene expression in
TCGA dataset. (B)Heatmap of correlation between glycosylation gene risk groups with age, gender, tumor grade, MGMTmethylation, IDHmutation, and
1p19q co-deletion and glycosylation signature gene expression in the CGGA dataset. (C–K) Box and scatter plots of relationship between risk score
and age (C), gender (D), tumor grade (E), MGMT methylation (I), IDH mutation (J), and 1p19q co-deletion (K) in TCGA dataset and age (F), gender (G),
tumor grade (H), MGMT methylation (L), IDH status (M), and 1p19q co-deletion (N) in the CGGA dataset. TCGA, The Cancer Genome Atlas; CGGA,
Chinese Glioma Genome Atlas; MGMT, O6-methylguanine-DNA methyltransferase; IDH, isocitrate dehydrogenase.

Frontiers in Pharmacology frontiersin.org08

Yang et al. 10.3389/fphar.2023.1259051

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1259051


Single-cell transcriptomes and cell–cell
communication of glioma samples

Glioma cells were classified into seven lines based on single-
cell expression profiles: 1) astrocytes, 2) B cells, 3) endothelial
cells, 4) glioma cells, 5) macrophages, 6) stem-like cells, and 7)
T cells (Figure 10A). The expression features of marker genes of
the seven major clusters are presented in Figure 10B.
GALNT13 was relatively highly expressed in stem-like cells and
astrocytes. COLGALT2 was highly found in glioma cells. PYGL
was only highly found in macrophages. CHPF2 and EXT2 were
relatively low in these seven cell lines (Figure 10C). We then
explored the cell–cell interactions of glioma cells and different
types of immune cells in glioma tissues (Figures 10D, E). The

cell–cell communication networks showed that glioma cells do
not have significant interactions with macrophages, T cells, and
B cells. Heatmaps showed the communication probability for
different cell populations on the CXCL signaling pathway
(Figure 10F), CCL signaling pathway (Figure 10G), and
IL1 signaling pathway (Figure 10H). Glioma may not have
significant interactions with other cell types on these tumor-
associated signaling pathways.

Discussion

Gliomas are a heterogeneous assemblage of brain tumors that
originate from genetically/epigenetically abnormal cells with glial

FIGURE 5
Establishment and evaluation of a nomogram in TCGA cohort. (A) The nomogramwith glycosylation gene signature risk group for the prediction of
OS of glioma patients was constructed based on TCGA dataset. (B) The time-dependent ROC analyses show the concordance between the predicted
and observed 1-, 2-, and 3-year OS rates of the glycosylation gene nomogram in TCGA. (C) The calibration plots for predicting 1-, 2-, and 3-year survival
using TCGA. TCGA, The Cancer Genome Atlas; OS, overall survival.
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FIGURE 6
GO functional enrichment analyses between different glycosylation gene risk groups. (A,B) Bubble graph of GO enrichment analysis between high-
and low-glycosylation gene risk group using TCGA (A) and CGGA (B). (C–F) GSEA GO analyses of different glycosylation gene risk groups in TCGA or
CGGA datasets. (C) high-risk, TCGA; (D) high-risk, CGGA; (E) low-risk, TCGA; (F) low-risk, CGGA. GO, Gene Ontology. TCGA, The Cancer Genome Atlas;
CGGA, Chinese Glioma Genome Atlas; GSEA, gene set enrichment analysis.
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stem/progenitor-like features (Nicholson and Fine, 2021). Although
studies suggest that gliomas may be caused by mutations in genes
such as TP53 (Pratt et al., 2022), their pathogenesis is not fully
understood. Gliomas have traditionally been histopathologically
classified as diffuse astrocytoma, oligodendrogliomas, and mixed
astrocytoma/oligoastrocytoma based on the type of tumor cells
(Lenting et al., 2017). In addition, gliomas are classified by
malignancy grade (World Health Organization grades I–IV)
based on marked mitotic activity, necrosis, and the presence or
absence of erythematous microvascular hyperplasia (MVP)
(Wesseling et al., 2015). Intratumoral heterogeneity is a well-
known feature of gliomas and may result from selection
pressures, such as nutritional limitation, clonal competition, and
therapy (Sottoriva et al., 2013). The clinical manifestation of glioma

depends on the anatomic sites, histopathology, and functional
status. In newly diagnosed cases, the standard approach to
treatment includes surgery, followed by concomitant radiotherapy
with temozolomide and additional adjuvant temozolomide (Tan
et al., 2020).

Glycosylation is a common, complex, and plastic post-
translational modification of secreted and membrane-bound
proteins. It is the outcome of a collaboration between nucleotide
sugar transporters and biosynthesis pathways, along with
glycosyltransferases and glycosidases present in the endoplasmic
reticulum (ER) and the Golgi apparatus. Most of the final processing
occurs in the cis-, medial-, and trans-Golgi compartments (Pinho
and Reis, 2015). In these organelles, glycosyltransferases and
glycosidases form carbohydrate structures through a series of

FIGURE 7
Tumormicroenvironment and immunocorrelation analysis of glycosylation gene signature risk groups in glioma. (A)Heatmap of immune infiltration
patterns between different risk groups in TCGA dataset. (B–E) Association of the risk score with the stromal score (B), immune score (C), ESTIMATE score
(D), and tumor purity (E). (F–I)Correlation analysis between the risk score and stromal score (F), immune score (G), ESTIMATE score (H), and tumor purity
(I).TCGA, The Cancer Genome Atlas.
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stages that are controlled by enzyme activity, substrate availability,
levels of gene transcription, and enzyme position within the
organelles (Reily et al., 2019).

Glycans play a critical role in different stages of carcinogenesis,
such as cancer cell dissociation and invasion, cell-to-cell adhesion,
angiogenesis, immune modulation, and metastasis composition.

FIGURE 8
Correlation between glycosylation score and mutation burden in glioma patients in TCGA dataset. (A,B) Correlation analysis between glycosylation
score andmutation burden. (C,D) Thewaterfall diagram demonstrates the top genes with the highestmutation frequency in the low- (C) and high-risk (D)
groups. TCGA, The Cancer Genome Atlas.
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FIGURE 9
Prediction of drug sensitivity using the glycosylation signature in glioma patients. (A) The heatmap of predicted IC50 values of 35 FDA-approved
drugs in GDSC2 between the high- and low-risk groups. (B) Venn diagram between different combinations of training and testing sets. (C–F)Correlation
between the predicted IC50 values of four selected drugs and the expression of five glycosylation signatures among the combination of CCLE–CGGA (C),
CCLE–TCGA (D), GDSC2–CGGA (E), and GDSC2–TCGA (F). (G–J). The IC50 values from experiments of crizotinib (G), lapatinib (H), nilotinib (I), and
topotecan (J) among different cancer tissues in all available pharmacogenomic datasets in PharmacoDB.
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Glycosylation is critical in cell communication and signaling
(Haltiwanger and Lowe, 2004). Incomplete synthesis and neo-
synthesis are two primary mechanisms that underlie
carbohydrate-related structural changes in cancer, as identified by
Kannagi et al. (2008), while the incomplete biosynthesis pathway is
more common in the early stages of cancer. On the contrary, neo-
synthesis typically occurs in the advanced stages of a tumor and is
relevant to the induction of several genes involved in the
glycosylation pathway (Kannagi et al., 2008). Glycosylation
changes are commonly observed in cancer cells, including

increased sialyl Lewis structures, irregular core fucosylation, an
increase in N-glycan branching, or exposure of the mucin-type
O-glycan, which may result in the production of unique tumor
antigens that could be promising targets for immune therapy
(Holmes et al., 1987). In some cases, malignant tissues triggered
the recurrence of glycosylated antigens that were expressed in fetal
life. Possibly the most extensively researched tumor-associated
glycans consist of variations arising from a premature
termination of protein O-glycosylation called the Tn antigen (the
most basic O-glycan), its sialylated counterpart sialyl-Tn (sTn;

FIGURE 10
Single-cell transcriptome analysis of the five-gene glycosylation signature and cell–cell communication between different cell types. (A) Clustering
and annotation of single-cell data. (B) Dot plot of the expression features of marker genes of the seven major clusters. (C) Identification of the five-gene
glycosylation signature expression in seven cell types in glioma. (D–E) The circle interaction plots show the count (D) and weight (E) of inferred
intercellular communication network analysis of glioma cells with the remaining several cell clusters. (F–H) The heatmaps show the communication
probability on the CXCL signaling pathway (F), CCL signaling pathway (G), and IL1 signaling pathway (H) for different cell populations.
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Neu5Acα2-6GalNAcα-O-Ser/Thr), and the T or core 1 antigen
which arises following the addition of a Gal residue to the Tn
antigen (Galβ1-3GalNAc-Ser/Thr) (Julien et al., 2011). Both the sTn
and sialylated T antigens are not present in normal healthy tissues
but are overexpressed in many types of solid tumors (Marcos et al.,
2011; Julien et al., 2012). The roles of glycans in the tumor have been
highlighted by the fact that glycosylation variations are implicated in
the growth and advancement of cancer, therefore serving as
biomarkers and presenting a set of precise targets for therapy
(Pinho and Reis, 2015). In our study, we found that the
glycosylation score was positively correlated with immune
infiltration, which may be interpreted by increased mutation
burden for a high glycosylation score. This suggests that glycans
play a role in immune infiltration in cancer cells.

Our study determined that glycosylation modification is crucial
in tumor progression and has a strong correlation with glioma
prognosis. The study selected prognostic-related genes based on
univariate Cox regression across TCGA and CGGA and then filtered
the overlapped genes through LASSO regression and step-wise Cox
regression to build and validate a glycosylation-related gene
signature through internal and external validation. The five genes
are all involved in the glycosylation process. In the next paragraph,
we will discuss the general function and the latest research progress
of these genes through a systematic approach.

Chondroitin sulfate (CS) proteoglycan is a vital enzyme that is
translated by the CHPF2 gene. It exists in various tissues as a
proteoglycan in which the disaccharide units of
N-acetylgalactosamine and glucuronic acid residues are repeated,
and the sulfate residues are distributed in different positions. This
unique structure provides hyperosmolarity and water retention
ability, and it may also play an important role in regulating cell
adhesion to the extracellular matrix, thus acting as an important
mediator for cell proliferation, cell migration, morphogenesis, and
some cytokine signaling (Yada et al., 2003). Glycosaminoglycan
plays a crucial role in morphogenesis and tissue development and
contributes to tumor development and formation. The biosynthesis
of CS is accomplished through a variety of enzymes, such as
glycosyltransferases and sulfotransferases (Kalathas et al., 2011).
Glycosaminoglycans are generally altered in tumors in qualitative
and quantitative terms (Skandalis et al., 2007; Kalathas et al., 2009).
In addition, the reduction in C-6 sulfation is more abrupt in cancer;
the effect of C-4 sulfation is gradually diminished at the stage of
advanced cancer. These changes may be caused by differences in
core protein precursor biosynthesis, substrate pools, and expression
level of the enzymes involved in chondroitin/dermatan sulfate
biosynthesis (Kalathas et al., 2010). Compared to tumor tissues,
adjacent macroscopic tissues have been observed to have lower levels
of CS in many cancer types (Kalathas et al., 2011). A previous study
found that the expression of CHPF2 was positively correlated with
the levels of macrophages and dendritic cells, which may influence
drug sensitivity.

PYGL has been reported to have oncogenic effects in multiple
tumors (Zhu et al., 2022). It has been reported to be a glycogenolysis-
related gene whose expression is upregulated in various tumors
(Zhao et al., 2021). The protein translated by PYGL is glycogen
phosphorylase, liver form. Glycogen metabolism is considered a
crucial pathway in cancer metabolism reprogramming (Yang et al.,
2019). It was also believed that the degradation of glycogen, which is

regulated by PYGL, could sustain proliferation and prevent
premature senescence in cancer cells (Favaro et al., 2012). Zhu
et al. (2022) revealed the relationship between the PYGL gene and
the prognosis of glioma by analyzing the Chinese Glioma Genome
Atlas database and using quantitative real-time PCR to verify the
PYGL expression level in gliomas. Previous investigations have
observed a comparatively sluggish rise in PYGL levels under
hypoxic conditions. Further examination of PYGL expression in
tumor cells has unveiled discernible patterns of induction in
response to hypoxia (0.1% O2), which have been consistently
observed at both the mRNA and protein levels. The result of the
research indicated that PYGL could be regarded as a new biomarker
and molecular target for assessing the prognosis and
immunotherapy of glioma. Zhao et al. (2021) returned the same
result. They found that the mRNA expression level of PYGL showed
a positive correlation with the glioma grade. Overall survival and
Cox regression analyses showed that high PYGL expression is an
independent risk factor for a worse prognosis in glioma
patients (p < 0.05).

GALNT13 is one of the specialized glycosyltransferases termed
polypeptide N-acetylgalactosaminyltransferases, which mediate the
initial reaction in O-linked oligosaccharide biosynthesis.
N-Acetylgalactosaminyltransferases catalyze the transfer of an
N-acetyl-D-galactosamine (GalNAc) residue to a target protein at
the serine or threonine residue, which will form the GalNAc-O-Ser/
Thr structure, also known as Tn antigen (Raman et al., 2012). A
prior study analyzed the expression levels of GALNT13 mRNA in a
variety of fetal and adult human tissues. The greatest expression level
occurred in the fetal brain, trailed by the adult brain (Zhang et al.,
2003). In the analysis of GALNT13 mRNA expression levels among
human cancer cell lines, Nogimori et al. (2016) discovered that the
expression was higher only in neuroblastoma lines and lung tumors.
Considering that GALNT13 is basically expressed in the fetal brain,
both GALNT13 and its products of translation trimeric Tn may play
an essential role in cell growth and proliferation and serve as a
specific maker for malignant CNS tumors (Nogimori et al., 2016).
Different exons in GALNT13 mRNA exhibit distinct sequences in
the lectin-like domain. Consequently, the contrasting outcomes
observed in variant exon usages could potentially be attributed to
variations in substrate recognition during O-glycan synthesis.
Therefore, the utilization of tumor-specific and malignancy-
associated variant exons may hold significance as targets for
molecular therapy in cancer treatment, although further
investigation is required to elucidate the precise mechanisms
involved. Berois et al. (2006) found that GALNT13 was the most
highly expressed gene indicated by microarray gene expression
analysis performed using a metastatic xenograft-derived cell
model of human neuroblastoma, with a 12-fold upregulation in
metastatic malignant neuroblasts compared to the primary cancer
xenograft, suggesting that the GALNT13 expression level could be
potentially used to detect malignant neuroblasts at diagnosis or
recurrence. However, it has not been investigated in clinical studies.

The exostosin (EXT) family of glycosyltransferases includes
EXT1 (located on chromosome 8q23-q24) and EXT2 (located on
chromosome 11p11-p12), which mediate the synthesis of heparan
sulfate proteoglycans (HSPGs) (Busse-Wicher et al., 2014). HSPGs
are ubiquitous component parts of the extracellular matrix and are
involved in tissue homeostasis (Meneghetti et al., 2015). Numerous
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research studies have shown that heparin sulfate is essential for
signal transduction in a variety of processes, such as cell survival,
migration, division, differentiation, and cancer progression (Li and
Kusche-Gullberg, 2016). Both genes (EXT1 and EXT2) encoding
exocrine glycosyltransferases have tumor-suppressive functions,
although the details of mechanisms and predictions of the
prognostic value of exostosin in cancer remain unclear. Ushakov
et al. (2017) demonstrated a significant decrease in both EXT1 and
EXT2 expression levels in gliomas. However, according to Wade
et al. (2013), the expression levels of these genes are upregulated in
glioblastoma tissues. The mutations in EXT1 and EXT2 may have a
significant correlation with hereditary multiple exostoses (HME), a
disorder dominantly associated with a genetic disorder characterized
by the formation of multiple cartilaginous tumors. EXT2 expression
levels showed significant associations with tumor purity as well as
infiltration levels of CD4+ T cells, macrophages, neutrophils, and
dendritic cells in head and neck squamous cell carcinoma. The
observed correlation between elevated EXT2 expression and
increased neutrophil infiltration in head and neck squamous cell
carcinoma cases suggests that this phenomenon might be the most
important factor associated with a poor prognosis. The germline
heterozygous loss-of-function mutations in the tumor suppressor
genes EXT1 or EXT2 shoulder the responsibility for over 70%–95%
of HME cases. Al-Zayed et al. (2021) investigated genetic defects of
EXT2 in Saudi HME patients, and found that 77% of the patients had
EXT1 and EXT2 mutations, while the de novo EXT1 and EXT2
mutations are popular.

The biological functions of human collagen beta (1-O)
galactosyltransferase 2 (COLGALT2) in tumors have not been
determined despite its significance in the collagen glycosylation
process (Wang et al., 2020). Guo et al. (2021) found that
compared with healthy ovary tissues, COLGALT2 expression is
significantly higher in both high-grade and low-grade serous
ovarian cancer types, which are common subtypes of ovarian
cancer. According to Wang et al. (2020), adipose-derived
mesenchymal stem cell exosomes prompt the progression of
osteosarcoma by increasing COLGALT2 expression levels in
osteosarcoma cells. The COLGALT2 enzyme initiates post-
translational glycosylation of collagen and is therefore a
compelling target of osteosarcoma susceptibility (Kehayova et al.,
2021). It was demonstrated that exosomes derived from adipose-
derived mesenchymal stem cells promoted the invasion, migration,
and proliferation of osteosarcoma cells. Furthermore, this effect was
accompanied by an upregulation in the expression of COLGALT2.

Our study pooled multiple glioma datasets to build a universal
model for all gliomas. However, the high degree of heterogeneity
among different types of gliomas is one of the significant obstacles in
the current treatment of glioma. Due to their shared origin in
neuroepithelial-derived cells, LGG and GBM exhibit significant
similarities in their malignant biological behavior. We tried to
explore common biomarkers that can overcome this
heterogeneity. Therefore, we included all types of gliomas in this
study rather than focusing on specific types. In addition, combining
the LGG and GBM datasets could increase the sample size in the
predictive model, which may increase the overall accuracy and
broaden the clinical usage of the model.

Functional enrichment analyses demonstrated differences in
immune-related biological processes between the high- and low-

risk groups. Additionally, the tumor immune microenvironment
was investigated in both groups. It showed that the high-risk group
had higher stromal, immune, and ESTIMATE scores and lower
tumor purity. The high- and low-risk groups had different mutation
burdens. Cancer-associated glycosylation may enhance the
communication among tumor cells in a microenvironment
through the glycan-binding receptor—lectin. Glycans are
oligosaccharide structures discovered on proteins and lipids.
Endogenous lectins are expressed on immune cells and additional
cells in the stroma and facilitate cell–cell interactions and adhesion,
thus contributing to homeostasis. During malignancy, alterations in
the glycosylation of tumor cells may affect inflammatory responses,
facilitate viral immune evasion, enhance cancer cell metastasis, or
regulate apoptosis (Pinho and Reis, 2015). Crizotinib and topotecan
were observed to be effective in the high-risk group, while lapatinib
and nilotinib showed resistance in the same group. Notably,
crizotinib, lapatinib, and nilotinib belong to the class of tyrosine
kinase inhibitors (TKIs) that are commonly used in cancer therapy
to target the epidermal growth factor receptor family (Roskoski,
2014). The application of TKIs to oncology was revolutionary. For
instance, imatinib significantly increased the 5-year survival rate of
Philadelphia chromosome-positive patients with chronic
myelogenous leukemia (CML) from 11% to 90% (Bower et al.,
2016). Topotecan is a water-soluble derivative of camptothecin
that has antineoplastic activity in cell culture and xenograft
systems. It has been approved as a second-line therapy in ovarian
and small-cell lung cancer (SCLC). The drug disrupts the normal
function of the nuclear enzyme topoisomerase I to inhibit the
replication of rapidly dividing cells (Ormrod and Spencer, 1999).

Our study has several advantages. First, we constructed a
glycosylation-related gene signature that includes only five genes
yet shows high accuracy in the prognosis of glioma patients. Second,
the gene signature was constructed based on a public database that
contained a large number of patient samples. Third, no
glycosylation-related gene signature has been found related to
glioma; thus, this study fills the gap of glycosylation-related genes
in the prognostic prediction of glioma. Our study built the predictive
model based on high-throughput sequencing. Although it provided
high-dimensional data with satisfying accuracy, it also limited the
interpretation of our results. In clinical use, high-throughput
sequencing of the tumor tissue is not widely used as a clinical
routine. In addition, the use of normalization methods and the high
tendency of batch effect may decrease the universal use of a model
based on sequencing. In addition, the available samples for qPCR
were not sufficient. Moreover, the underlying molecular mechanism
has not been identified. Therefore, further investigations are
required to study the interactions between glycosylation-related
genes and glioma.

Conclusion

This study developed a predictive model using a glycosylation
signature. This model can accurately predict the survival outcomes
of glioma patients and has been validated using external sources of
data. Additionally, the glycosylation signature correlated with
immune infiltration in the glioma microenvironment and may
suggest varying levels of effectiveness for immunotherapy. These
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findings will offer valuable insights for future studies and
clinical practice.
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