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Introduction: Endometriosis is a prevalent and recurrent medical condition
associated with symptoms such as pelvic discomfort, dysmenorrhea, and
reproductive challenges. Furthermore, it has the potential to progress into a
malignant state, significantly impacting the quality of life for affected
individuals. Despite its significance, there is currently a lack of precise and
non-invasive diagnostic techniques for this condition.

Methods: In this study, we leveraged microarray datasets and employed a
multifaceted approach. We conducted differential gene analysis, implemented
weighted gene co-expression network analysis (WGCNA), and utilized machine
learning algorithms, including random forest, support vector machine, and LASSO
analysis, to comprehensively explore senescence-related genes (SRGs) associated
with endometriosis.

Discussion: Our comprehensive analysis, which also encompassed profiling of
immune cell infiltration and single-cell analysis, highlights the therapeutic potential
of this gene assemblage as promising targets for alleviating endometriosis.
Furthermore, the integration of these biomarkers into diagnostic protocols
promises to enhance diagnostic precision, offering a more effective diagnostic
journey for future endometriosis patients in clinical settings.

Results:Ourmeticulous investigation led to the identification of a cluster of genes,
namely BAK1, LMNA, and FLT1, which emerged as potential discerning biomarkers
for endometriosis. These biomarkers were subsequently utilized to construct an
artificial neural network classifier model and were graphically represented in the
form of a Nomogram.
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1 Introduction

Endometriosis (EM) is one of the most prevalent chronic
inflammatory gynecological maladies, affecting nearly 10% of
women in the stage of childbearing maturation. Its effects extend
to the quality of life and overall wellbeing of a significant number of
women (Liang and Yao, 2016; Becker et al., 2022). Its principal
indications are pelvic discomfort, dysmenorrhea, and uterine
hemorrhaging. Such symptoms affect nearly half of patients,
leading to infertility and other complications (Eskenazi and
Warner, 1997; Giudice and Kao, 2004; Meuleman et al., 2009).
EM has emerged as a public health concern, putting substantial
pressure upon women and their families. Nonetheless, there are
insufficient precise diagnostic and therapeutic interventions. The
pelvic discomfort characteristic of EM can be erroneously identified
as abdominal pain originating from the menstrual cycle, thereby
confounding the diagnostic process. Moreover, there is a consistent
period of latency spanning 7–11 years, from the onset of
symptomatic presentation to the eventual moment of definitive
diagnosis (Greene et al., 2009; Rogers et al., 2013). Laparoscopic
surgery is a benchmark for the diagnosis of EM. However, it is not
widely supported as a diagnostic modality due to its considerable
financial burden and potentially adverse effects on the physiological
state of women (Giudice and Kao, 2004; Li et al., 2021).

A complete understanding of the pathogenesis underlying
EM remains elusive. Several factors, including retrograde
menstruation, cytokine involvement, estrogen influence,
inflammatory reactions, and ectopic implantation, are
considered potential etiological contributors. Among these,
the process of epithelial–mesenchymal transition (EMT) is
gaining recognition in research (Zondervan et al., 2018).
Although the mechanism of the senescence genes in EM is
not fully comprehended, endometrial epithelial cells are often
characterized by senescence in lesions (Velarde and Menon,
2016; Brighton et al., 2017). By applying bioinformatic analyses,
such as enrichment evaluations, a significant nexus between EM
and the cellular cycle has been established. Notably, the
affirmative enrichment of the cellular cycle within the
context of EMT concurs with the cycle being intrinsically
linked to genes associated with senescence. Furthermore, it
has been found that the expression of SRGs is attenuated in
the context of EM (Wang et al., 2022). Telomere correlation
analysis also revealed that the average telomere length is shorter
in women with EM (Gleason et al., 2022). Cellular senescence
(CS) is a stress-induced response to various biological signals
that results in stable cell-cycle arrest (Salama et al., 2014). CS is
often associated with DNA damage, and DNA damage kinase is
associated with telomere shortening (d’Adda di Fagagna, 2008;
Harley et al., 1990).

Given such interrelations, SRGs show considerable promise as
candidates for EM diagnosis. This investigation made a strategic
choice to amalgamate the dataset of SRGs with the EM dataset
obtained from both single-cell sequencing repositories and diverse
transcriptomic compilations culled from public databases. Such
integration facilitated comprehensive bioinformatic analyses, the
formulation of diagnostic models, and the execution of single-cell
scrutiny. We thereby corroborate the diagnostic potential of SRGs
within the context of EM.

2 Materials and methods

2.1 Collection of gene microarray data and
data pre-processing for endometriosis

The Gene Expression Omnibus (GEO) database, hosted on
NCBI (https://www.ncbi.nlm.nih.gov/geo/), supplied three gene
expression microarray datasets related to EM: GSE12768-
GPL7304 (Borghese et al., 2008), GSE11691-GPL96 (Hull et al.,
2008), and GSE7305-GPL570 (Hever et al., 2007). For
comprehensive details concerning these datasets, see
Supplementary Table S1. We included a cohort of patients who
had been definitively diagnosed with EM from the GEO database
and transcribed and analyzed their normal and diseased endometrial
human tissue. In addition, cohorts with complete patient follow-up
information and complete clinical information, and cohorts with
complete micro-matrix data, were required to ensure data quality for
subsequent bioinformatics analysis. To minimize the influence of
other gynecological conditions, we excluded subjects who may have
concurrently suffered from other important gynecologic conditions
to maintain the cohort’s integrity. To facilitate agreement with
official platform annotations, probe IDs were transformed into
gene symbols, wherein probes with multiple associated gene
symbols and those without were systematically excluded. For
instance, when multiple gene symbols were ascribed to a single
gene, the median value was computed to represent the unique
expression value. Datasets GSE12768 and GSE11691 were thus
merged, and, to mitigate the influence of batch disparities within
the microarray expression data, the ComBat function encompassed
within the R package “sva” was used for batch effect rectification
(Roder et al., 2019). The resulting processed microarrays were
subsequently employed as the intrinsic training dataset, while
GSE7305 functioned as the extraneous validation dataset. For this
research, 307 SRGs (SRGs) were extracted from the Human
Senescence Genome Resource (HAGR, http://genomics.
senescence.info/genes/) (Tacutu et al., 2018). The complete
enumeration of these genes is provided in Supplementary Table S2.

2.2 Identification of differentially expressed
SRGs

The gene expression microarrays specific to EMwere intersected
with the set of 307 SRGs, revealing their shared genes. This common
gene pool was subsequently subjected to differential analysis. To
facilitate this, the “limma” R package was employed, adopting
established thresholds (p-value <0.05 and Log2|FC| > 0.5) to
discriminate genes displaying differential expression (Song et al.,
2022a; Zhao et al., 2022; Song et al., 2022b). A selection of 45 genes,
termed differentially expressed SRGs (DE-SRGs), was thus culled
from this analysis.

The “ggplot2” and “pheatmap” R packages were used to present
these outcomes (Chi et al., 2022a; Shen et al., 2022; Huang et al.,
2023). The former created a visually informative volcano plot, while
the latter constructed a heatmap depicting the expression patterns of
the DE-SRGs. Additionally, deviation maps were formulated to
underscore the divergences in gene expression tendencies
between the EM and healthy cohorts. This was achieved using
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the “ggpubr” R package (version 4.0.2) (https://github.com/
kassambara/ggpubr). These deviation maps delineate the
trajectory of gene expression profiles within both the EM and
healthy groups.

2.3 Functional enrichment analysis of
differentially expressed SRGs

Utilizing the clusterProfiler R package (Jin et al., 2022; Chi et al.,
2023a; Ren et al., 2023) (https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html), a comprehensive enrichment
analysis was executed for the DE-SRGs in the context of EM.
This analysis interrogated the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, Gene Ontology (GO) terms, and
Disease Ontology (DO). The objective was to identify statistically
significant biological functionalities and enrichment pathways, with
strict criteria set at p-values <0.05 and Q-values <0.05 to ensure
robustness. Prior to enrichment analysis, preprocessing was
undertaken to ensure uniform gene annotation by transforming
all gene symbols into Entrez IDs, which was facilitated by the human
genome-wide annotation R package “org.Hs.e.g.,.db.”GO comprises
three distinct components: biological process (BP), cellular
component (CC), and molecular function (MF).

2.4 Feature gene identification by
integrating three machine learning
algorithms

The cohort of 45 DE-SRGs underwent a meticulous screening
process whereing three distinct machine learning algorithms were
harmoniously amalgamated: support vector machine-recursive
feature elimination (SVM-RFE), random forest (RF), and the
least absolute shrinkage and selection operator (LASSO) (Chi
et al., 2023b; Song et al., 2023; Zhang et al., 2023). SVM-RFE,
an advance upon the sequential backward selection algorithm
rooted in the SVM’s tenet of maximal margin, delivers superior
and more proficient classification performance, particularly for
high-dimensional datasets. The realization of SVM-RFE was
facilitated using the “e1071” R package, a tool that identifies
relevant attributes while discarding redundant ones (Mundra
and Rajapakse, 2010). The RF algorithm embodies a high-
precision and sensitivity-oriented integration technique that
integrates multiple decision trees and amalgamates the
outcomes of diverse classifiers into a unified decision, achieved
through the utilization of the “randomForest” R package (Strobl
et al., 2007). This investigation prioritized the relative significance
among the 45(DE-SRGs, ultimately selecting candidate genes
whose relative importance surpassed the threshold of 0.1. Due
to its reputation for proficient dimensionality reduction, LASSO
emerged as an exceptional tool. To optimize its performance, a
rigorous assessment was undertaken involving ten-fold cross-
validations, orchestrated through the “glmnet” R package, to
discern the optimal tuning parameter (λ) (Friedman et al.,
2008). The optimal configuration of λ was discerned as the
point of minimal magnitude. In comparison with alternative
algorithms, LASSO was very efficient at evaluating high-

dimensional datasets. The common genes extracted through the
amalgamation of these three machine-learning algorithms were
subsequently harnessed as biomarkers for the prediction of
endometriosis.

2.5 Building an artificial neural network
disease classification model and nomogram

Artificial neural networks (ANNs) are important in the field of deep
learning within artificial intelligence systems, serving as consequential
analytical instruments. Typically comprising three strata, ANN models
encompass an input layer for information reception, one or more
hidden layers for information processing, and an output layer for result
computation. In this investigation, the “neuralnet” (Beck, 2018) R
package was employed to construct ANN models founded upon
three SRGs. These were orchestrated with a configuration
comprising five hidden layers, and the gene weight data were
harnessed to formulate a classification model primed for EM disease
prediction. Similar parameters and processes were extended to an
external dataset for model validation. ROC curves were computed
employing the “pROC” R package to elicit AUC values, which are
pivotal in evaluating the predictive efficacy of the ANN model. In
parallel, a nomogram based on the three SRGs was meticulously
formulated through the “rms” R package. Calibration curves and
decision curve analysis (DCA) were used to visualize the
discriminatory capacity of the model.

2.6 Network construction and functional
enrichment analysis of WGCNA co-
expression

TheWGCNA algorithm clusters highly correlated genes into
gene set modules, guided by a scale-free topological criterion
and reveals the intricate interplay between these modules and
disease traits. For this research, the “WGCNA” R package
(Langfelder and Horvath, 2008) was pivotal, independently
making connections between phenotypes (EM or health) and
individual modules. The module exhibiting the highest
correlation coefficient coupled with the most statistically
significant p-value emerged as the principal module
associated with endometriosis.

Subsequently, the genes nested within the pivotal modules were
subjected to enrichment analysis which utilized Metascape data
(http://metascape.org) (Zhou et al., 2019). The outcomes of this
analysis highlighted the top 100 results from the enrichment, and a
network diagram was generated that employed the top 20 clustering
outcomes. In this diagram, the thickness of connecting lines served
as an indicator of the similarity score, thus visually representing the
intricate relationships established.

2.7 Immune cell infiltration abundance
analysis

The R package IOBR (Zeng et al., 2021) (Immuno-Oncology
Biology Research) amalgamated the four algorithms, TIMER,
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ESTIMATE, xCell, and CIBERSORT, which served as pivotal tools
for quantifying the presence of immune cell infiltrations. In the
context of this inquiry, the CIBERSORT algorithm emerged as the
preferred choice, delineating the relative composition of 22 immune
cell types. This characterization was achieved by discerning gene
expression patterns in samples, ensuring that the cumulative
presence of each immune cell type within a singular sample
equated to 1. Spearman correlation was harnessed to unravel the
intricate associations, enabling an exploration of the linkages
between the three SRGs and the various constituents of the
immune system.

2.8 Data processing and analysis of
scRNA-seq

The 10× scRNA-seq data were processed as follows: 1) 10×
scRNA-seq data were converted to Seurat objects using the R

software Seurat package (Macosko et al., 2015). 2) Counts were
quality-controlled (quality control (QC)) by excluding low-
quality cells based on mitochondrial or ribosomal gene
percentages. 3) Screening of the top 2000 high variable
genes after QC using the “FindVariableFeatures” function.
4) Principal component analysis (PCA) and uniform
manifold approximation and projection (UMAP) were based
on the 2000 genes for downscaling and cluster identification
(Becht et al., 2018). 5) The “FindAllMarkers” function
identified significant marker genes in different clusters by
setting log2FC to 0.3 and minimum pct to 0.25. 6) Our
analysis of cluster annotations was performed using the
SingleR package in the R software (Aran et al., 2019). Next,
we performed Fisher precision tests to identify potentially
important cell types. We calculated FC values for each cell
type in tumor and normal samples and identified cell types
with FC > 4 or FC < 0.25, with p < 0.05 being the critical
cell type.

FIGURE 1
GEO expression data pre-processing. (A, B) Principal component analysis of EM versus control samples. (C, D) Box plots of raw data normalized
between samples. (E) DEGs heat map plot. (F) DEGs volcano map plot. (E) DEGs butterfly plot. (G) DEGs deviation plot.
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3 Results

3.1 GEO expression data pre-processing and
analysis of variance

We first normalized the gene expression data of GSE11691 and
GSE12768 with quantile normalization andmerged the datasets with the
R package “sva” to remove batch effects. Figure 1A shows a PCA of the
two datasets before and after processing; as shown in the figure, the two
datasets were initially separated without any intersection; after
processing, their intersection can be used as a batch for subsequent
analysis. Figure 1B shows the PCA results for the healthy and EMgroups
in the dataset, and Figures 1C, D show box plots of the two datasets after
normalization—the different colors represent different samples and the
columns indicate the gene expression values in the samples. We then
performed disease differential gene analysis on the combined datasets
and took the intersection with the collected senescence genes.

As shown in the figure, the intersection of the two datasets can
be used as a batch of data for subsequent analysis. A total of 45 genes
were identified as DEGs with 18 upregulated and 27 downregulated

genes under the criteria of p-adjustment < 0.05 and log2 | fold-change
(FC) | >0.5. Figure 1F shows the volcano map of the DEGs and the
heatmap of the top 50 genes (Figure 1E). Finally, significantly different
DEGs are displayed in the deviation plot (Figure 1G).

3.2 GO, KEGG, and DO enrichment analyses
of senescence genes

We performed KEGG pathway analysis, GO functional analysis,
and DO disease analysis to further evaluate the biological function of
the differential genes. Consequently, we used p-value<0.01 and
Q-value<0.05 as thresholds to identify items that were
significantly enriched. Biological process (BP) includes response
to extracellular stimulus, response to peptides, and the like. Cellular
component (CC) includes neuronal cell body and transcriptional
regulatory complex. Molecular function (MF) includes receptor
ligand activity and signaling receptor activator activity
(Figure 2A). KEGG analysis revealed enrichment in breast
cancer, growth hormone synthesis, secretion, and action,

FIGURE 2
GO, KEGG, and DO enrichment analyses of senescence genes. (A) GO, (B) KEGG, and (C) DO analyses show the enriched biological functions of
differentially expressed gene profiles.

Frontiers in Pharmacology frontiersin.org05

Zou et al. 10.3389/fphar.2023.1259467

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1259467


transcriptional misregulation in cancer, and other pathways
associated with gynecological cancers (Figure 2B). DO analysis
found an endocrine system disease—urinary system disease
(Figure 2C). In conclusion, the differential genes have a great
impact on cellular receptive signaling-related functions and
pathways and presumably may play a major role in disease
mechanisms.

3.3 Cluster fusion of differential genes
combined with clinical features

We used WGCNA to analyze associations with clinical features
of EM and differential genes, where the samples were clustered
according to clinical features of the disease; the cohort was processed
using the correlation coefficient method to obtain a sample
clustering tree (Figure 3A). The samples were then analyzed by
hierarchical clustering to construct a gene co-expression network
with a soft threshold of 18 (R2 = 0.8) and higher average connectivity
(Figures 3B, C). By clustering and fusing the characteristic genes into
the differential genes and merging the highly similar modules, five
modules were ultimately obtained (Figure 3D). By showing the

relative independence of gene expression within these modules, the
analysis of the combined results did not reveal any significant
differences between the different modules (Figure 3E).

3.4 Identifying high-relevance modules and
analyzing related functions

In an endeavor to quantify the interrelation between eachmodule
and the two clinical attributes, heatmaps were created to illustrate the
intricate network of interconnections within the module features
(Figure 4A). These heatmaps display the correlations between trait
genes and the traits associated with obesity. Within this context, an
exhaustive co-expression analysis of DEGs was undertaken, which
identified the turquoise module as the epicenter of particularly robust
correlation. This assertion was reinforced by scatter plots which
yielded 106 hub genes that displayed an exceptionally high level of
connectivity within the turquoise module (cor = 0.78, p < 1e-200)
(Figure 4B). KEGG and GO enrichment analyses determined the
functional significance of these 106 hub genes by employing the
Metascape library. This identified over 100 prime genes with
profound enrichment in lipid-related pathways and functions.

FIGURE 3
Cluster fusion of differential genes combined with clinical features. (A) Cluster dendrogram. (B,C) Analysis of network topologies for various soft-
threshold powers. (D) Clustering dendrogram of DEGs with dissimilarity based on the topological overlap, together with assigned module colors. (E)
Heatmap view of co-expressed genes in different modules in the top 1,500 genes.
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These genes also demonstrated close associations with blood vessel
establishment and morphological structures (Figures 4C, D). Such
interplay strongly suggests that the hub genes may have a substantial
impact on EM within hormone synthesis and action.

3.5 Three machine learning algorithms to
screen for modeled genes

The LASSO, RF, and SVM-RFE algorithms were used to screen
feature genes among the differentially expressed genes associated
with key EM progression and senescence processes. For the LASSO
algorithm, we selected after cross-validation the minimum criteria
for constructing the LASSO classifier to identify three feature genes
(Figures 5C, D); the error was minimized when the number of

features was 29 (Figure 5E). Thus, 29 relevant feature genes were
obtained, and the top 13 with importance greater than 0.1 were
selected from the classification tree results (Figures 5A, B) in
combination with RF feature selection. Through crossover, the
three feature genes shared by LASSO, RF, and SVM-RFE
algorithms were finally identified, namely, BAK1, FLT1, and
LMNA, and their relationships were represented by the Venn
diagram (Figure 5F).

3.6 Development and validation of ANN
models and nomogram based on three SRGs

We ultimately selected three pivotal SRGs to construct a hidden
layer number 5 for the ANN model for clinical EM diagnosis

FIGURE 4
Identifying high-relevancemodules and analyzing related functions. (A)Module–trait heatmap. Each row corresponds to amodule eigengene; each
column corresponds to a trait; each cell contains the corresponding correlation and p-value. (B) Scatterplot of gene significance. (GS) for weight vs.
module membership (MM) in the brown module. There is a highly significant correlation between GS and MM in this module. (C) Heatmap of Metascape
analysis colored by p-values. (D) Network of enriched sets colored by ID. Threshold: 0.3 kappa score; similarity score>0.3.
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(Figure 6A). The satisfactory reliability and accuracy of the
prediction model were validated by the ROC curves, and it was
found that the AUC values were greater than 0.85 in both the
training (AUC = 0.822) and the validation cohorts (AUC = 0.895)
(Figures 6E, F). To further promote the clinical application of the
three SRG biomarkers in this study, nomogram plots were also
drawn (Figure 6B) to calculate patient scores based on the expression
data of the three biomarkers to infer the probability of prevalence in
EM patients. In addition, both the DCA and calibration curves
indicated a higher net benefit and accuracy of using the nomogram
for diagnostic prediction in EM patients (Figures 6C, D).

3.7 Detection of immunological features in
EM and normal samples

Immune cells play an essential role in endometrial shedding,
tissue repair, and preventing infection (Shen et al., 2021), although a
disproportionate number of immune cells in an abnormal immune
environment is thought to play a key role in EM pathogenesis (Wu
et al., 2017). The CIBERSORT algorithm in IOBR was used to

calculate the proportion of 22 immune cell infiltrates in EM tissues.
A stacked plot was used to fully visualize the distribution of the
immune infiltrate in the EM tissue (Figure 7A), with the sum of all
immune cell proportions being 1. A significant increase in B cells
naive and NK cells activated in the patient’s uterine tissue was
observed, while the proportion of immune cells such as
macrophages m1 and m2 decreased significantly (Figure 7B). In
addition, the correlation between the three SRGs and immune cells
was explored based on the permanent method (Figure 7C), where
FLT1 and Macrophages_M1 had the highest positive correlation
while LMNA and NK_cells_activated had the highest negative
correlation; their correlation scatter plots are shown in
Figures 7D, E.

3.8 Single-cell analysis

Following quality control procedures applied to the single-cell
dataset, a crucial phase was PCA-based dimensionality reduction,
where the determination of the optimal number of selected PCs
was substantiated by insights gleaned from the JackStrawPlot and

FIGURE 5
Three machine learning algorithms screen modeling genes. (A) Ranking of genes according to their relative importance. (B) Ten-fold cross-
validation of tuning parameter selection in the LASSO model. Each curve corresponds to one gene. (C) LASSO coefficient profiles. The solid vertical line
indicates the partial likelihood deviation SE. The dashed line is drawn at the best λ. (D) Random forest (RF) for the relationship between the number of trees
and error rate. (E) Biomarker signature gene expression validation by support vector machine-recursive feature elimination (SVM-RFE). (F) LASSO,
RF, and SVM-RFE algorithms shared by the Venn diagram of signature genes.
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ElbowPlot plot analyses (Figures 8A, B). Subsequently, the
“FindClusters” function harnessed from the “Seurat” package
was deployed to cluster the individual cells, which were further
annotated using SingleR. The resulting visualization was realized
through t-SNE and UMAP downscaling techniques, thereby
culminating in the identification and characterization of six
distinct cell types (Figures 8C, D). The exploration extended
to evaluating the expression occupancy of the three modeled
genes—BAK1, FLT1, and LMNA—within these six cell types.
Intriguingly, the results revealed that LMNA exhibited
heightened expression across nearly all cell types, whereas
FLT1 demonstrated pronounced expression solely within
epithelial cells (Figures 8E, F). We then explored deeper into
ligand–receptor networks and the delineation of specific
pathways, thus facilitating the inference of cell–cell

communication networks. Based on these findings, MHC-I
and TGFb emerged as prominent drivers of signaling
communication within NK cells and epithelial cells,
respectively (Figures 8G, H).

4 Discussion

Despite affecting approximately 10% of women within the
reproductive age bracket, the intricate connection between EM
and various health ramifications, including early natural
menopause (ENM), remains enigmatic. A substantial corpus of
clinically documented cases underscores the notion that EM is
intrinsically related to ovarian senescence, thereby exerting a
tangible influence on the temporal span leading to menopause

FIGURE 6
Development and validation of ANN models and nomogram based on three SRGs. (A) Artificial neural network plot. (B) Nomogram plot. (C)
Calibration curve. (D) DCA curve. (E) Test group ROC curve. (F) Training group ROC curve.
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(Pokoradi et al., 2011). Nonetheless, it is crucial to note that these
linkages exhibit non-linear characteristics and manifest
inconsistency across distinct markers. Moreover, factors that
introduce perturbations to ovarian functionality, encompassing
instances such as ovarian surgery, autoimmune variations,
smoking habits, and the utilization of androgenic exogenous
hormones, have the potential to reverberate across the ovarian
reserve. This resonance is characterized by diminished follicle
counts and compromised oocyte quality and quantity.
Consequently, this is closely aligned with an earlier onset of
menopause and the initiation of ovarian senescence (Seyhan
et al., 2015; Romanski et al., 2019).

Consequently, the computation of senescence-related genes
(DEGs) is intricately linked with EM. This was accomplished
through a co-expression network analysis of genes differentially
expressed within the context of EM. Subsequently, leveraging
the prowess of LASSO, SVM-RFE, and RF identified three

candidate attributes: FLT1, LMNA, and BAK1. These
attributes revealed insights from the gene selection process.
Within this framework, the neural network model assumed a
defining role, identifying the predictive weights attributed to the
associated genes. This led to the establishment of a classification
model score for EM. Finally, the correlation between the
modeled genes and the immune characteristics of EM
patients was explored.

Angiogenesis emerges as a plausible player in the intricate
pathogenic fabric of EM, wherein FLT1—a prominent receptor
for vascular endothelial growth factor (VEGF)—is pivotal as a
major regulator of pro-angiogenic factors. Differential expression
of FLT1 characterizes all subtypes of EM in comparison to their
normal tissue counterparts. Furthermore, the emergence of high-
risk red lesions may be attributed to elevated levels of VEGF and its
receptors (FLT1 and FLT2), instigating an augmentation in the
subperitoneal vascular network. This then fosters the propagation of

FIGURE 7
Detection of immunological features in EM and normal samples. (A) Immune infiltration stack plot. (B) Comparison of immune cells between EM
patients and controls. (C) Correlation of three SRGs with immune cells. (D) Correlation of FLT1 with Macrophages_M1. (E) Correlation of LMNA with NK_
cells_activated.
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malignant retroperitoneal gap implantation (Donnez et al., 1998;
Aydin et al., 2021).

Changes in the hypermethylation status of the CpG islets of the
laminin A/C (LMNA) gene are associated with insulin resistance in
patients with polycystic ovary syndrome (PCOS), suggesting that
this gene may be involved in the regulation of PCOS-associated
insulin resistance (Ting et al., 2013). In addition, insulin resistance is
an important pathological mechanism in endometrial cancer and
EM (Wei and Li, 2020), and mutations in LMNA are thought to be a
causal factor in non-valvular atrial fibrillation (NVAF) (Saj et al.,
2012) and Hutchinson–Gilford premature senescence syndrome
(HGPS) (Auld et al., 2010).

The Bcl-2 family gene BCL2 Antagonist/Killer 1 (BAK1) was
found expressed at high levels in the apoptotic tissues of several
clinical diseases (Zhou et al., 2008; Xu et al., 2011; Magee et al.,
2014), and EM has been shown by some scholars to be a pathological
consequence of inflammation and apoptosis (Laganà et al., 2019);
thus, the high expression of BAK1 is involved in the
pathomechanical process that regulates inflammation and
apoptosis in the endometrium of EM patients.

The peritoneal immune milieu plays a pivotal role in the
intricate EM pathophysiology (Vallvé-Juanico et al., 2019). This
environment encompasses compromised natural killer cells,
perturbed T-cell differentiation, and autoantibodies stemming

FIGURE 8
Single-cell analysis. (A) JackStrawPlot. (B) ElbowPlot. (C,D)Distribution of results after annotation of immune cell subpopulations. (E,F) Expression of
modeled genes in each cell type. (G)Cellular communication networkmap. (H)Heatmap of the correlation between ligand receptors in TGFb andMHC-1
in various cell types.
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from activated B cells (Chi et al., 2022b; Zhao et al., 2022; Chi
et al., 2023c; Xiong et al., 2023). Consequently, it is critical to
scrutinize the interplay that links senescence-associated
prognostic genes with the diverse immune attributes exhibited
by EM patients. This exploration is driven by the aim of
formulating potential immunotherapeutic regimens or
pharmaceutical agents for clinical implementation. Moreover,
it seeks to enhance prevailing clinical treatment protocols,
thereby heightening their overall efficacy and engendering
superior therapeutic outcomes.

This investigation seeks to leverage machine learning algorithms
to sift through the genetic signatures of EM to create a novel
diagnostic framework grounded in artificial neural networks. Its
ultimate objective is tangible benefits for clinical patients. However,
it is important to acknowledge certain inherent limitations within
this study. First is the relatively modest sample size within the
cohort, which may not well capture the broader population
dynamics, consequently influencing the applicability and
generalization of the diagnostic model. Additionally, it is
important to recognize that the diagnostic model is predicated on
preliminary findings and lacks robust experimental validation
essential to substantiate its clinical viability and dependability.
Given these constraints, the diagnostic model necessitates further
in-depth scrutiny and exploration to ascertain its potential utility in
shaping clinical decision-making processes.

In conclusion, EM imposes an immeasurable burden beyond its
localized symptoms, with far-reaching effects on all aspects of
overall health. The chronic pain, reproductive challenges, and
potential complications associated with it not only severely
impact the physical health of patients but also their mental and
emotional wellbeing, placing a heavy economic burden on society.
We have identified a better diagnostic model than previously
available (Ji et al., 2022), and these data highlight the need for
further research to uncover senescence-related mechanisms in EM.
It has laid some foundation and direction for more in-depth research
afterward.

5 Conclusion

Within this investigation, a trio of pivotal senescence hub
genes—BAK1, LMNA, and FLT1—were meticulously chosen.
This selection was grounded in comprehensive bioinformatics
analysis, and these hub genes were leveraged to create a
“classifier” and forge a nomogram plot dedicated to
endometriosis (EM). Furthermore, the study revealed the
existence of two discernible senescence-associated subtypes,
coupled with the discernment of pivotal regulatory pathways
and the intricate landscape of the immune microenvironment.

This research may deliver fresh perspectives concerning the
future of drug interventions and the molecular underpinnings
of EM.
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