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Background: The promise of immune checkpoint inhibitors (ICIs) therapy in
cancer treatment is tempered by the occurrence of immune-related adverse
events (irAEs). Many patients undergoing ICIs also take aspirin, but the association
between aspirin and irAEs is not well understood.

Methods: This study analyzed adverse reaction data associatedwith the use of ICIs
in the US Food and Drug Administration (FDA) Adverse Event Reporting System
FDA Adverse Event Reporting System database, from the approval date of each
drug until 1 October 2022. Multivariate logistic regression was employed to assess
the association of aspirin use with irAEs in patients receiving ICIs.

Results: The results indicated that aspirin usewas associatedwith an increased risk
of irAEs in a pan-cancer analysis, with a more pronounced association in specific
cancer types such as lung cancer, mesothelioma, and pancreatic cancer.
However, in lymphoma, aspirin use was associated with a reduced risk of irAEs.
Furthermore, aspirin use was associated with an increased risk of certain irAEs,
such as anemia, colitis, myocarditis, myositis, pancreatitis, pericarditis, and
pneumonia, while it was associated with a reduced risk of rash, Stevens-
Johnson syndrome, and thyroiditis.

Conclusion: This study has unveiled an association between aspirin use and irAEs
in cancer patients receiving ICIs therapy, emphasizing the need for individualized
consideration of patients’ medication history when devising cancer treatment
plans to enhance efficacy and reduce risks.
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1 Introduction

ICIs therapy is a groundbreaking approach to treating tumors
that leverages the immune system to combat malignancies. This
approach enhances immune-mediated tumor clearance by blocking
negative signals between cancer cells and immune cells (Waldman
et al., 2020; Morad et al., 2021). To this end, ICIs that target
programmed cell death-1 (PD-1)/programmed death ligand-1
(PD-L1) as well as cytotoxic T lymphocyte-associated protein 4
(CTLA-4) have been developed and employed by researchers in
clinical practice (Waldman et al., 2020; Morad et al., 2021). As
mounting evidence supports their efficacy and synergistic effects
with other cancer treatments, ICIs are increasingly being utilized as a
key component in the treatment of many types of cancer, such as
melanoma, lung cancer and esophageal cancer (Gadgeel et al., 2020;
Rudin et al., 2020; Doki et al., 2022; Livingstone et al., 2022).
However, it is important to note that, to date, ICIs remains
ineffective for several cancer types, for instance, pancreatic cancer
(Bockorny et al., 2022). In some cases, ICIs have not yet attained the
status of standard care, as seen in breast cancer (Debien et al., 2023).

However, a notable issue arising from the increasing use of ICIs
in clinical practice is their uncontrolled additive impact on the
immune system, resulting in irAEs. ICIs manifest unique patterns of
toxicity distinct from conventional chemotherapy or other biological
agents, often stemming from hyperactive immune reactions against
normal organs. irAEs can affect any organ system, including the
skin, gastrointestinal tract, cardiovascular system, and endocrine
system, among others (Brahmer et al., 2018; Schneider et al., 2021).
The frequency of irAEs ranged from 66.4% to 86.8% for all grades,
and from 14.1% to 28.6% for grade 3 or higher (Xu et al., 2018).
irAEs may be influenced by the patient’s genetic background and
microbiome, as well as by treatment-related factors such as
combination medication (Jelinic et al., 2018; Cortellini et al.,
2020). The mechanism of irAEs is not fully understood but may
be related to the overactivation of innate and adaptive immunity
caused by the disruption of immune balance by immunotherapy
(Pauken et al., 2019). Since the occurrence of irAEs restricts the use
of ICIs, it is necessary to further understand the mechanism and
influencing factors of irAEs.

Drug-drug interactions (DDI) are a significant focus in the field of
systemic anti-cancer treatment. Previous studies have found that
combination therapy has an important impact on the outcome of
immunotherapy and irAEs. For example, the use of antibiotics and
proton pump inhibitors (PPIs) has been associated with poorer
outcomes in patients with ICIs (Kostine et al., 2021). Aspirin has
become widely used in modern medicine, primarily due to its ability to
inhibit the cyclooxygenase (COX) pathway and effectively treat
inflammation, pain, and various cardiovascular diseases (Fijałkowski
et al., 2022). In recent years, aspirin has also been found to have a well-
documented role in the prevention and treatment of tumors (Algra and
Rothwell, 2012; Rothwell et al., 2012), especially in colorectal cancer
(Rothwell et al., 2010; Drew and Chan, 2021). With the innovation in
the field of cancer treatment and the emergence of a new therapy,
namely, immunotherapy, researchers have gradually paid attention to
the relationship between aspirin and immunotherapy. Recent clinical
studies have suggested that the combination of aspirin and ICIs is
associated with better outcomes (Cortellini et al., 2020; Zhang et al.,
2021). In addition, Aspirin use and its relationship to irAEs were rarely

addressed in these studies. Given the widespread acceptance of ICIs
into standard practice, it is crucial to gain a better understanding of the
association between aspirin treatment and irAEs.

FAERS is a comprehensive drug adverse reaction database
maintained by the FDA. Its advantages include broad coverage of
adverse events from clinical trials to market use, timely updates,
comprehensive drug information, large-scale data for analysis, and
reliable reporting from healthcare professionals and consumers. It is
a trusted resource for monitoring and reporting drug adverse
reactions, and helps to inform better clinical practice and
healthcare decision-making. To date, no systematic evaluation of
the association of aspirin with irAEs has been published. Therefore,
our aim was to determine the association between aspirin use and
irAEs in patients receiving immunotherapy by analyzing the data in
FAERS. Our research affirms that aspirin users exhibited a higher
risk of irAEs when compared to non-aspirin users. Nonetheless, this
association displayed variability across distinct cancer types, adverse
events, and ICIs.

2 Methods

2.1 Data sources

The study utilized data from the FAERS database, a public
repository that houses information on adverse events and
medication errors reported to the FDA. This database is an
essential tool for the FDA’s post-marketing safety surveillance
program for drug and therapeutic biologic products. All data
used for this analysis can be accessed at https://fis.fda.gov/sense/
app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-
4203-a8aa-6d3021737452/state/analysis.

2.2 Data collection and screening

Adverse event (AE) reports from ICIs in the FAERS database were
collected for this retrospective study. The analysis included every
report from the date of each drug’s FDA approval until 1 October
2022. ICIs mainly consists of PD-1 inhibitors (Nivolumab,
Pembrolizumab, Cemiplimab, Sintilimab, Camrelizumab,
Tislelizumab, Toripalimab), PD-L1 inhibitors (Durvalumab,
Atezolizumab, Avelumab), CTLA-4 inhibitors (Ipilimumab,
Tremelimumab, Quavonlimab, Bms-986249), Lymphocyte-
activation gene 3 (LAG-3) inhibitors (Opdualag, Relatlimab,
Favezelimab, Fianlimab), PD-1/LAG-3 bispecific inhibitors
(Nivolumab\Relatlimab-Rmbw, Tebotelimab). According to the
patient’s medication, the treatment regimen were classified as
monotherapy, dual immunotherapy, immunotherapy combined
with targeted therapy, immunotherapy combined with
chemotherapy, and immune combined antibody drug conjugates
(ADC). We defined the use of aspirin during immunotherapy as
aspirin users. irAEswere defined usingAE terminology from the peer-
reviewed immune-related adverse event (irAE) management
guidelines (Martins et al., 2019). Patients with at least one irAE
were categorized into the irAE group. The irAEs were sorted into
primary system organ classes according to the Medical Dictionary for
Regulatory Activities (Jing et al., 2022).
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TABLE 1 Baseline feature.

Characteristics With ASA Without ASA p-Value

n = 5,359 n = 117,745

Sex Female 1,424 (26.6%) 41,676 (35.4%) p < 0.001

Male 3,909 (72.9%) 70,432 (59.8%)

Not specified 26 (0.5%) 5,637 (4.8%)

age 68.9 (9.0) 63.9 (12.5) p < 0.001

ICIs type PD-1 inhibitor 2,847 (53.1%) 67,808 (57.6%) p < 0.001

PD-L1 inhibitor 1,193 (22.3%) 20,122 (17.1%)

CTLA-4 inhibitor 1,297 (24.2%) 29,356 (24.9%)

LAG-3 inhibitor 19 (0.6%) 239 (0.2%)

PD-1/LAG-3 inhibitor 3 (0.1%) 220 (0.2%)

Cancer type Bile duct cancer 15 (0.3%) 493 (0.4%) p < 0.001

Brain cancer 17 (0.3%) 641 (0.5%)

Breast cancer 57 (1.1%) 2,356 (2.0%)

Cervical cancer 8 (0.1%) 488 (0.4%)

Colorectal cancer 98 (1.8%) 1870 (1.6%)

Endometrial cancer 38 (0.7%) 1,227 (1.0%)

Esophageal cancer 48 (0.9%) 1,382 (1.2%)

Gastric cancer 52 (1.0%) 2,706 (2.3%)

Head and neck cancer 119 (2.2%) 2,996 (2.5%)

Liver cancer 159 (3.0%) 3,589 (3.0%)

Lung cancer 1,532 (28.6%) 29,212 (24.8%)

Lymphoma 81 (1.5%) 1732 (1.5%)

Melanoma 1,095 (20.4%) 25,904 (22.0%)

Mesothelioma 70 (1.3%) 1,256 (1.1%)

Metastatic tumor 112 (2.1%) 2,303 (2.0%)

Neuroendocrine tumor 13 (0.2%) 339 (0.3%)

Ovarian cancer 49 (0.9%) 1,212 (1.0%)

Pancreatic cancer 243 (4.5%) 1,691 (1.4%)

Prostate cancer 140 (2.6%) 1,025 (0.9%)

Renal cancer 591 (11.0%) 12,087 (10.3%)

Sarcoma 55 (1.0%) 843 (0.7%)

Skin cancer 39 (0.7%) 662 (0.6%)

Thyroid cancer 9 (0.2%) 299 (0.3%)

Urothelial tract cancer 165 (3.1%) 3,063 (2.6%)

Other cancers 554 (10.3%) 18,369 (15.6%)

irAEs Yes 1,294 (24.1%) 25,205 (21.4%) p < 0.001

No 4,065 (75.9%) 92,540 (78.6%)

ASA: Aspirin.
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2.3 Statistical analysis

In this study, multivariable logistic regression was utilized to
analyze adjusted odds ratios (OR) for evaluating the association
between aspirin use and irAEs. The model included covariates such
as age, sex, ICIs drugs, and treatment regimen. To account for
multiple comparisons, Benjamini–Hochberg adjustment was
performed using the “p.adjust” function in the “stats” R package.
All comparisons are two tailed, and statistical significance was set at
an FDR adjusted p < 0.05. The data were processed and analyzed
using R statistical software version 4.2.1. On the overall population,
we conducted multivariate regression analyses grouping by different
tumor types, types of adverse reactions, and system organ classes
(SOCs) to determine the impact of aspirin use on irAEs in patients
treated with ICIs. Additionally, to further determine if different ICIs
had an effect on the results, we performed multivariate logistic
regression analyses in patients treated with PD-1 inhibitors, PD-L1
inhibitors, and CTLA-4 inhibitors, respectively.

3 Results

3.1 Baseline characteristics of patients

We collected information on 123,104 patients from FAERS and
conducted a multivariate regression analysis (Table 1). Out of these

patients, 70,655 were treated with PD-1 inhibitors, 21,315 were
treated with PD-L1 inhibitors, 30,653 were treated with CTLA-4
inhibitors, 258 were treated with LAG-3 inhibitors, and 223 were
treated with PD-1/LAG-3 bispecific inhibitors (Table 1).
Moreover, 5,359 patients (4.4%) reported also taking aspirin
(Table 1).

3.2 Association of aspirin treatment with
irAEs in different cancer types

The multivariate logistic regression analysis results revealed that
aspirin use was associated with an increased risk of irAEs in the pan-
cancer analysis (odds ratio (OR) 1.18, 95% confidence interval (CI)
1.10–1.26, FDR adjusted p < 0.001) (Figure 1). After excluding
cancer types with a sample size of less than 200, we included
24 cancer types for analysis (Table 1). The further analysis
indicated that aspirin use was linked to a higher risk of irAEs in
specific cancer types. Specifically, aspirin use was significantly
associated with an increased risk of irAEs in lung cancer (OR
1.24, 95% CI 1.10–1.40, FDR adjusted p = 0.003) (Figure 1),
mesothelioma (OR 2.90, 95% CI 1.75–4.82, FDR adjusted p <
0.001) (Figure 1), and pancreatic cancer (OR 2.51, 95% CI
1.79–3.51, FDR adjusted p < 0.001) (Figure 1). In contrast,
aspirin use was linked to a lower risk of irAEs in lymphoma (OR
0.27, 95% CI 0.11–0.67, FDR adjusted p = 0.029) (Figure 1).

FIGURE 1
The forest plot showing the association between aspirin and irAEs in different cancer types among patients receiving immunotherapy. ASA: Aspirin.
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However, no significant differences in irAEs were observed in the
remaining cancer types (Figure 1).

3.3 Association of aspirin treatment with
different irAEs

We conducted a survey to determine the association of aspirin
with specific irAEs. Our results revealed that aspirin use was
correlated with an elevated risk of several adverse reactions,
including anaemia (OR 1.24, 95% CI 1.06–1.47, FDR adjusted
p = 0.042) (Figure 2), colitis (OR 1.46, 95% CI 1.27–1.66, FDR
adjusted p < 0.001) (Figure 2), myocarditis (OR 1.37, 95% CI
1.09–1.71, FDR adjusted p = 0.033) (Figure 2), myositis (OR 1.44,
95% CI 1.12–1.86, FDR adjusted p = 0.033) (Figure 2),
pancreatitis (OR 1.69, 95% CI 1.23–2.32, FDR adjusted p =
0.015) (Figure 2), pericarditis (OR 1.93, 95% CI 1.20–3.11,
FDR adjusted p = 0.033) (Figure 2) and pneumonitis (OR 1.60,
95% CI 1.39–1.84, FDR adjusted p < 0.001) (Figure 2). On the
other hand, aspirin use was associated with a decreased risk of

certain adverse reactions, such as rash (OR 0.68, 95% CI
0.56–0.82, FDR adjusted p = 0.001) (Figure 2), Stevens-
Johnson syndrome (OR 0.18, 95% CI 0.06–0.56, FDR adjusted
p = 0.027) (Figure 2), and thyroiditis (OR 0.48, 95% CI 0.28–0.81,
FDR adjusted p = 0.033) (Figure 2).

3.4 Association of aspirin treatment with
irAEs in different organs

Then, we mapped irAEs to their corresponding system organ
classes, involving a total of 13 organ systems. Our results demonstrate
that aspirin users have a higher risk of developing irAEs in the blood
and lymphatic system disorders (OR 1.19, 95% CI 1.06–1.34, FDR
adjusted p = 0.019) (Figure 3), cardiac disorders (OR 1.35, 95% CI
1.09–1.66, FDR adjusted p = 0.020) (Figure 3) and respiratory thoracic
and mediastinal disorders (OR 1.30, 95% CI 1.12–1.51, FDR adjusted
p = 0.004) (Figure 3), while having a lower risk of developing irAEs in
the skin and subcutaneous tissue disorders (OR 0.74, 95% CI
0.64–0.86, FDR adjusted p = 0.001) (Figure 3).

FIGURE 2
The forest plot showing the association between aspirin use and different irAEs among patients receiving immunotherapy. ASA: Aspirin; sjs: Stevens-
Johnson syndrome.
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3.5 Association of aspirin use with irAEs
among cancer patients treated with PD-1
inhibitors

We next investigated the association between aspirin use and
irAE in patients using different ICIs. In a pan-cancer analysis of
patients using PD-1 inhibitors, aspirin use was shown to be

associated with a higher risk of irAEs (OR 1.20, 95% CI
1.09–1.31, FDR adjusted p = 0.002) (Figure 4). Further
analysis revealed that aspirin use was associated with an
increased risk of irAEs in lung cancer (OR 1.25, 95% CI
1.07–1.46, FDR adjusted p = 0.031) (Figure 4) and
mesothelioma (OR 3.01, 95% CI 1.57–5.76, FDR adjusted p =
0.013) (Figure 4). In addition, for different adverse reactions, the

FIGURE 3
The forest plot showing the association between aspirin use and irAEs from different system organ classes (SOC) among patients receiving
immunotherapy. ASA: Aspirin.

FIGURE 4
The forest plot showing the association between aspirin use and irAEs across different cancer types among patients using PD-1 inhibitors. ASA:
Aspirin.
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risk of anaemia (OR 1.52, 95% CI 1.23–1.88, FDR adjusted p =
0.002) (Figure 5), enteritis (OR 2.16, 95% CI 1.29–3.63, FDR
adjusted p = 0.040) (Figure 5), pneumonitis (OR 1.61, 95% CI
1.32–1.96, FDR adjusted p < 0.001) and pancreatitis (OR 2.18,
95% CI 1.46–3.25, FDR adjusted p = 0.002) (Figure 5) were higher
in aspirin users.

3.6 Association of aspirin use with irAEs
among cancer patients treated with PD-L1
inhibitors

In patients receiving PD-L1 inhibitors, the combination of aspirin
demonstrated a tendency to increase adverse reactions in pan-cancer,
but there was no statistically significant difference. However, aspirin
increased the risk of irAEs in patients with pancreatic cancer (OR 3.48,
95% CI 2.07–5.86, FDR adjusted p < 0.001) (Figure 6). In addition,
with respect to specific adverse reactions, the risk of colitis (OR 2.31,
95% CI 1.66–3.23, FDR adjusted p < 0.001) (Figure 7), pericarditis
(OR 4.08, 95% CI 1.93–8.63, FDR adjusted p = 0.005) (Figure 7) and
pneumonitis (OR 1.57, 95% CI 1.18–2.11, FDR adjusted p = 0.035)
(Figure 7) were higher in aspirin users.

3.7 Association of aspirin use with irAEs
among cancer patients treated with CTLA-4
inhibitors

In patients receiving CTLA-4 inhibitors, there is still a trend
towards an increased risk of adverse reactions with the use of aspirin,
but only with statistical significance in pancreatic cancer (OR 2.91,
95% CI 1.71–4.96, FDR adjusted p = 0.002) (Figure 8). No statistical
difference was observed among different immune-related adverse
events. Finally, subgroup analysis was not performed for patients
receiving LAG-3 inhibitors and PD-1/LAG-3 inhibitors due to the
small sample size.

3.8 Hypothetical molecular mechanisms
linking aspirin treatment to the risk of irAEs

Until now, the specific mechanisms underlying the association
of aspirin with irAEs in cancer patients treated with ICIs remain
unknown, but some studies have shown that aspirin plays an
important role in immune regulation. Aspirin regulates T cells
through COX-1 and COX-2 pathways (Zelenay et al., 2015;

FIGURE 5
The forest plot showing the association between aspirin use and different irAEs among patients using PD-1 inhibitors. ASA: Aspirin; sjs: Stevens-
Johnson syndrome.
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Rachidi et al., 2017), and activated T cells may lead to increased
irAEs risk (Khan and Gerber, 2020). In addition, the modulation of
gut microbiota by aspirin may also mediate the increased risk of
irAEs (Chaput et al., 2017) (Figure 9).

4 Discussion

By understanding how the immune system interacts with tumor
cells, scientists have established new therapies for cancer treatment

that have brought noteworthy clinical benefits for cancer patients
(Morad et al., 2021). However, many cancer patients have
underlying diseases, and the presence of other drugs may affect
the immunotherapy. ICIs leverage diverse mechanisms and
pathways to harness the immune system’s ability to eradicate
tumor cells. Consequently, potential interactions between
concomitant medications and ICIs transcend the typical
assessment of pharmacodynamic and pharmacokinetic
interactions between drugs. Aspirin is currently one of the most
widely used basic drugs, Previous studies reported that aspirin use is

FIGURE 7
The forest plot showing the association between aspirin use and different irAEs among patients using PD-L1 inhibitors. ASA: Aspirin; sjs: Stevens-
Johnson syndrome.

FIGURE 6
The forest plot showing the association between aspirin use and irAEs across different cancer types among patients using PD-L1 inhibitors. ASA:
Aspirin.

Frontiers in Pharmacology frontiersin.org08

Yang et al. 10.3389/fphar.2023.1259628

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1259628


associated with better outcomes with immunotherapy, However, it is
not clear whether aspirin use impacts irAEs. This is one of the first
studies to analyze the association between aspirin use with irAEs
using FEARS data with innovative and comprehensive benefits. Our
study showed that aspirin exposure was associated with an increased
risk of irAEs in all enrolled cancer patients treated with ICIs.
However, it is important to note that the relationship between
aspirin use and irAE risk varies across different tumor types,
types of irAEs, and various ICIs. Our research findings highlight
these distinctions.

As a well-known non-selective COX inhibitor, aspirin
irreversibly acetylates the active sites of COX-1 and COX-2,
thereby reducing their enzyme activity (Ornelas et al., 2017).
COX-1 mainly mediates the formation of physiological
prostaglandins, such as Thromboxane A2 (TXA2), which in turn
promotes platelet aggregation (Menter and Bresalier, 2023). Aspirin
inactivates COX-1 and prevents the production of TXA2, thus
acting as an antiplatelet and preventing thrombosis. More
importantly, previous studies have confirmed the role of platelets
in promoting tumor growth and metastasis (Lichtenberger and
Vijayan, 2019). Rachidi et al. (2017) found that a protein called
Glycoprotein A repetitions predominant (GARP) exists on the
surface of platelets, which traps and activates Transforming
growth factor-β (TGF-β). TGF-β is an immunomodulatory
molecule that suppresses CD4 and CD8 T cells, allowing tumors
to evade the immune system. Riesenberg et al. (2019) confirmed
through a mouse model that the antiplatelet effect of aspirin can
inhibit TGF-β signaling, thereby enhancing T cell function, and
synergistically exerting anti-tumor effects with PD-1 blocker.

COX-2 is an inducer of enzymes that promote the synthesis of
inflammatory prostaglandins, such as Prostaglandin E2 (PGE2),
which can cause inflammation (Jin et al., 2023). Interestingly,
PGE2 has been shown to regulate the function of various
immune cells within the tumor microenvironment (TME),
including myeloid-derived suppressor cells (MDSCs), dendritic
(DC) cells, natural killer (NK) cells, CD4 and CD8 T cells,
resulting in immune evasion (Zelenay et al., 2015; Böttcher et al.,
2018; Bonavita et al., 2020). Moreover, PGE2 is capable of
upregulating PD-L1 expression (Goto et al., 2020) and inhibit

T cell receptor activation (Newick et al., 2016). The above study
suggests that aspirin may exert immunomodulatory effects and
enhance T cell activation by inhibiting COX2/PGE2 pathway
(Wei et al., 2022; Jin et al., 2023).

Aspirin has been found to aid ICIs in breaking immune
tolerance and amplifying the immune response (Zelenay et al.,
2015). Unfortunately, it is important to note that immune
activation is not limited to tumor-specific responses. Some
researchers have proposed that activated effector T cells also
attack normal non-tumor tissues while increasing their anti-
tumor activity (Khan and Gerber, 2020; Ronen et al., 2022).
T-cell receptor (TCR) sequencing studies have provided evidence
to support this theory (Porciello et al., 2022; Sanromán Á et al.,
2023). In patients treated with Ipiliumumab, researchers detected
greater CD4 and CD8 T cell diversity in irAEs patients compared
with those who did not experience significant adverse reactions (Oh
et al., 2017). A recent work from Luoma and others has
demonstrated the presence of a large number of CD8 T cells
with high cytotoxicity and proliferation ability in the colon of
patients with colitis, and these CD8 T cells are mostly from
tissue-resident populations (Luoma et al., 2020). Together, these
studies support that irAEs may be caused by the mobilization of a
large number of T cells (Ramos-Casals et al., 2020). Other studies
have shown that the presence of cross-antigens can also influence
T-cell responses. In a study by Berner et al., 73 patients with NSCLC
who received anti-PD-1 treatment were included, and nine common
T-cell antigens were identified between tumor tissues and skin. This
indicates that ICIs target both non-small-cell lung cancer (NSCLC)
cancer and skin, leading to immune-related dermal toxicity while
treating tumors (Berner et al., 2019). On the other hand, self-
antigens from dying cells are captured by antigen-presenting cells
(APCs) during tumor cell killing. These APCs thenmigrate to lymph
nodes and activate more reactive T and B cells, These novel T cell
clones may initiate a distinct immuno-editing wave, leading to
adverse reactions (Yost et al., 2019; Baumjohann and Brossart,
2021).

Multiple clinical studies have investigated the potential of
aspirin in enhancing the immune response in immunotherapy.
Cortellini et al. (2020) reported that concurrent use of aspirin

FIGURE 8
The forest plot showing the association between aspirin use and irAEs across different cancer types among patients using CTLA-4 inhibitors. ASA:
Aspirin.
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can improve overall response rate (ORR) among patients with solid
tumors receiving PD-1/PD-L1 checkpoint inhibitors. Another study
have highlighted that aspirin can prolong overall survival (OS)
(Kostine et al., 2021). Furthermore, a meta-analysis suggested a
significant intensification in progression-free survival (PFS) with
concurrent use of aspirin and ICIs (Zhang et al., 2021). The above
statements have demonstrated the synergistic effect of aspirin in
ICIs. Therefore, aspirin may have underestimated
immunomodulatory effects can amplify immune activation
induced by ICIs. However, coins always have two sides. Over-
activated T cells lack tumor specificity, so we have to consider
the impact of aspirin on irAEs. We propose that aspirin may

enhances T cell activation through inhibition of PGE2 and
platelets, contributing to the increased irAEs.

Moreover, it has been shown that microbiota composition was a
key factor in maintaining immune homeostasis, and may affect the
occurrence of irAEs (Dora et al., 2023). Chaput et al. (2017)
demonstrated that protective bacteria in the gut led to positive
outcomes for patients who receive ipilimumab therapy, but also with
a higher incidence of ipilimumab-induced colitis. Mouse models
have shown that aspirin modulates the gut microbiota by
enrichment of probiotics (Zhao et al., 2020; Brennan et al., 2021).
This may also be one of the reasons why aspirin is associated with an
increased risk of irAEs occurring (Figure 9).

FIGURE 9
The hypothetical mechanism of increased risk of immune adverse reactions with aspirin use in patients receiving immunotherapy. COX-1:
Cyclooxygenase-1; COX-2: Cyclooxygenase-2; DC cell: Dendritic cell; GARP: Glycoprotein A repetitions predominant; ICIs: Immune checkpoint
inhibitors; irAEs: Immune-related adverse events; NK cell: Natural killer cell; PGE2: Prostaglandin E2; PD-1: programmed cell death-1; TAX2:
Thromboxane2; TGF-β: Transforming growth factor-β; TCR: T-cell receptor; TME: tumor microenvironment.
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Our research has uncovered a connection between the use of
aspirin and an increased susceptibility to irAEs in pan-cancer
patients. Delving deeper into our findings, we have identified a
notably increased risk of irAEs among patients afflicted with specific
cancer types, including lung cancer, mesothelioma, and pancreatic
cancer. Conversely, a perplexing reduction in irAE risk has emerged
in lymphoma patients. Remarkably, these observations constitute a
novel contribution to the field, as they have not been previously
documented in existing literature.

In stark contrast to prior retrospective studies, our
comprehensive analysis has demonstrated robust statistical
significance in support of these findings (Gandhi et al., 2020;
Sieber et al., 2022). We posit that aspirin’s influence on the
occurrence of irAEs may be mediated through the COX pathway,
thereby shedding light on a potential mechanistic explanation.
Furthermore, the intriguing divergence observed within the
lymphoma subgroup warrants further investigation. While our
data show a diminished risk of irAEs in lymphoma patients, it is
essential to acknowledge that this subgroup comprises a relatively
small sample size, constituting only 1.5% of the overall study
population. It is conceivable that this statistical anomaly may be
attributed to the limited representation of lymphoma cases, or it may
signify the existence of hitherto undiscovered mechanisms that
demand further exploration and scrutiny. In addition, aspirin
use, prescribing status, or combination of aspirin with these
conditions. These circumstances will also have an impact on our
results (Colard-Thomas et al., 2023).

Our in-depth analysis revealed a significant association between
the use of aspirin and a range of irAEs. Specifically, we observed that
aspirin use markedly increased the risk of patients experiencing
irAEs such as pneumonia, myocarditis, myositis, pericarditis,
pancreatitis, colitis, and anemia. In contrast, the risk of irAEs
related to conditions like rash, Stevens-Johnson syndrome, and
thyroiditis was notably reduced. To further support our
conclusions, we conducted a comprehensive review of previously
published articles, seeking evidence that aligns with the associations
we identified. Prior studies may not have fully considered the
relationship between aspirin and irAEs or may not have detected
these associations due to differences in research methodologies.
Nonetheless, our study fills this knowledge gap and provides
healthcare professionals with a more comprehensive
understanding of aspirin’s role in irAE risk.

In summary, these findings underscore the need for heightened
vigilance among clinicians when treating patients with
immunotherapy, especially in cases related to irAEs affecting
organs or systems such as the gastrointestinal tract, lungs,
pancreas, heart, and anemia. However, it is also essential to
consider an additional factor, namely, the widespread use of
aspirin in cardiovascular disease treatment (Byrne and Colleran,
2020), where a patient’s history of cardiovascular conditions may be
one of the factors contributing to the heightened risk of irAEs
(Yousif et al., 2023). Therefore, a comprehensive assessment of the
patient’s overall health and treatment needs is crucial.

Despite some limitations in our study and a lack of supporting
mechanistic research, our research still provides valuable
pharmacological guidance to the greatest extent possible. For
example, when using aspirin in patients receiving PD-1
inhibitors, it is advisable to pay closer attention to indicators

related to anemia, enteritis, pneumonia, and pancreatitis.
Similarly, for patients undergoing PD-L1 inhibitor treatment,
increased attention should be directed towards indicators
associated with colitis, pericarditis, and pneumonia. Furthermore,
in patients receiving CTLA-4 inhibitors, no association has been
observed between aspirin and irAEs, although further research is
needed to confirm this, in order to offer clinicians more precise
treatment guidelines.

Overall, our study highlights the potential risks associated with
aspirin use in patients receiving immunotherapy, particularly with
regards to irAEs. These findings could inform clinical decision-
making and improve patient safety.

5 Study limitations

The FAERS database, as a voluntary, passive, and non-
mandatory reporting system, faces inherent challenges. These
include incompleteness, inaccuracy, inconsistency, and delay in
reporting adverse events. These limitations stem from various
factors, primarily the lack of detailed patient characteristics, drug
exposure information, and outcome details, such as the dose and
duration of aspirin use, as well as whether patients received other
treatment regimens and the sequence of medication. These factors
may influence the associations observed and the study outcomes.
Therefore, it is essential to carefully consider these limitations,
particularly when interpreting the research results.

Furthermore, our analysis is influenced by the uneven
distribution of cases within the database, with a higher number
of lung cancer patients but significantly fewer patients with other
cancer types. This non-uniform case distribution may introduce
bias and restrict the generalizability and applicability of our study
findings.

To overcome these limitations and provide more robust insights,
further prospective clinical studies are urgently needed.
Additionally, the mechanisms underlying the association between
aspirin use and irAEs remain unclear, underscoring the need for
fundamental research to address these uncertainties and advance
our understanding of immunotherapy.

6 Conclusion

This study has revealed a significant association between aspirin
usage and irAEs in cancer patients undergoing ICIs. It is important
to note that this association exhibits variations depending on the
specific cancer type, the nature of adverse events, and the specific
type of ICIs being utilized. These findings underscore the
importance of assessing the effect of baseline drugs, including
aspirin, on the safety and efficacy of ICIs in tumor treatment,
and tailoring treatment plans accordingly on an individual basis.
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