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Since the first 70 years of reporting cancer chemotherapy, malignant tumors have
been the second most common cause of death in children and adults. Currently,
the commonly used anti-cancer methods include surgery, chemotherapy,
radiotherapy, and immunotherapy. Although these treatment methods could
alleviate cancer, they lead to different forms of side effects and have no
particularly significant effect on prolonging the patients’ life span. Glycyrrhizic
acid (GL), a native Chinese herbal extract, has a wide range of pharmacological
effects, such as anti-cancer, anti-inflammatory, antioxidant, and immune
regulation. In this review, the anti-cancer effects and mechanisms of GL are
summarized in various cancers. The inhibition of GL on chemotherapy-induced
side effects, including hepatotoxicity, nephrotoxicity, genotoxicity, neurotoxicity
and pulmonary toxicity, is highlighted. Therefore, GLmay be a promising and ideal
drug for cancer therapy.
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1 Introduction

Cancer has afflicted the multicellular organism for more than 200 million years, and the
ancestors of modern humans were plagued by cancer more than a million years ago
(Hausman, 2019). As the second most natural cause of death in children and adults
(Gilbertson, 2011), each type of cancer has its particular age and form of occurrence,
occurring in different proportions and in distinct genders. Until now, people have expended
gigantic efforts to understand the origin of cancer cells, the formation of cancer tissue, and
the mechanisms of their spread and recurrence, but this disease remains a mystery. A
growing body of research suggests that the change in the incidence rate of cancer may be
caused by more subtle alterations in the cell hierarchy (Lim et al., 2009; Molyneux et al.,
2010). The formation of cancer probably involves three pathways: 1) spreading from the
origin of growth to adjacent cells or tissues; 2) spreading from lymph nodes to local lymph
nodes; 3) spreading to various tissues and organs throughout the body through blood
circulation (Wong and Hynes, 2006).

Although the medical field has made some progress in cancer treatment after more than
half a century of research, cancer is still deemed as a human tragedy. There are many
treatment methods for cancer based on its type and progression stage. The traditional
treatment methods for cancer include surgery, chemotherapy and radiotherapy. With the
development of the times and technology, new cancer treatment methods, such as target-
specific therapies and immunotherapy, are increasingly applied in clinical practice (Liu et al.,
2021). However, these treatment methods all have certain limitations. Surgical treatment is
highly traumatic and it cannot completely eliminate cancer cells. The effect of radiotherapy
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will be not ideal when tumors are not sensitive to radiation and
tumors are of systemic metastasis. Among them, chemotherapy for
malignant tumors has the strongest cancer killing effect (Safarzadeh
et al., 2014; Jain et al., 2016). However, its toxic effects on healthy
cells, multiple drug resistance (MDR) after permanent treatment
and low bioavailability have enormously limited its clinical
application (Rastogi et al., 2014). After these treatments, the
survival time of cancer patients has been prolonged, but a great
proportion of patients still experience cancer recurrence and cannot
achieve permanently survival (Yin et al., 2021). Therefore, seeking
novel methods for cancer treatment remains a crucial aspect of
medical research.

2 Glycyrrhizic acid

2.1 The structure of GL

Glycyrrhizic acid (GL), a triterpenoid saponin, is the main active
component and sweet component of the extract from the root of
Glycyrrhiza uralensis Fisch. GL is structurally composed of two
molecules of glucuronic acid and one molecule of glycyrrhetinic acid
(GA) (Figure 1). GL is metabolized to GA under the action of gut
bacteria. In addition, GL is metabolized in the intestine or be
transformed via enzymolysis to GA-3-O-mono-β-d-glucuronide
(GAMG), a distal glucuronic acid hydrolysate of GL with higher
bioavailability and stronger physiological functions (Zuo et al.,
2023).

2.2 The functions of GL

Accumulating studies have demonstrated that GL shows
multiple pharmacological activities, such as anti-inflammatory
(Liu et al., 2018; Maione et al., 2019), anti-tumor (Zhang et al.,
2015; Chang et al., 2019; Tsai et al., 2020), anti-viral (Cinatl et al.,
2003; Fu et al., 2016), antioxidant (Xu et al., 2018),
immunoregulation (Bernela et al., 2016; Han et al., 2017) and
liver protection (Huo et al., 2020) etc. GL mainly inhibits the
expression of nuclear factor kappa-B (NF-κB) pathway,
thereupon then restraining the encoding of important genes such
as inflammatory cytokines, anti-apoptotic factors and
cyclooxygenase-2 (COX2) (Li S. et al., 2014), achieving anti-
inflammatory and anti-tumor effects. Thus, GL is commonly
used in treating various cancers in clinical practice (Stecanella
et al., 2021; Zuo et al., 2022), as well as in alleviating liver, lung,
and kidney damage caused by cancer chemotherapy (Orazizadeh
et al., 2014; Qu et al., 2017). Meanwhile, it also has a protective effect
on brain tissue in cases of global cerebral ischemia, brain injury
caused by cerebral hemorrhage, and focal ischemia (Xiong et al.,
2016).

In addition, GL could facilitate the entry of other drugs into cells
through interaction with cell membranes due to its strong
hydrophilicity and lipophilicity (Selyutina and Polyakov, 2019).
Studies have shown that even at high concentrations, GL still has
pharmacological tolerance in rats and humans, and long-term
administration has no significant toxic or side effects (van
Rossum et al., 1999; Bi et al., 2023; Li et al., 2023). Therefore, it

is often used as a blending agent for other drugs to diminish toxicity
and enhance drug efficacy (Radwant and Aboul-Enein, 2002; Chen
et al., 2009).

3 Roles of GL in cancer therapy

GL inhibits the occurrence and development of cancer by
inducing apoptosis pathways in cancer cells. It shows a series of
anti-cancer related pharmacological activities, such as broad-
spectrum anti-cancer ability, anti-chemotherapy and radiotherapy
induced tissue toxicity, absorption enhancement and anti-multiple
drug resistance (MDR) mechanism (Wakamatsu et al., 2007;
Ajazuddin et al., 2014). Multiple studies have shown that GL acts
as an inhibitor of cell signal transduction molecules, angiogenesis
inhibitors, tumor related cytokine inhibitors, efficiently and low-
toxicity inhibiting the migration and invasion of several types of
cancer cells (Kohlschutter et al., 2008; Smolarczyk et al., 2012). The
following sections will specifically highlight the anti-cancer
mechanism of GL and its inhibition on the side effects of cancer
treatment.

3.1 Anti-cancer effects of GL

GL has been reported to have inhibitory effects on various
cancers, such as leukemia (Chueh et al., 2012; Bruserud et al.,
2015; Shustik et al., 2017), malignant glioma (Li S. et al., 2014),
colon cancer (Yang et al., 2015; Jiang et al., 2016), lung cancer (Khan
et al., 2013; Huang et al., 2014) etc. The application of GL in various
cancers was summarized in Table 1.

3.1.1 Anti-colon cancer
Colon cancer, a disease with high incidence, easy migration and

difficult cure, constantly develops drug resistance during
chemotherapy, increasing the difficulty of treatment (Liang et al.,
2020). Khan et al. (2018) found that GL administration inhibited the

FIGURE 1
Structural formula of GL.
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TABLE 1 Summary of anti-cancer mechanisms of GL.

Cancer
type

Models Administration method and
dosage of GL

The efficacy
of GL

The anticancer mechanism
of GL

References

Colon Cancer Wistar rats Orally, 15 mg/kg for 15 weeks Anti-tumor; Anti-
inflammation

Reducing the expression of Ki-67,
proliferating cell nuclear antigen
(PCNA), NF-kB, COX-2, iNOS,
VEGF; enhancing the expression of
p53, connexin-43, Bcl-2, survivin, and
caspase-3

Khan et al. (2018)

Balb/c mice intraperitoneally, 50 or 100 mg/day
for 20 days combined with bacteria
overexpressing β-glucuronidase

Anti-tumor Inhibiting tumor growth, increasing
apoptosis rate

Afkhami-Poostchi
et al. (2020)

Gastric
Cancer

KATO III cells 3 mg/mL for 72 h Anti-tumor Inhibiting the growth of KATO III
cells; Inducing apoptosis

Hibasami et al.
(2005)

MGC-803 cells 1 mg/mL for 24 and 48 h Anti-tumor Down-regulating the expression of
G1 phase related proteins; Inhibiting
phosphorylation of the PI3K/AKT
pathway; Downregulating the
expression of Bcl-1, survivin and p65,
and Up-regulating the expression of
Bax and the cleavage of PARP

Wang et al. (2020)

AGS cells 200 µM for 4 h Antibacterial
infection

Inhibiting the expression of HMGB1;
Restoring autolysosomal degradation
function

Khan et al. (2023)

Leukemia WEHI-3 cells 200, 250, 300, 350 and 400 μM GL
and for 24 and 48 h

Anti-tumor Increasing the levels of ROS and the
activity of caspase-3; decreasing the
mitochondrial membrane potential
(ΔΨm); leading to G0/G1 phase
arrest, DNA damage and breakage

Chueh et al. (2012)

BALB/c mice suffering TF-1
cells

100 mg/kg body weight
(peritumorally once every other day)

Anti-tumor Reducing the activity of AKT, mTOR,
and STAT3 in tumors; Attenuating
expression of cyclin D1, survivin and
increasing cleaved caspase-3, cleaved
PARP expression

He et al. (2015)

K562 cells/EL-4 lymphoma-
bearing C57BL/6J mice

1.0–4.0 mM for 48 h/50 or
500 mg/kg/day injected i.p. for 4 days

Anti-tumor Enhancing the levels of apoptosis in
K562 cells; Decreasing the tumor
burden in mice

Hostetler et al.
(2017)

Glioblastoma human glioblastoma U251 cells 0, 1, 2, 4 mM for 1, 2 or 4 days Anti-tumor; Anti-
inflammation

Inhibiting the proliferation; Down-
regulating the expression of p65

Li et al. (2014)

Lung Cancer A549 cells/A549 cell xenograft
in nude mice

1, 2 mM for 3 days/50 mg/kg every
2 days for 8 weeks

Anti-tumor Inhibiting the growth of A549 cells
and inducting apoptosis; Inhibiting

expression of TxAS

Huang et al.
(2014)

HCC827 cell xenograft in nude
mice

100 mg/kg for 2 weeks Anti-tumor Inhibiting the growth of
HCC827 cells; Targeting JAK/STAT/

HMGB1 signaling

Wu et al. (2018)

Hepatoma HepG2 and PLC/PRF/5 0.5, 1, and 2 mM for 48 h Anti-tumor Inhibiting tumor growth through
inducing differentiation and
repressing stemness; Enhancing the
anti-tumor effects of sorafenib

Cai et al. (2019)

SK-Hep1 and Hep3B cells; SK-
Hep1/luc2 tumor-bearing mice

40 or 80 μM for 48 h; 50 mg/kg/day by
intraperitoneal injection for 7 days

Anti-tumor Inhibiting tumor cell growth, cell
invasion, and expression of AKT,
ERK, EGFR phosphorylation, anti-
apoptotic and metastatic proteins;
triggering caspase-8/9-mediated
apoptosis

Tsai et al. (2020)

Melanoma Murine B16F10 melanoma;
human A375 melanoma cells

5, 10, 20, 30, 40, 50, 100 ug/mL
for 24 h

Anti-tumor Down-regulating the expression of
Treg specific marker, pSTAT3, COX2,
PGE2, Bcl2; Up-regulating the
expression of Bax and inducing cell
apoptosis; Inhibiting of the pSTAT3-
mediated Immunosuppressive
function of Tregs and MDSCs

Juin et al. (2020)

(Continued on following page)
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1,2-dimethylhydrazine-induced colon tumorigenesis in Wistar rats
through reducing the expression of Ki-67, proliferating cell nuclear
antigen (PCNA), NF-kB, cyclooxygenase-2(COX-2), inducible
nitric oxide synthase (iNOS), and vascular endothelial growth
factor (VEGF) and enhancing the expression of p53, connexin-
43, B-cell lymphoma-2 (Bcl-2), survivin, and caspase-3, suggesting
the chemopreventive potential of GL against colon cancer.
Simultaneously, upregulation of the expression of tumor
suppressor protein p53 activates casepase-3, thereby inducing
tumor cell apoptosis (Yi et al., 2016). In addition, GL reduced
drug resistance by combining with first-line anti-cancer drugs.
Some theories suggest that GL may enhance the absorption of
paclitaxel-loaded GL micelles in the jejunum and colon by
inhibiting p-glycoprotein (Yang et al., 2015). Interestingly,
Afkhami-Poostchi et al. (2020) applied bacteria-directed enzyme
prodrug therapy to convert GL to glycyrrhetinic acid and found that
combined treatment of bacteria overexpressing β-glucuronidase and
GL more greatly inhibited tumor growth when compared with sole
GL treatment.

3.1.2 Anti-gastric cancer
Gastric cancer is the fifth leading cause of cancer-related deaths

worldwide, with approximately half of cases occurring in developing
countries (Ang and Fock, 2014; Karimi et al., 2014; den Hoed and
Kuipers, 2016). GL could inhibit the growth of stomach cancer
KATO III cells and induce the fragmentation of DNA to
oligonucleosomal-sized fragments, suggesting that GL induced
apoptosis (Hibasami et al., 2005). Wang et al. (2020) reported
that GL induced apoptosis MGC-803 cells of inhibiting
phosphorylation of the PI3K/AKT pathway, downregulating the
expression of Bcl-1, survivin and p65, and upregulating the
expression of Bax and the cleavage of poly (ADP-ribose)
polymerase (PARP). Cell cycle arrest could cause inhibition of
cell proliferation. A study has shown that GL inhibited the
proliferation of MGC-803 cells, a kind of gastric cancer cells, by
inducing G1/s phase arrest because GL treatment downregulated the
levels of several G1 phase-related proteins (cyclin D1, D2, D3, E1,
and E2) (Wang et al., 2020). In a recent study, Khan et al. (2023)
reported that GL treatment inhibited helicobacter pylori infection in
AGS cells (gastric cancer cells) via inhibiting high mobility group
box1 (HMGB1) and inducing autolysosomal degradation function.

3.1.3 Anti-leukemia
Leukemia is one of the causes of cancer-related deaths in

humans, and is an invasive malignant tumor, that is, produced
by the rapid growth of abnormal white blood cells (Lee et al., 2007).
GL treatment increased the levels of reactive oxygen species (ROS)
and the activity of caspase-3 and decreased the mitochondrial
membrane potential (ΔΨm) in WEHI-3 cells, as well as led to G0/
G1 phase arrest, DNA damage and breakage in a dose-dependent

manner (Chueh et al., 2012). GL could inhibit TF-1 cells
proliferation in vitro and reduce the volume of TF-1 tumor via
inhibiting the activation of AKT/mTOR/signal transducer and
activator of transcription 3 (STAT3) signaling pathway,
attenuating the expression of cyclin D1 and survivin and
increasing the cleavage of caspase-3 and PARP (He et al.,
2015). In addition, GL reversed multidrug resistance in human
leukemia cell line CEM/ADR 5000 (Zhou and Wink, 2018). Based
on these anti-leukemia capabilities, researches on the rationality of
GL combination therapy are gradually being carried out. A study
has shown that co-treatment with GL and imatinib (a first-line
drug) not only enhanced the levels of apoptosis greatly in
K562 cells (chronic myeloid leukemia), but also decreased the
tumor burden significantly in EL-4 lymphoma-bearing C57BL/6J
mice (Hostetler et al., 2017).

3.1.4 Anti-glioblastoma
Gliomas are the most common brain tumor of the central

nervous system, approximately accounting for 35%–50% of adult
intracranial tumors. It is worth noting that malignant gliomas
account for about 60% of gliomas (Penas-Prado et al., 2012).
Research has shown that GL inhibited the proliferation of human
glioblastoma U251 cells in a time- and dose-dependent manners via
down-regulating the expression of p65 (Li S. et al., 2014). NF-κB is a
key transcription factor involved in the pathological processes of
various human diseases, controlling multiple genes involved in the
development of diffuse gliomas and promoting the growth of high-
grade gliomas (Kanzawa et al., 2003;Wang et al., 2004). GL inhibited
NF-κB pathway via downregulating the expression of p65 protein,
encoding of important genes such as anti-inflammatory cytokines,
COX-2 and iNOS (Li S. et al., 2014). Dipotassium glycyrrhizinate, a
dipotassium salt of GL, also showed an anti-proliferative effect via
inducing apoptosis and an anti-migratory effect in U251 and
U138MG cells through upregulating the levels of miR-4443 and
miR-3620, which are responsible for the post-transcriptional
inhibition of NF-κB (Bonafe et al., 2022a).

3.1.5 Anti-lung cancer
Lung cancer is the most common malignant tumor worldwide

and the main cause of death for cancer patients. Huang et al. (2014)
found that GL inhibited the growth of A549 cells by induction of
apoptosis, but had no effects on NCI-H23 cells, another lung
adenocarcinoma cell line. They further reported that GL
suppressed the expression and activity of thromboxane synthase
(TxAS) in A549 cells and clarified the anti-tumor effect of GL in lung
adenocarcinoma cells is dependent on inhibition of TxAS (Huang
et al., 2014). Importantly, treatment with 50 mg/kg GL for 8 weeks
significantly inhibited the growth of xenograft of lung
adenocarcinoma cells in vivo (Huang et al., 2014). Deng et al.
(2017) reported that the effect of GL treatment alone is

TABLE 1 (Continued) Summary of anti-cancer mechanisms of GL.

Cancer
type

Models Administration method and
dosage of GL

The efficacy
of GL

The anticancer mechanism
of GL

References

Mice inoculated with
B16F10 melanoma cells

10 mg/kg for 1, 3, 5 and 7 days Anti-tumor Inhibiting the pulmonary metastases
of B16 melanoma

Kobayashi et al.
(2002)
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comparable to combination of GL and cisplatin in a mouse lung
adenocarcinoma model, suggesting the clinical application of GL
may decrease the dosage of cisplatin, thereby reducing the side
effects of chemotherapy. In HCC827 cells, a non-small cell lung
cancer cell line, GL inhibited the migration and invasion of cancer
cells via targeting JAK/STAT/HMGB1 signaling (Wu et al., 2018).

3.1.6 Anti-hepatoma
Liver cancer is a common malignant tumor with extremely high

mortality rate, ranking third among global cancer mortality rates
(Sung et al., 2021). Through the research on the prevalence of liver
cancer, it is found that the incidence rate of liver cancer in most
countries around the world is still rising year by year. Hepatocellular
carcinoma (HCC) has poor differentiation ability and proliferate
indefinitely. The dedifferentiation of HCC contributes to malignant
progression, characterized by significant morphological changes and
loss of liver function (Sun et al., 2011). A recent study has shown that
GL administration led to a decrease in stem cell pluripotency and
induced the differentiation in HCC in vitro and in vivo by targeting
c-Jun N-terminal kinase 1 (JNK1) (Cai et al., 2019); Importantly,
blockage of JNK1 mitigate the degree of malignancy of HCC (Cai
et al., 2019). In addition, GL combination effectively enhanced the
anti-tumor effects of sorafenib, an inhibitor of multi kinases, in HCC
treatment (Cai et al., 2019). Tsai et al. (2020) reported that GL not
only inhibited dramatically the tumor cell growth and invasion, as
well as the phosphorylation of extracellular-signal-regulated kinase
(ERK), Akt (Ser473), epidermal growth factor receptor (EGFR) and
the anti-apoptotic and metastatic proteins, but also triggered
markedly caspase-8/9-mediated apoptosis in HCC in vitro and in
vivo. The combination of GL could reverse the resistance of cisplatin
in hepatocellular carcinoma cells via inhibiting of MDR-associated
proteins (Wakamatsu et al., 2007). Covalent conjugation of GL with
polyethyleneimine increased significantly the gene transfection
efficiency and superior selectivity for HepG2 cells, suggesting the
potential clinical application in vivo (Cao et al., 2019). Several
studies reported that co-delivery of GL enhanced the therapeutic
efficacy of doxorubicin for hepatocellular carcinoma in vitro and in
vivo (Wang et al., 2019; Yang et al., 2019), suggesting the significant
clinical application value.

3.1.7 Anti-melanoma
Melanoma is a highly malignant tumor with pigmented cell,

melanocyte, accounting for less than 5% of all skin cancers but 80%
of skin cancer-related deaths (Bertolotto, 2013). The incidence of
malignant melanoma has been steadily increasing globally over the
past few decades (Godar, 2011). The immunosuppressive tumor
microenvironment (TME) has been identified as a major barrier to
evoke an anti-tumor response in melanoma. Moreover,
immunosuppressive TME is directly connected with the high
activation of T-regulatory cells (Tregs) and myeloid-derived
suppressor cells (MDSCs) function. GL downregulated the
expression of the anti-apoptotic factor Bcl 2, upregulated the
expression of the proinflammatory factor Bax and enhanced the
activity of caspase-9 and caspase-3, indicating that GL inhibited the
proliferation of melanoma cells by inducing apoptosis (Juin et al.,
2020). Meanwhile, GL incubation effectively reduced the expression
of Treg specific markers (Forkhead Box P3, glucocorticoid-induced
TNFR-related protein and cytotoxic T lymphocyte antigen 4),

phospho-STAT3, COX-2 and prostaglandin E2 in melanoma
cells, finally limiting the progression of melanoma (Juin et al.,
2020). Furthermore, studies showed that GL inhibited the
metastasis of melanoma cells by regulating T helper type 2 (Th2)
cell resistance, interfering with further the dissemination of
melanoma (Kobayashi et al., 2002; Su et al., 2017). Dipotassium
of GL inhibited the metastases of melanoma Cells into brain (Bonafe
et al., 2022b).

To summarize, GL exerts the anti-tumor activity via inhibiting
cell proliferation, inducing apoptosis and resulting in cell cycle arrest
in various tumors (Figure 2).

3.2 Inhibiting the side effects of cancer
treatment

Most anti-cancer drugs could cause inevitable damage to normal
cells during treatment. Therefore, the protection of normal tissues
and organs becomes the primary goal of improving the life quality of
patients. An increasing number of studies have shown that GL has a
strong therapeutic effect on liver, lung and kidney injury caused by
chemotherapy or radiotherapy. In addition to the above anti-cancer
capabilities, GL could significantly reduce side effects occurring
during chemotherapy, especially hepatotoxicity (Li J. Y. et al.,
2014). In addition, GL also has better therapeutic effects on
nephrotoxicity (Ju et al., 2017), genotoxicity (Arjumand and
Sultana, 2011), neurotoxicity (Klein et al., 2023), pulmonary
toxicity (Zhu et al., 2021) and other events occurring during
cancer treatment. In the following section, we will review the
inhibition and potential mechanisms of GL on these side effects
(Figure 3).

3.2.1 Inhibition of hepatotoxicity
Liver is the most important organ for the metabolism of

chemical drugs. After metabolized in the liver, a large number of
metabolites accumulates in the liver and lead to liver damage and
hepatotoxicity. The action mechanism is by inducing the liver lipid
peroxidation, resulting in imbalance in redox status, at the same
time high levels of ROS-mediated oxidative stress reaction cause
liver tissue cell apoptosis and inflammation damage, eventually lead
to hepatotoxicity (Waseem et al., 2015). GL administration for 3 h
before high-dose methotrexate administration significantly
increased hepatic enzyme levels (Mano et al., 2023), suggesting
that optimal administration of GL could avoid pharmacokinetic
interactions with methotrexate and exerts a hepatoprotective effects.
Hepatotoxicity is a common toxic side effect of many
chemotherapeutic drugs. Kishimoto et al. (2021) reported that
39 of 118 patients with acute leukemia (33%) developed grade
3–4 hepatotoxicity after combined administration of intravenous
monoammonium glycyrrhizinate and methotrexate. As one of the
hepatoprotective compounds, GL is commonly used in the
treatment of acute and chronic liver injury, viral hepatitis,
hepatic steatosis, liver fibrosis, liver cancer and other diseases.
Moreover, GL has various pharmacological effects, such as anti-
inflammatory, neuroprotection, antiviral, anti-tumor, antioxidant,
and hepatoprotective activities (Li J. Y. et al., 2014). It could reduce
the content of ROS by reducing lipid peroxidation (Kiso et al., 1984)
and increasing the activity of superoxide dismutase (SOD),
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glutathione peroxidase (GPx) and catalase (Kao et al., 2009).
Furthermore, GL inhibits tripterygium-glycoside-tablet-induced
acute liver injury by regulating pyruvate kinase M2 and reducing
oxidative, inflammation stress and apoptosis (Wang et al., 2022). In
addition, GL could significantly reduce the steatosis and necrosis of
hepatocytes, inhibit interstitial inflammation and liver fibrosis, and
promote cell regeneration (Li J. Y. et al., 2014).

3.2.2 Inhibition of nephrotoxicity
Chemotherapy is one of the main cancer treatments. In cancer

treatment, traditional chemotherapeutic drugs are the first-line
drugs for the treatment of several malignancies, but they also cause
kidney toxicity. In addition to traditional cytotoxic drugs,
molecular targeted drugs could also affect kidney function and
cause nephrotoxicity, which limits the efficacy of treatment and
affects the life quality and overall survival of patients (Santos et al.,
2020). Studies have shown that the nephrotoxicity induced by
some anti-cancer drugs may be closely related to the oxidative
stress and inflammatory responses. GL has antioxidant and anti-
inflammatory properties, which could effectively inhibit pro-
inflammatory substances (NF-κB, TNF-α, IL-1β, IL-6, and
HMGB 1), increase levels of nuclear factor erythroid 2-related
factor 2 (Nrf 2) and heme oxygenase-1 (HO-1), and restore the
activity of antioxidant enzyme and GSH/GSSG ratio (Wu et al.,
2015), reduce lipid peroxidation (Arjumand and Sultana, 2011),
suggesting that GL effectively inhibits renal inflammation and
oxidative stress, and relieve chemical kidney injury. In gentamicin-
induced renal injury, GL may inhibit gentamicin-induced ROS
generation or scavenge ROS before it reaches the cellular target
tissue, while GL also restores the expression of aquaporin 2, thus
improving renal defects in rats with gentamicin-induced acute
renal failure (Sohn et al., 2003). Moreover, GL could also

ameliorate cisplatin-induced renal injury and inhibit
nephrotoxicity through reducing ROS-mediated p53 activation
and promoting p21 expression in HK-2 cells (Ju et al., 2017).
The renal protective effects of GL may be related to upregulation of
Nrf2 and downregulation of NF-κB in the kidney of BALB/c mice
(Wu et al., 2015).

3.2.3 Inhibition of genotoxicity
Most of the anti-tumor drugs have genotoxic effects that

contribute to growth inhibition. Exposure to genotoxins causes
an increased risk of carcinogenic and teratogenicity (Arjumand
and Sultana, 2011). These genotoxic and oncogenic potential may
lead to the formation of secondary cancers (Said Salem et al., 2017).
Some studies have indicated that many drug-induced genotoxicity
and chromosomal instability are closely related to the parameters of
oxidative stress. ROS act directly on intracellular components,
including lipids, proteins and DNA, and disrupt their structures.
The chemoprotective agents could exert their antigenotoxic effects
through one or variety of mechanisms, such as inhibiting the
formation of reactive carcinogenic metabolites, inducing enzymes
that detoxify carcinogens, scavenging ROS, inhibiting cell
proliferation and regulating cell apoptosis (Arjumand and
Sultana, 2011). GL has anti-inflammatory, anti-oxidant, anti-
cancer, and immunomodulatory effects (Akamatsu et al., 1991;
Kelloff et al., 1994; Wakamatsu et al., 2007) and is considered as
a possible chemopreventive agent. Increasing genotoxic researches
have demonstrated that GL is not only nonteratogenic and
nonmutagenic, but also have anti-genotoxic property (Isbrucker
and Burdock, 2006). Arjumand and Sultana (2011) reported that GL
administration significantly reversed the genotoxicity induced by
cisplatin, including a decrease in DNA fragmentation and increases
in the content of glutathione and activities of the anti-oxidant

FIGURE 2
Anti-cancer mechanism diagram of GL. GL mainly plays an important role in various cancers by inhibiting the proliferation of cancer cells, inducing
cell apoptosis through its anti-inflammatory, antioxidant, and immune regulatory effects, and inducing cell cycle arrest.
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enzymes (catalase, glutathione peroxidase, glutathione reductase,
quinone reductase and glutathione-S-transferase).

3.2.4 Inhibition of neurotoxicity
Cancer therapies could cause a wide range of neurologic adverse

effects and may cause a significant increase in morbidity and
mortality of cancer patients (Dietrich, 2020). Some
chemotherapeutic drugs, such as taxanes (paclitaxel and
docetaxel), platinum compounds (cisplatin, oxaliplatin and
carboplatin), and vinca alkaloids (vinblastine and vincristine),
have strong neurotoxicity and could easily induce a peripheral
neuropathy (CIPN) (Klein and Lehmann, 2021). CIPN is
associated with a length-dependent axonal sensory neuropathy in
taxol-induced neuropathy (Staff et al., 2017). Paclitaxel easy access
to and accumulate in the dorsal root ganglia, which will cause
numbness and pain in hands and feet (Cavaletti et al., 2000).
Paclitaxel induces disruption of axonal transport through
microtubule stabilization, changes in mitochondrial morphology
and function, and inflammatory responses, leading to axonal
symmetry damage and loss of nerve fibers, and subsequent
neurotoxicity (Niznansky et al., 2022). Increasing studies have

suggested that GL could provide neuroprotection in nerve system
due to its strong anti-inflammatory, anti-apoptosis, antioxidant and
autophagy regulation properties (Kim et al., 2012; Yang et al., 2018;
Gendy et al., 2023; Shan et al., 2023). A recent study has shown that
GL alleviated paclitaxel-induced neurotoxicity in vitro and in vivo by
inhibiting the neuronal uptake mediated by organic anion transport
peptides (OATPs), which are the main neuronal transporters of
paclitaxel (Klein et al., 2023).

3.2.5 Inhibition of pulmonary toxicity
Some chemotherapeutic agents, such as bleomycin, could cause

severe pulmonary fibrosis and produce pulmonary toxicity (van der
Schoot et al., 2016). GL could alleviate benzo(a)pyrene exposure-
induced lung injury in rats via ameliorating the detoxification and
antioxidant function of lung (Qamar et al., 2012). HMGB1 is a
cytokine-like protein found in the nucleus of all cells and has
multiple functions in inflammation, infection, tissue damage, cell
apoptosis, and immune response (Qu et al., 2019). Furthermore,
HMGB1 could not only act as a proinflammatory factor to directly
involve in tissue damage (Qin et al., 2006), but also induce lung
fibrosis through NF-κB-mediated release of transforming growth

FIGURE 3
Mechanism diagram of GL reducing toxic side effects. GL could inhibit a series of side effects such as nephrotoxicity, hepatotoxicity, genotoxicity,
neurotoxicity and lung toxicity in cancer treatment by inhibiting the release of inflammatory factors, inhibiting apoptosis and clearing ROS. Fundamentally
speaking, GL mainly reduces a series of tissue damage in the process of tumor treatment through its anti-inflammatory and antioxidant properties, thus
effectively reducing the side effects of tumor treatment.
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factor beta1 (TGF-β1) (Wang et al., 2017). As an inhibitor of HMGB
1, GL treatment reduced the inflammation and fibrosis by inhibiting
the mitogen-activated protein kinase (MAPK) inflammatory
signaling and Smad3 fibrotic signaling pathway (Zhu et al.,
2021), thereby alleviating the lung toxicity induced by bleomycin,
which is clinically used to treated various tumors (Gederaas et al.,
2023).

4 Conclusion and expectation

With the development of modern science and technology, the
discovery of plant pharmacological components was promoted. GL,
as the main active ingredient of the licorice extract, has a wide range
of pharmacological activities. Notably, increasing literature have
demonstrated that GL shows inhibitory effects on various cancers by
inhibiting cell proliferation, inducing apoptosis and resulting in cell
cycle arrest through multitudinous mechanisms. What’s more, GL
could reduce effectively the side effects of cancer treatment via
inhibition of chemotherapy-induced renal toxicity, liver toxicity,
genotoxicity, neurotoxicity and pulmonary toxicity. Given the
important roles of GL in cancer treatment, the application of GL
alone in the cancer chemotherapy or combined use with other anti-
tumor drugs will have very bright application prospects.

Besides above side effects induced in the chemotherapy of
cancer, ototoxicity is another common side effect which limits
the clinical use of chemotherapeutics (Basirat et al., 2023). Many
chemotherapeutics could affect the inner ear or auditory nerve,
leading to hearing loss. For example, Cisplatin is widely used as a
chemotherapeutic drug with a high rate of ototoxicity (an average
incidence of more than 60%) (Arwanda et al., 2023). Inflammation
and oxidative stress may be closely related to the ototoxicity of
Cisplatin (Ramkumar et al., 2021). However, the role of GL in
combating ototoxicity induced by chemotherapy is largely unclear.
Therefore, it is expected that GL will help solving the hearing loss
caused by ototoxic drugs in the future. What’s more, the
mechanisms for GL inhibiting various side effects are not
presently clarified accurately. Thus, more studies should be
performed to elucidate the protective mechanisms.

GL shows stronger actions in cancer treatment, but some factors
may limit its clinical application. The human body has multiple
reactions to GL and there are significant individual differences.
However, the reasons for the differences are not yet clear, and the
proportion of sensitive populations has not been determined. On the
basis of different administration methods and drug concentrations,
electrolyte imbalance, edema, elevated blood pressure and false
aldosterone symptoms may occur (Gomez-Sanchez and Gomez-
Sanchez, 1992; Johns, 2009; Celik et al., 2012). Studies have shown
that the risk of toxicity after oral administration is much lower than
intravenous or intraperitoneal administration, but we should still be

particularly careful to avoid high doses or long-term ingestion of GL
(Wang and Nixon, 2001). What’s more, people with diseases such as
heart and kidney problems, hypertension may be more susceptible
to the adverse effects of GL (Ruszymah et al., 1995). In addition, the
content of GL in different varieties of liquorice varies greatly, and the
yield depends on the source of plants, which also limits greatly its
development and application. Han et al. (2021) recommended that
regulating biosynthesis pathway of GL through environmental
stimuli would provide a new idea for obtaining high-quality GL.
Although side effects of GL have been reported, their incidence can
be avoided with reasonable medication. The most important thing is
that its potential for treating various diseases is worthy of
recognition.
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