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Mycobacterium tuberculosis is the bacterial strain that causes tuberculosis (TB).
However, multidrug-resistant and extensively drug-resistant tuberculosis are
significant obstacles to effective treatment. As a result, novel therapies against
various strains of M. tuberculosis have been developed. Drug development is a
lengthy procedure that includes identifying target protein and isolation, preclinical
testing of the drug, and various phases of a clinical trial, etc., can take decades for a
molecule to reach the market. Computational approaches such as QSAR,
molecular docking techniques, and pharmacophore modeling have aided drug
development. In this review article, we have discussed the various techniques in
tuberculosis drug discovery by briefly introducing them and their importance.
Also, the different databases, methods, approaches, and software used in
conducting QSAR, pharmacophore modeling, and molecular docking have
been discussed. The other targets targeted by these techniques in tuberculosis
drug discovery have also been discussed, with important molecules discovered
using these computational approaches. This review article also presents the list of
drugs in a clinical trial for tuberculosis found drugs. Finally, we concluded with the
challenges and future perspectives of these techniques in drug discovery.

KEYWORDS

molecular docking, tuberculosis, drug resistance, QSAR, pharmacophore modeling

OPEN ACCESS

EDITED BY

Mithun Rudrapal,
Vignan’s Foundation for Science,
Technology and Research, India

REVIEWED BY

André Mauricio De Oliveira,
Federal Center for Technological
Education of Minas Gerais, Brazil
Kandi Sridhar,
Institut Agro Rennes-Angers, France
Sanchaita Rajkhowa,
Dibrugarh University, India

*CORRESPONDENCE

Ajay Manaithiya,
ajaymanaithiya@gmail.com

Ashok Aspatwar,
ashok.aspatwar@tuni.fi

RECEIVED 23 July 2023
ACCEPTED 10 August 2023
PUBLISHED 29 August 2023

CITATION

Bhowmik R, Kant R, Manaithiya A,
Saluja D, Vyas B, Nath R, Qureshi KA,
Parkkila S and Aspatwar A (2023),
Navigating bioactivity space in anti-
tubercular drug discovery through the
deployment of advanced machine
learning models and cheminformatics
tools: a molecular modeling based
retrospective study.
Front. Pharmacol. 14:1265573.
doi: 10.3389/fphar.2023.1265573

COPYRIGHT

© 2023 Bhowmik, Kant, Manaithiya,
Saluja, Vyas, Nath, Qureshi, Parkkila and
Aspatwar. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 29 August 2023
DOI 10.3389/fphar.2023.1265573

https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1265573/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1265573&domain=pdf&date_stamp=2023-08-29
mailto:ajaymanaithiya@gmail.com
mailto:ajaymanaithiya@gmail.com
mailto:ashok.aspatwar@tuni.fi
mailto:ashok.aspatwar@tuni.fi
https://doi.org/10.3389/fphar.2023.1265573
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1265573


Introduction

Tuberculosis (TB) is a bacterial disease caused due to the infection
of Mycobacterium tuberculosis (Mtb), which has been a chronic
infectious disease for decades. According to the WHO,
approximately 30 million persons are expected to be infected with
the bacillus within 20 years (Vastrad, 2012). It typically affects the
lungs and other regions of the body, such as the spine, kidneys, and
brain, if not treated swiftly. Tuberculosis (TB) has been proclaimed a
global public health emergency by the WHO (Adeniji et al., 2018). As
a result, discovering novel medications effective against MDR
(Multidrug-resistant) TB, extensively drug-resistant TB (XDR TB),
and latent TB is a key priority (Dwivedi et al., 2011; Gautam et al.,
2023). Directly Observed Treatment Short is one of themost common
anti-TB strategies (DOTS). This method, however, may be ineffective
if performed incorrectly, leading to resistance to anti-TB drugs. MDR-
TB will develop if anti-TB drug regimens are provided in incorrect
dosages or with low-quality drugs (MDR-TB).

Moreover, if administered to treat individuals who areHIV-positive
or have compromised immune systems, it could lead to the emergence
of widespread drug-resistant tuberculosis (XDR-TB) (Shetye et al.,
2020). Isonicotinic acid, Hydrazide, Rifampicin, Ethambutol,
Streptomycin, and other drugs have been used extensively in
treating tuberculosis (Vastrad, 2012). Although tuberculosis death is
often preventable, the rapid rise in MDR and XDR-TB has necessitated
the development of new drug targets for Mtb (Chapman et al., 2012).
TB is transferred mainly through the air when a healthy individual
inhales these bacteria, which are droplets from air contaminated and
take entry into the lungs. Either the host gets a primary infection, or the
illness remains dormant. Alveolar macrophages perceive them as
external agents who attempt to engulf the bacterium during this
process. On the other hand, complete bacterium deactivation is
nearly impossible to achieve. As a result, the bacteria multiply and
infect macrophages, spreading to other parts of the lung (Ahamad et al.,
2017; Jin et al., 2017). This study aims to enhance anti-tubercular drug
discovery by integrating advanced machine learning and
cheminformatics tools. Using a molecular modeling-based approach,
we aim to quickly identify potential drug candidates and targets against
Mycobacterium tuberculosis, addressing drug-resistant strains. We’ll
explore computational techniques like QSAR, molecular docking,
and pharmacophore modeling to streamline drug discovery. Our
goal is to predict, characterize, and prioritize drug molecules,
including lead structures and novel targets, while assessing their
versatility and utility. We’ll also highlight ongoing clinical trials and
evaluate challenges and future prospects in computational drug
discovery. Through these efforts, we aim to advance targeted
therapies against drug-resistant tuberculosis using advanced
computational methods.

Mechanisms of action and limitations of
antitubercular drugs

These drugs are categorized according to their source, like synthetic,
semisynthetic, and natural products. Patient situation/stage (lines) and
mode of action must be considered during treatment (Ahamad et al.,
2017). The finding and creation of new anti-TB therapeutics are widely
recognized as one of the world’s most challenging public health issues;

however, it is also a significant pharmaceutical challenge. Drug
development is a lengthy procedure. Following a clinical trial, it can
take decades for a molecule to reach the market. Computational
approaches have aided drug development (Doreswamy and Vastrad,
2013; Ojo et al., 2021). The Quantitative Structure-Activity Relationship
(QSAR) method is a powerful tool that is used in drug development all
over the world. QSAR models are mathematical equations that show
how chemical structures and biological processes are linked. The QSAR
approach can potentially minimize the time and effort necessary to find
novel compounds or increase the efficiency of current ones (Adeniji
et al., 2018). QSAR models are increasingly used with virtual screening
and combinatorial libraries to predict the fate of physiologically active
compounds (Ahamad et al., 2017). It is possible to use this method in
the development of future drugs. Increasing the speed of QSAR-related
studies would facilitate the design and optimization of new drug
candidates (Adeniji et al., 2018). Another capability of these models
is that they can provide a deeper understanding of biological activity
mechanisms (Vastrad, 2012). In QSAR modeling, various descriptors
were employed, such as constitutional, geometrical, topological,
quantum chemical, and other descriptors (Ojo et al., 2021). This
approach might be applied to predict the activity of newly proposed
compounds before their synthesis and evaluation (Vastrad, 2012;
Adeniji et al., 2018). Molecular docking is a module that allows two
or more molecules to recognize one other by matching their geometry
and energy. It is a valuable tool in drug development for establishing the
compatibility of molecules (ligands) with their target (receptor). It helps
determine how a receptor interacts with its ligand and elucidates its
binding process (Qing et al., 2014; Adeniji et al., 2018).

A pharmacophore must possess several chemical qualities to elicit a
response from a receptor target. Pharmacophore models may be created
using either a receptor alone or a receptor-ligand combination
(Wermuth et al., 1998; Leach et al., 2010; Macalino et al., 2020).
Pharmacophores are schematic representations of the main aspects of
molecular recognition that may be used to represent and identify
compounds on a 2D or 3D level. Physicophore model-based
database screening is essential for computer-aided drug development
since it gives information on receptor interaction’s geometric and
electrical aspects (Qing et al., 2014). According to IUPAC, a
Pharmacophore is a combination of steric and electronic qualities
required for interaction with a target structure to trigger a biological
response. Using a mix of pharmacophore model-based screening and
docking studies to find novel drugs has been proven effective (Leach
et al., 2010). Pharmacophore screening and docking can be combined to
speed up the discovery of new drugs and improve their chances of
survival (Macalino et al., 2020). Using molecular docking and other
bioinformatic methods to evaluate candidate compounds before in vitro
cell culture assays or chemical changes can help speed up drug discovery.
Pharmaceutical and medicinal chemists can use QSAR and molecular
docking investigations to design and synthesize novel anti-TB drugs
(Adeniji et al., 2018).

QSAR, pharmacophore modeling, and
molecular docking and their importance in
drug discovery

The process of drug discovery and the development of a novel
medicine is costly and time-consuming. Several laboratories and in vivo
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tests are used to determine therapeutic effectiveness and health risks. As a
result, newmethods are being developed to limit animal use in research,
reducing ethical (and budgetary) concerns (Bajot, 2010).

The computational tools are mainly utilized to.

(i) perform the molecular structure confirmation (e.g., molecular
dynamics);

(ii) characterize the interactions between drugs and targets (e.g.,
molecular docking);

(iii) to assess and optimize the activity of the drug through QSAR
techniques.

There are mainly two drug design techniques: structure and
ligand-based drug design (SBDD and LBDD). Using SBDD, any
target inhibitor molecule can be designed, while LBDD primarily
focuses on the chemical interaction between the target receptor
and the inhibitor (Abdel-Ilah et al., 2017). The drug design
techniques and groups are presented in Figures 1, 2 (Abdel-
Ilah et al., 2017).

The significance of QSAR

Quantitative structure-activity relationships (QSARs) utilize
computational and mathematical models to identify the
correlation between pharmacological activities and chemical
structure compounds (Kwon et al., 2019). QSAR is gaining
traction as a less expensive alternative to medium-throughput
in vitro and low-throughput in vivo research in the drug
development process (Figure 2) (Prachayasittikul et al., 2015;
Qureshi et al., 2023). In addition, QSAR models are increasingly
used in drug discovery and environmental toxicology to predict and
classify drug resistance, toxicity, and physicochemical characteristics
(Verma et al., 2010). The QSAR technique is based on the premise
that changes in a chemical’s molecular structure may be
quantitatively linked to variations in its biological activity (Testa,
1995). Hammett first discovered the QSAR in the 1930s, and Hansch
and Fujita developed it in the mid-1960s (Tandon et al., 2019).
Hammett’s works are significant contributions to the field of
chemistry, particularly in the realm of Quantitative Structure-

FIGURE 1
Drug design techniques and groups.

FIGURE 2
Schematic presentation of the drug discovery and development process.
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Property Relationships (QSPR). Through his research, Hammett
established intricate mathematical connections between the acidity
of compounds and the electronic effects of various functional
groups. This innovative approach shed light on the underlying
principles governing chemical reactivity and laid the groundwork
for developing Quantitative Structure-Activity Relationship (QSAR)
models. Medicinal chemists may now think about their structures in
terms of physical properties rather than only pharmacophore groups
due to the QSAR approach and philosophy. As a result of research,
new inhibitors may be created from scratch, and existing medicines
may be improved regarding absorption, distribution, metabolism,
excretion, and toxicity (Abdel-Ilah et al., 2017; Kwon et al., 2019).
QSARs are a computerized statistical method for explaining
observed variation in replacement structure changes. QSAR
modeling has extensively prioritized compounds for manufacture
and biological assessment. The QSAR models may be utilized to
identify potential hits and enhance hit-to-lead ratios, to aid in the
efficient selection and optimization of compounds for further
development and biological evaluation (Neves et al., 2018).
Because no chemical needs to be made or tested before computer
assessment, QSAR is a labor-, time-, and cost-effective technique for
acquiring molecules with desired biological characteristics. As a
result, QSAR is extensively employed in businesses, colleges, and
research institutions throughout the globe (Cherkasov et al., 2014).
There are five main steps in QSAR, including incorporating
molecular structures and creating three-dimensional models.
Since geometric descriptor calculations require molecular models

in three dimensions: i) developing molecular structure descriptors,
ii) selecting the most critical descriptors, which can be accomplished
by using feature selection methods, iii) developing QSPR/QSAR
models using the descriptor sets, and iv) validating the model by
predicting the activity of substances based on external prediction
data (Winkler, 2002) (Figure 3) (Piir et al., 2018).

Virtual screening (VS.) is a common computer approach for
screening huge libraries of smaller molecules for novel hits with
desirable features that may then be evaluated experimentally.
Like other computational techniques, VS. aims to speed up the
discovery process by minimizing the number of candidates that
must be tested and rationalizing their selection (Neves et al.,
2018). Furthermore, due to its time, cost, resource, and labor
reductions, VS. has become quite popular in pharmaceutical
businesses and academic institutions (Schaduangrat et al., 2020).
QSAR analysis is the most effective VS. technique due to its high
throughput and hit rate (Aparoy et al., 2012). The Organization
for Economic Cooperation and Development (OECD) accepted
the following five principles for effective QSAR models to be
used in regulatory evaluations of chemical safety: 1) a stated end
aim; 2) a clear technique; 3) a defined scope of application; 4)
appropriate goodness-of-fit, robustness, and predictability
metrics; and 5), if feasible, a mechanistic interpretation
(Gandhi et al., 2021).

The Quantitative protein (or proteome)- disease relationships
(QPDRs) are extensively utilized for illness prediction, whereas
QSAR is frequently employed for pharmacological property

FIGURE 3
A workflow for QSAR modelling.
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prediction (Munteanu et al., 2010). Although they have been used
for decades to predict and correlate the activity of molecules, there
are several limitations to them, including i) the lack of training
molecules in some cases; ii) they consider only two-dimensional
structures; iii) the Hammett constant and other parameters are
insufficient to link drug-receptor interactions; vi) there are no
certain physiochemical criteria, no stereochemistry
representation, and no one-of-a-kind solutions (Patel et al., 2014;
Gandhi et al., 2021).

Classification of QSAR methodologies

Based on the dimensionality of molecular
descriptor
i. 0D QSAR- These descriptors are obtained from the molecular
formula. 0D-QSAR focuses on zero-dimensional descriptors,
such as constitutional descriptors, that include basic molecular
information like the number of atoms, bonds, or functional
groups (Gackowski et al., 2023).

ii. 1D QSAR- This correlates activity with global molecular
parameters such as pKa, log P, and others. These descriptors
are more straightforward and can be calculated more easily than
higher-dimensional QSAR methods. The 1D-QSAR models are
usually based on linear regression techniques, and they represent
a straightforward approach to correlating molecular properties
with biological activity 1D-QSAR has been applied to the study
of various biological systems, such as the modeling of anti-
cancer activity of a series of benzimidazole derivatives. This
study’s models were based on simple one-dimensional
descriptors, such as logP (partition coefficient), which
provided significant insights into the molecular features
responsible for the observed activity (Chandrasekaran et al.,
2018).

iii. 2D QSAR- A molecular network containing topological or two-
dimensional (2D) information is known as a 2D QSAR. The 2D-
QSAR methodology involves the relationship between the
chemical structure and biological activity of molecules,
considering only two-dimensional properties like molecular
weight, dipole moment, and hydrogen bond donors/acceptors.
A classic application of 2D-QSAR is in drug discovery, where it
has been used to model the activity of HIV protease inhibitors
(Abdel-Ilah et al., 2017).

iv. 3DQSAR- These are calculated from amolecule’s geometrical or
3D representation. 3D-QSAR adds a third dimension to the
analysis, considering the three-dimensional spatial arrangement
of atoms in a molecule. It is often applied to understand how
small molecules interact with a target protein in 3D space. 3D-
QSAR has been extensively applied in studying enzyme
inhibitors, such as developing new kinase inhibitors for
cancer therapy (Ajjarapu et al., 2021).

v. 4D QSAR- This model describes four dimensions of
information, with the fourth dimension being an ensemble of
conformation for each ligand. 4D-QSAR includes the three
spatial dimensions and adds the fourth dimension,
representing molecular flexibility or time-dependent behavior.
This considers how a molecule’s shape might change over time
or under different conditions (Hopfinger et al., 1997).

vi. 5D QSAR- In 4D-QSAR, 5D-QSAR explicitly represents
different induced-fit models (Verma et al., 2010; Patel et al.,
2014; Abdel-Ilah et al., 2017). 5D-QSAR adds a fifth dimension,
often representing the molecular solvation effects. It considers
how solvent molecules interact with the molecule of interest
(Good, 2006).

Based on the type of chemometric methods used
i. Linear method: Linear methods assume a linear relationship
between the structure and activity. Common linear methods
include multiple linear regression (MLR), partial least squares
(PLS), and principal component regression (PCR).

ii. Non-linear method: Non-linear methods are used when the
relationship between the structure and activity is complex and
non-linear. Techniques include artificial neural networks
(ANNs), support vector machines (SVMs), and k-nearest
neighbors (k-NN).

Types of techniques for QSAR modeling

1. The simple linear regression (SLR) method generates a QSAR
model in equations using a standard linear regression calculation.
This technique has proven to be quite promising for developing
structure and activity correlations (Verma et al., 2010). Using a
straight line, SLR models the relationship between a single
independent variable and a dependent variable. It assumes a
linear relationship and is widely used for prediction and
understanding how the variables are related. The method is
simple, interpretable, and widely applied in various scientific
fields. SLR might not capture complex relationships that involve
multiple variables (Draper and Smith, 1998). Linear Methods,
Used in modeling structure-activity relationships in drug
discovery, predicts novel compounds’ biological activity
(Krishnapuram et al., 2005).

2. Multiple linear regression (MLR) extends SLR to several
dimensions. Standard multivariable regression calculations are
used in this procedure. All of the descriptors under study are
subjected to identifying a drug property. MLR provides a more
nuanced understanding of the system under study by considering
more variables. It is a powerful tool for prediction and
explanation but requires careful handling of collinearity
among predictors. Adequate variable selection is essential for
building meaningful models (Schneider et al., 2010).

3. Stepwise multiple linear regression- Variation MLR, which
yields a multiple-term linear equation but does not use all
independent variables, is widely used in this approach. This
method works effectively when there are a lot of descriptors
and the key ones are not known (Patel et al., 2014). SMLR
combines the principles of MLR with a sparsity constraint,
ensuring that only the most relevant variables are used in the
model. This can lead to better interpretability and prevent
overfitting. SMLR is particularly useful when dealing with
high-dimensional data requiring feature selection. It is a
modern technique that bridges statistical modeling with
machine learning (Krishnapuram et al., 2005).

4. The partial least square method (PLS) provides a statistically
robust solution even when the independent variables are heavily
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connected, or the number of observations exceeds that (Verma
et al., 2010; Patel et al., 2014). PLS is a sophisticated regression
method that extracts latent variables explaining the covariance
between independent and dependent variables. It is widely used
in chemometrics for handling multicollinearity. PLS provides
robust and interpretable models by focusing on the variables
most related to the response. It is precious when numerous
predictors are highly correlated (Mehmood et al., 2020).
Applied in various fields like drug design, metabolomics, and
environmental toxicity prediction, where non-linear
relationships are common (Everitt et al., 2011).

5. Principle components analysis (PCA) is a technique for creating
a new set of orthogonal descriptors called principal components
(PCs) that describe the bulk of the information in the
independent variables in decreasing order of variance. CA is
also utilized in PLS approaches for variable selection (Patel et al.,
2014). PCA is a dimensionality reduction technique that
transforms the data into orthogonal components, capturing
the most variance. It is a robust exploratory data analysis,
visualization, and preprocessing tool. PCA helps understand
the underlying structure of data and is widely used in various
scientific fields, including chemometrics and bioinformatics
(Prachayasittikul et al., 2015; Jolliffe and Cadima, 2016).

6. The genetic function approximation (GFA)method can be used as
an alternative to average regression analysis to construct QSAR
equations. It can create both linear and higher-order non-linear
equations. Genetic algorithm partial least squares (G/PLS or GA-
PLS) are a helpful method that combines the most significant
features of GFA and PLS. GFA applies genetic algorithms to find
the optimal subset of descriptors in regression analysis. It can model
complex non-linear relationships and is highly flexible. GFA has
been applied successfully to model various chemical and biological
systems, especially in QSAR studies. Its ability to navigate vast
descriptor spaces makes it a valuable tool in computational
chemistry (Rogers and Hopfinger, 1994).

7. Cluster analysis is a multivariate approach for classifying
structures into subsets (called clusters) that are similar in
some manner (Patel et al., 2014). Cluster analysis is a
grouping technique used to categorize objects into clusters
based on their similarity. It is unsupervised, meaning that the
categories are not predefined. Cluster analysis has diverse
applications, including market segmentation, image
processing, and pattern recognition. It provides insights into
the natural groupings within data (Zhang et al., 2023).

8. Artificial neural networks (ANNs) are nonlinear computational
models that simulate the activity of human neurons to make
predictions (Prachayasittikul et al., 2015). They can be used to
model QSAR and solve pattern recognition difficulties (Patel
et al., 2014). ANNs are inspired by the human brain’s function
and consist of interconnected nodes or neurons. They are capable of
modeling complex, non-linear relationships between inputs and
outputs. ANNs have been applied in numerous fields, including
image recognition, natural language processing, and QSAR
modeling. The flexibility and adaptability of ANNs make them a
powerful tool, but they require careful tuning and interpretation
(Trinh et al., 2021). Used in virtual screening and toxicity prediction,
providing accurate models that can handle the complexity of
biological systems (Pérez et al., 2021).

Molecular descriptors and their significance

Despite significant advancements in drug design, descriptors
used to designate the molecular structure of biologically active
compounds remain the primary method for identifying novel
lead molecules. For QSAR/QSPR investigations, descriptors are
numerical representations of the chemical properties of a
molecule. For statistical model construction to be possible, the
mathematical representation of these descriptors must be
independent of the molecule’s size and number of elements. In
QSAR/QSPR modeling, molecular descriptors have evolved into the
most important variables. The information conveyed by descriptors
typically depends on the type of molecular representation and the
defined algorithm for its calculation. Among these are topological
indices, geometrical, structural, and physicochemical descriptors.

Constitutional descriptors are basic, widely-applied descriptors
that reflect the molecular composition of a compound without
providing information about its topology. The most common
constitution descriptors are the number of atoms, number of
bonds, variety of atoms, ring count, and molecular weight (MW).
These descriptors are insensitive to conformational changes and do
not distinguish between isomers.

Recent developments in lead discovery, drug design, virtual
screening, combinatorial library design, and database search
discrimination also highlight the importance of topological
descriptors in drug discovery. Topological indices (TIs) are two-
dimensional descriptors that consider the intrinsic atomic
arrangement of compounds. These descriptors are derived from the
topological representation of molecules and can be considered
structure-specific. These indices encode numerical information
regarding the molecular size, shape, branching, presence of
heteroatoms, and number of bonds. By the nature of chemical
bonds, these TIs represent the interconnectedness of atoms within
molecules. They play a crucial role inmodeling various physicochemical
properties, biological activities, and pharmacokinetic properties. A
molecular graph represents a topological representation of a
molecule. This graph is denoted mathematically as G = (V, E),
where V is the set of vertices corresponding to the atoms of the
molecule, and E is the set of elements representing the binary
relationship between pairs of vertices. These chemical graphs depict
the molecular structure in a non-numerical format; however, a
numerical translation of the graph is required to calculate
topological descriptors. The most commonly used descriptors are
the Wiener index, the Connectivity indices, the Kier shape, the
Balaban J index, and the Zagreb indices. The primary function of
these indices is to classify molecules according to their size, degree of
branching, flexibility, and overall morphology (Wiener, 1947; Randic,
1975; Balaban, 1982; Roy, 2004).

The 3D coordinates of the atoms in a given molecule are used to
derive geometrical descriptors. In comparison to topological
descriptors, these descriptors are abundant in information and
discrimination power for analogous chemical structures and
molecule conformations. In addition, they contain data acquired
from atomic van der Waals regions and their overlap on the
molecular surface. Despite their high informational density, these
descriptors typically have disadvantages as well. Geometric
descriptors necessitate geometry optimization and, consequently,
the computational burden to calculate them. Thus, for flexible
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molecules that can assume multiple conformations, new
information can be utilized. Nonetheless, this results in the issue
that complexity can increase substantially. Moreover, alignment
constraints are required for the majority of these descriptors
(grid-based descriptors) to accomplish molecule comparability. A
molecule’s physical and chemical properties that can be estimated
from its two-dimensional structure are physicochemical descriptors.
These properties play a significant role in determining the substance
concentration in the body. A drug’s efficacy and, consequently, its
market value can be enhanced by its possessing the appropriate
properties. Thus, examining these properties of a drug not only
contributes to the drug’s safety profile but also plays a crucial role in
drug discovery by optimizing the compounds chosen. In addition to
selecting candidate compounds with the appropriate
physicochemical properties, it is necessary to pay special
attention to properties such as lipophilicity, solubility, and
permeability, which can ensure optimal potency (Leo et al., 1975;
Ghose and Crippen, 1986). In contrast, molecular fingerprints have
been utilized for decades to investigate large chemical libraries for
similar compounds. The information content of 2D signatures is
derived from atoms, bond types, and graph distances derived from
chemical graphs, where these are represented as bits. Each bit
indicates the presence or absence of a predetermined
substructure in a compound. A bit in a structural fingerprint
corresponds to a chemical property, typically the presence of
some substructure. Based on the similarity to a biologically active
molecule, these biomarkers enable researchers to identify additional
compounds with a higher probability of displaying similar biological
potency against the same target. Molecule properties, such as
chemical diversity in chemical space, can be characterized using
fingerprints. Such evaluations are crucial in the compound selection
process before experimental screening. Numerous fingerprint
varieties can be used for structural comparisons of various sorts.
Such signatures have become a popular option for drug discovery
because they offer a decent balance and empirically reasonable
proportionality. By quantifying fingerprint overlap with similarity
coefficients and using the resulting values to measure molecular
similarity, fingerprint similarity searching generates a database
ranking. A Tanimoto coefficient (Tc) value of >0.85 indicates a
high probability that the test compounds have similar bioactivity.
However, Tc is only useful for data with comparable levels of
complexity; other coefficients are preferred for data with varying
levels of complexity (Willett, 2006; Rogers and Hahn, 2010; Helal
et al., 2016).

Initially, 2D fingerprints were designed for similarity searching
using a single template, but some studies claim that search
performance is enhanced when multiple reference compounds
are employed. MACCS, PubChem, and Extended-Connectivity
biometrics (ECFP) are the most commonly used biometrics.
MACCS is a compilation of 166 bits that encompasses most of
the chemical characteristics important for virtual screening. The
PubChem signatures database contains 881 bits of descriptors for
element counts, aromatic or nonaromatic ring counts, atom pairs,
atom neighborhoods, and particular fragments. These 2D signatures
have been successfully utilized in the virtual screening of novel active
compounds. Using PubChem bioassays, comprehensive bioactivity
profiles, dubbed “PubChem high-throughput screening
fingerprints” (PubChem HTSFPs), were recently developed. In

addition, these PubChem-HTSFPs were utilized in hit expansion
experiments for 33 unique targets. These signatures were useful for
retrieving matches with structural diversity and the desired
bioactivities. ECFPs are a novel class of 2D circular signatures
used for molecular characterization. These signatures are an
extension of the Morgan algorithm. These circular fingerprints
have numerous advantageous characteristics, including i) being
easy to calculate; ii) representing a large number of distinct
features; and iii) not being reliant on predefined features; thus,
they can represent novel structural variation. These fingerprint types
effectively employ encoded rich data for similarity searching,
compound clustering, and chemical library analyses. In addition,
ECFPs are frequently employed in QSAR and QSPR model
development for lead optimization and ADMET property
forecasting (Willett, 2006; Rogers and Hahn, 2010; Helal et al.,
2016).

Therefore, concerning anti-tubercular drug discovery, a
combination of different machine-learning-assisted QSAR models
is required while implementing molecular descriptors and
molecular fingerprints of molecules’ datasets for feature selection
against any biological target. The best way to deal with major
demerits of different types of molecular descriptors is to include
two or more molecular descriptors while constructing the hybrid
descriptors-based QSAR models. Hybrid molecular descriptors
incorporate multiple molecular characteristics, including
topological, electronic, and geometric properties. This exhaustive
representation accounts for a broader range of factors that
contribute to the activity of a molecule, thereby enhancing the
model’s predictive accuracy. The same approach should be applied
while considering molecular fingerprints for anti-tubercular drug
design by constructing a hybrid fingerprint-based QSAR.
Therefore, the use of both hybrid molecular descriptors and
molecular fingerprint-based QSAR models will have a distinct and
interpretable relationship with the activity of a molecule that will
additionally aid researchers in analyzing the contributions of
particular characteristics or substructures to the overall activity,
thereby facilitating the design of novel compounds with the
desired properties. Apart from this, hybrid molecular descriptors
and molecular fingerprints can represent a wide variety of
chemical structures, including novel and unconventional
compounds. This adaptability is essential for investigating new
chemical space and identifying potential drug candidates with
distinctive structural characteristics. In ensemble modeling, where
multiple QSAR models or screening methods are combined to
improve predictive performance, hybrid molecular descriptors and
molecular fingerprints can also be used. This strategy combines the
advantages of various techniques, resulting in more accurate and
robust forecasts. Due to their ability to provide a comprehensive,
interpretable, and computationally efficient representation of
molecular structure and activity, hybrid molecular descriptors and
molecular fingerprints are favored for QSAR modeling and drug
design. These techniques have significantly accelerated the drug
discovery process by allowing researchers to prioritize and design
promising compounds for further experimental evaluation (Willett,
2006; Rogers and Hahn, 2010; Helal et al., 2016). As computational
methods continue to advance, hybrid descriptors and molecular
signatures will likely play a greater role in shaping the future of
drug development against tuberculosis.
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Modeling QSAR using chemical space
analysis

Chemical space is vital in drug development for various
purposes, including library creation, compound classification,
selection, structure-activity relationship (SAR) investigation,
and understanding structure-property connections (SPR)
(Naveja Medina, 2019). It encompasses all descriptors derived
from chemical compounds. The chemical space analysis for FDA-
approved drugs showed shared traits, including substantial
halogen content and molecular weights below 500, consistent
with Lipinski’s rule of five. This rule suggests that drugs with an
MW less than 500 have better bioabsorption and bioavailability
(Prachayasittikul et al., 2015). Chemical space represents the
collection of all potential organic compounds, and as its scale
increases, cartographic approaches are used to visualize and
conceptualize it. Machine learning methods benefit from
chemical space approaches as they identify clusters of related
compounds. Lipinski’s rule of five indicates that drug-like
compounds exhibit drug resemblance with MW < 500 Da,
clogP <5, few H-bond donors (<5), and few H-bond acceptors
(<10) (Ganesan, 2008). Optimizing this rule is essential for
improving BBB permeability by passive diffusion. Factors like
MW, log P, and H-bond donors and acceptors influence drug
interaction with the blood-brain barrier (BBB) (Lambrinidis and
Tsantli, 2018). By analyzing the chemical composition of natural
compounds and determining their molecular structures, the
investigation identified 11 novel inhibitors for ß-
hydroxysteroid dehydrogenase type 1 (Koch et al., 2005).
According to Reayi, diversity-oriented synthesis (DOS), a
chemical synthesis strategy for swiftly building a library of
compounds, can help deorphanize druggable protein targets
(Reayi and Arya, 2005). ChemGPS-NP was used to examine
the chemical space of natural products from different
databases (Larsson et al., 2005). They discovered that
40,348 compounds from the Dictionary of Nature Products
Database passed Lipinski’s rule of five (Rosén et al., 2009). To
define “bioactive natural compound-likeness,” (Zhou et al., 2010),
used structure-activity relationships to investigate the chemical
space of natural products, comparable to Lipinski’s rule of five
(drug-likeness) (BNC-likeness). The drug-likeness and BNC-
likeness models were utilized to compare the structural
properties of bioactive and non-bioactive natural products. The
Ethnobotanical Database and Dr. Duke’s Phytochemical Database
were used to create a dataset of 1,580 natural products from a total
of 7,549 natural product constituents. 790 natural compounds
were bioactive, while the remaining 790 were not, resulting in a
well-balanced dataset. Bioactive natural compound-likeness
models were created using SVM with radial basis function
kernels, and the training set consisted of 1,580 bioactive
substances. An independent external data set of 81 bioactive
and 81 non-bioactive natural compounds from commonly used
medicinal plants were used to test the models’ performance. The
prediction results effectively classified 75 bioactive chemicals,
indicating the robustness of the models and their immunity to
overfitting. One of the issues with machine learning is overfitting,
which arises when noise data is used as an independent variable in
developing highly predictive models (Zhou et al., 2010).

Model validation methodology for QSARs

The validation approach tries to provide a model with defined
descriptors that is statistically trustworthy because of a cause-and-
effect connection rather than a random numerical link. Validation
procedures are required to determine a model’s predictive ability.
Internal and external validation techniques are the two sorts of
validation methods accessible. Training datasets are used by internal
techniques such as Q2 (squared correlation coefficient), R2

(coefficient of determination or coefficient of multiple
determination for multiple regression), chi-squared (X2), and
root-mean-squared error (RMSE). When applied to new data
sets, the model’s lack of predictability is a significant flaw in this
technique. External approaches, on the other hand, are based on the
testing set and are considered the most reliable validation (Abdel-
Ilah et al., 2017; Kwon et al., 2019). These statistical methods ensure
that the models produced are accurate and unbiased. Cross-
validation approaches such as accuracy (ACC), sensitivity (SEN),
specificity (SPEC), and Matthew’s correlation coefficient (MCC)
(Prachayasittikul et al., 2015) can be used to assess the model’s
internal predictive capability. In contrast, its external predictability
can be evaluated using a separate set of molecules (the test set) that
were not used in the model creation (Testa, 1995; Verma et al.,
2010). The CVmethod begins by removing one or more compounds
from the training set, which serves as a temporary test set. The
remaining data points are used to form a CV model, which is then
tested on the deleted molecules to see if it can accurately predict
bioactivities using the descriptors from the original model (Figures
4, 5).

External validation, the Y-randomization test, the domain of
applicability, and the William plot are some statistical techniques
that can be used to assess a QSAR/QSPR model’s predictive ability.
External validation is a method of testing a QSAR/QSPR model’s
external predictivity by omitting a section of data at the start of the
experiment and using the remaining internal set to evaluate optimal
learning algorithm parameters (Prachayasittikul et al., 2015).

The accuracy (ACC), sensitivity (SEN), specificity (SPEC), and
Matthew’s correlation coefficient MCC) are used to evaluate the
prediction performance of the proposed QSAR/QSPR model using
cross-validation (CV), which is given by the following formula
Eqs 1–4

Accuracy � TP + TN

TP + TN + FP + FN( ) × 100 (1)

Sensitivity � TP

TP + FN( ) × 100 (2)

Specif icity � TN

TN + FP( ) × 100 (3)

MCC � TP × TN − FP × FN

√ TP + FN( ) TN + FP( ) TN + FN( ) (4)

TP, TN, FP, and FN- Numbers of true positive, true negative,
false positive, and false negative.

Matthew’s correlation coefficient (MCC) measures the gap
between actual and expected values. The coefficient is a balanced
measure that can be employed when the classes are of various sizes
and take into consideration true negatives (TN), true positives (TP),
false negatives (FN), and false positives (FP). The equation is used to
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derive the formula. In machine learning, Matthew’s correlation
coefficient (MCC) is used to assess the quality of binary and
multiclass classifications. Like most correlation coefficients, MCC
has a range of 1 to 1, with 1 denoting the best agreement between
actuals and forecasts, −1 denoting an inverse prediction, and
0 denoting no agreement. Alternatively, the prediction is random
in comparison to the actual situation (Mun and Geng, 2019).

Machine learning drug development

Due to an influx of available data and increased computer capacity,
machine learning (ML) technologies are coming back in drug
development investigations. This has sparked a flurry of artificial
intelligence (AI) drug development investigations, in which machine
learning (ML) and deep learning (DL) approaches are used to solve
issues efficiently and intelligently. Combining structural, sequence, and
evolutionary data yields machine-learning models (Verma et al., 2010).
An analysis of hydrophobicity, side-chain pKa, solubility, solvent
accessibility, and other physiochemical parameters is conducted, as
well as the development of a machine-learning model to predict
binding and non-binding residues. Only a few models predict

binding sites based on one of the binding partners’ structures,
whereas others employ information from both partners (Kumar
et al., 2018). The two types of machine learning methodologies are
unsupervised and supervised learning. Labels are allocated to training
data in supervised learning, and the model can predict labels for specific
data inputs once it is ready. On the other hand, unsupervised machine
learning algorithms can profit directly from unlabeled molecular pattern
data, as they require input data and no output components
(Supplementary Table S7) (Singla et al., 2013).

The significance of pharmacophore

Ehrlich coined the pharmacophore as “a molecular framework that
conveys (phoros) the key properties responsible for a drug’s
(pharmacon) biological activity” in 1909 (Yang, 2010). According to
the IUPAC nomenclature (Leach et al., 2010), a pharmacophore is a
molecule that possesses both steric and electronic properties that enable
it to produce efficient supramolecular interactions with a biological
target structure and activate or inhibit its biological response (Figure 6).

To better understand ligand-protein interactions,
pharmacophore models are developed. They may be utilized to

FIGURE 4
Predictive approach for QSAR modelling.
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discover new compounds that match the pharmacophore criteria
and are thus expected to be active (Muhammed and Aki-Yalcin,
2021). Using a mix of pharmacophore model-based screening and
docking studies to find new drugs has been proven beneficial (Mesli
et al., 2021). If the target’s structure is unknown, a pharmacophore
model can be created utilizing structural data from the active ligands
that bind to it. The ligand-based pharmacophore modeling
technique (Yang, 2010; Muhammed and Aki-Yalcin, 2021) is the
name given to this approach.

When the target’s structure is known, pharmacophoremodels can be
constructed utilizing the target’s structural attributes. This is the structure-
based pharmacophore modeling approach (Vastrad, 2012). A whole
framework of Pharmacophore is shown in Figure 6 (Muhammed and
Aki-Yalcin, 2021). A list of pharmacophore modeling software is enlisted
in (Supplementary Table S8) (Yang, 2010; Singla et al., 2013; Kumar et al.,
2018; Schaller et al., 2020; Muhammed and Aki-Yalcin, 2021).

The pharmacophore analysis has the most important common
denominator of the molecular interaction properties shared by a

group of active compounds. It is an abstract idea rather than a
physical molecule or combination of chemical groups (Qing et al.,
2014). Integrating knowledge about the three-dimensional nature of
molecular interactions is another significant component of current
pharmacophore research. This point of view is centered on 3d-
pharmacophore techniques (Leach et al., 2010), which define the
spatial relationship between pharmacophore features. Virtual
screening, de novo design, lead optimization, and multitarget
drug design have all utilized pharmacophore-based approaches
(Yang, 2010; Kumar et al., 2018; Muhammed and Aki-Yalcin,
2021). There are limitations with pharmacophore scoring
functions that limit its ability to realize its intended potential,
especially with the current high cost of discovering and
developing new medicine. The involvement of other
computational methods is critical in overcoming these obstacles.
As a result, combining pharmacophore modeling with different
computational approaches addresses some of these constraints
(Yang, 2010; Kumar et al., 2018).

FIGURE 5
The role of applicability domain in various stages of the QSAR life cycle.

FIGURE 6
A framework of Pharmacophore architecture.
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A pharmacophore model is comprised of several characteristics
that are arranged in a three-dimensional (3D) pattern. The
characteristics can be labeled as a single feature or any logic
combination consisting of “AND,” “OR,” and “NOT” (Qing
et al., 2014) to blend varied interaction patterns under a single
label. Hydrogen bond donors (HBD), hydrogen bond acceptors
(HBA), positive features, negative features, aromatic rings,
hydrophobic features, and their combinations are all examples of
molecular pharmacophore patterns (Seidel et al., 2020). Different
compounds can be compared at the pharmacophore level, known as
“pharmacophore fingerprinting.” The pharmacophore is a “query”
when only a few pharmacophore properties are analyzed in a 3D
model (Qing et al., 2014). Classification of 3D-QSAR is given in
Supplementary Table S4. Pharmacophoric characteristics may be
used as a query to search for possible leads from chemical compound
databases and produce compounds with specific qualities (lead
optimization) (Qing et al., 2014; Kumar et al., 2018; Muhammed
and Aki-Yalcin, 2021). It also uses pharmacophore fingerprints to
determine the comparability and diversity of drugs. It may also align
molecules based on their three-dimensional arrangement or create a
predicted three-dimensional QSAR model (Kumar et al., 2018). The
webservers or databases for QSAR drug design research are given in
Supplementary Table S1-3). A list of software used for calculating
descriptors and fingerprints is presented in Supplementary
Table S5, 6.

Pharmacophore modeling employs organized methods to
construct a logical framework to identify other chemical moieties
with similar properties against the disease’s target of interest. The
steps are as i) ligand synthesis, ii) mapping of pharmacophore
features, iii) looking for a common pharmacophore, and iv)
calculating the shared pharmacophore score (Kumar et al., 2018).
A pharmacophore can be used to screen new target-specific agonists
and antagonists, toxicants, undiscovered targets, and the best
molecular docking findings. A pharmacophore model is often
used in virtual screens to locate medications that trigger the
required biological activity (Yang, 2010; Muhammed and Aki-
Yalcin, 2021), as well as fishing drug targets, ligand profiling,
docking, and ADMET (absorption, distribution, metabolism,
excretion, and toxicity) prediction (Leach et al., 2010; Yang,
2010; Qing et al., 2014; Muhammed and Aki-Yalcin, 2021).

An overview of the importance of molecular
docking

The most extensively used strategy for structure-based drug
development is molecular docking, which has been around since the
early 1980s (Meng et al., 2012). Molecular docking provides an
attractive framework for studying drug biomolecular interactions,
which is useful for rational drug design and discovery Dar and Mir,
2017). The molecular docking approach may be used to model an
atomic-level interaction between a small molecule and a protein,
allowing us to characterize small molecule behavior at target protein
binding sites and highlight key biochemical processes (Meng et al.,
2012; Aspatwar et al., 2019) (Figure 7) (Ferreira et al., 2015).

When the target protein’s 3D structure is available, molecular
docking is one of the most commonly used virtual screening
approaches. It is possible to predict both the affinity of the ligand

for a protein and the structure of the protein-ligand complex by
using this technique, both of which are vital to lead optimization
(Wang and Zhu, 2016). Molecular docking aims to predict the
structure of the ligand-receptor complex using computational
methods. Docking is accomplished in two steps: sampling ligand
conformations in the protein’s active site and then utilizing a scoring
function to rate these conformations (Meng et al., 2012; Ferreira
et al., 2015). A complete list of docking and ADME software are
enlisted in Supplementary Table S9 (Meng et al., 2012; Singla et al.,
2013; Ferreira et al., 2015; Dar and Mir, 2017; Kumar et al., 2018;
Zhang et al., 2022) Supplementary Table S10 (Singla et al., 2013),
respectively.

Discovery of covalent and noncovalent anti-
tuberculosis drugs using molecular docking
techniques

Covalent inhibition is a method for obtaining irreversible
inhibition. Because covalent inhibitors may target proteins with
shallow binding cleavage, new inhibitors with better efficacy than
non-covalent inhibitors can be developed. Covalent molecular
docking has recently been used in computer-aided drug design
processes to characterize covalent interactions between inhibitors
and biological targets. Several computational approaches for
modeling covalent interactions have been developed. Autodock,
Autodock Vina, GOLD, and FlexX are the most popular docking
tools and software.

On the other hand, these and other similar methods primarily
focus on non-covalent interactions (van der Waals interactions,
electrostatic interactions, and hydrogen bonding) or the use of
alternative empirical or knowledge-based scoring functions to
characterize these non-covalent interactions (Kumalo et al.,
2015). Non-covalent interactions (van der Waals interaction,
electrostatic interaction, and hydrogen bonding, for example,) or
alternative empirical or knowledge-based scoring functions to
characterize these non-covalent interactions are mainly used in
these and other analogous methodologies. However, not all
medications attach non-covalently to the active site; other
compounds, such as covalent drugs (Singh et al., 2011), bind
covalently. The workflow of covalent docking is represented in
Figure 8 (Kumalo et al., 2015).

Many techniques have been developed to achieve the covalent
docking of inhibitors to target proteins. However, most covalent
docking methods can only predict the binding energy between an
electrophilic ligand and a nucleophilic receptor. Popular is the “link
atom” approach. The software defines a “link atom” in the ligand
and the protein in this strategy. The ligand link atom must occupy
the same steric volume as the protein link atom to mimic the
covalent binding process. The Gold molecular docking program
(Hartshorn et al., 2007) implements this strategy. Autodock, another
widely used molecular docking program, uses a “grid-based
technique” and a “modification of the flexible side chain”
approach to covalently dock inhibitors to receptors. The
covalently linked ligand and the protein attachment are sampled
as part of the receptor as a single flexible side chain in a flexible side
chain. A Gaussian biassing function focused on the protein
attachment atom, and grid-based energy is used in the grid-based
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approach to bias the covalent bonding ligand posture (Kumalo et al.,
2015).

Katritch et al., 2007, used covalent docking and homology
modeling to create a detailed structural model of the ubiquitin-
like poxvirus proteinase (ULP) I7L substrate-binding site (S2–S2′).
The 3D model of the I7L ligand-binding site was utilized to perform
covalent docking and virtual screening of a comprehensive library of
around 230,000 accessible ketone and aldehyde compounds to
uncover novel smallpox antiviral hits. Out of 456 predicted
ligands, 97 inhibitors of I7L proteinase activity were found to be
active in biochemical studies (20 percent overall hit rate) (Katritch
et al., 2007). In their study,Wang et al. employed covalent and three-
dimensional QSAR modeling to investigate the intermolecular
interactions of isatin sulfonamide analogs as caspase-3 inhibitors
(Wang and Zhu, 2016). Fifty-nine isatin sulfonamide analogs were
docked to the binding site of human caspase-3. The docking
research showed the inhibitors’ binding mechanism. A 3D-QSAR
approach further supplements docking analysis by offering a

“custom” scoring function for the protein under research, capable
of predicting bioactivities for ligands comparable to those in the
training sets. Structure-based design methodologies (such as
docking) were shown to aid in constructing trustworthy QSAR
models.

Ma et al. developed and covalently docked a novel family of peptide
aldehyde derivatives to increase hydrophobic interactions with a bulky
P3 moiety. Covalent docking was used to predict the exchange of the
peptide aldehyde compounds with the 20S. The P3-position alterations
are crucial for inhibitor efficacy. The docking behavior is similar to that
of the crystal complex previously described. The hypothesized binding
method might be leveraged to generate more potent 20S proteasome
inhibitors (Ma et al., 2011). A bicyclic class of covalent inhibitors was
synthesized by Lawandi et al. to study the optimal shape required to
target propyl oligopeptidase (POP) and heal human brain disorders. We
hypothesized that these structures could bind covalently to the enzyme’s
catalytic serine because they contain nitrile functional groups. From the
covalent docking study, two compoundswere chosen for production and

FIGURE 7
Schematic presentation of covalent docking.
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biological testing. The study unveiled the presence of a potent,
remarkably selective, and cell-permeable inhibitor for POP.

Furthermore, docking tests (using the FITTED docking engine and
default parameters) demonstrated that the stereogenic center’s
arrangement at the ring junction is a limiting factor for optimum
activity, which may be used to guide future studies (Lawandi et al.,
2009). Saikia et al. study delve into the intriguing interaction between the
antitubercular drug isoniazid (INH) and pristine and Si-doped and
single-walled carbon nanotubes (SWNTs) (Saikia et al., 2016). The
incorporation of silicon dopants significantly enhances the adsorption
of INH onto the relatively inert nanotubes, as evidenced by profound
alterations in adsorption energies, charge transfer phenomena, and
global reactivity descriptor values. Notably, the study highlights
noncovalent functionalization’s efficiency and mobility advantages
over covalent counterparts, particularly in facilitating INH movement
along the nanotube sidewall. Interestingly, parallel adsorption
configurations manifest heightened charge transfer dynamics
compared to the perpendicular adsorption orientation. The
theoretical investigation posits single-wall carbon nanotubes as
promising nano vectors for PZA (pyrazinamide) drug delivery, with
covalent functionalization via sidewall and edge attachment, presenting a
viable strategy. The study’s findings pave the way for further exploration,
aiming to unravel the intricacies of therapeutic release from
functionalized SWCNTs, ultimately enriching the landscape of future
biomedical applications (Saikia et al., 2013). The list of software used is
given in Supplementary Table S11 (Singla et al., 2013).

Post docking simulation studies for
tuberculosis drug discovery

Molecular dynamics (MD) are more computationally
demanding and sophisticated than simulations of other
biomolecules. A collection of biomolecule conformations with

distinct initial and boundary conditions can be generated by
iteratively integrating (numerically) the equations of motion for
specific potential simulations (Kumar et al., 2018). A structural
ensemble derived from an MD simulation is used to explore the
conformational space of biomolecules, measure thermodynamic
variables, and predict the free energy of biological processes. In
calculations involving free energy binding, which encompasses a
wide range of accuracies and processing needs, many people have
tried the MD method to forecast the strength of non-bonded
interactions. A very vital technique for the theoretical and
computational studies of biomolecules is molecular dynamics
simulation (MDS) (Huang et al., 2010). Examining molecular
systems is exceedingly tricky since they usually comprise many
particles. Using numerical approaches in molecular dynamics
simulation can avoid this analytical intractability. The atoms and
molecules may briefly interact while the simulation is running. Each
atom’s motion is calculated, and the overall behavior may be
checked. It offers numerous advantages over docking because
docking merely provides the ligand’s binding free energy among
the receptor. MDS can also be used to predict the ligand’s actual
interaction with receptors at the atomic level (Ferreira et al., 2015;
Kumar et al., 2018).

Root means square deviation (RMSD) is applied in MDS to
forecast receptor or ligand-receptor complexes for their stability and
to explain conformational changes. An alternate conformational
state consequently to such ligand-induced structure can be
generated using MD simulations (Khan et al., 2016). The
projected ligand-receptor complex can be termed unstable if the
A-matched docking solution and the ligand conformation produced
by MD are different by more than a particular RMSD value (Kumar
et al., 2018). Coupled docking andMD approaches have been widely
used to identify new therapeutic drugs from natural compounds and
optimize the more recent lead candidate obtained from the natural
compound (De Vivo et al., 2016).MD is also applicable to produce a

FIGURE 8
An overviewof the docking process formolecules. (A) The ligand’s three-dimensional structure; (B) the 3D structure of the receptor; (C) The ligand is
docked into the receptor’s binding cavity, and potential conformations are investigated.; (D) The detected intermolecular interactions and the most
plausible binding conformation.
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section of convenient docking structure, mainly when none of the
acceptable crystallographic structures for the specific molecular
target are offered (Harvey and De Fabritis, 2012). MD
simulations paired with molecular mechanics/Poisson-Boltzmann
surface area (MM/PBSA) approaches can provide precise
information on drug-target interaction binding effectiveness. This
method has also been used to test the inhibitory efficacy of natural
chemicals against various protein targets (Good, 2006).

Using the MD simulation approach, various ways are available
to examine atomic-level alterations in biomolecules (Khan et al.,
2016). Some, like Desmond, have a graphical user interface, while
others, like GROMACS and AMBER, run via command lines.
GROMACS (AMBER), Nanoscale MD (NAMD), and
(CHARMM-GUI) are some well-known and commonly used MD
simulation programs. The rise in software and hardware powers is
crucial for executing such MD simulations (Kumar et al., 2018).

It is a popular method for researching biologically known
systems. It is also employed in various domains, including the
Prediction of protein-ligand combination stability, protein
mutation analysis, conformational protein stability prediction,
and protein unfolding investigations. It is a powerful instrument
demanding much computing power to solve biological puzzles
(Hansoon et al., 2002; Hospital et al., 2015).

Molecules discovered by QSAR,
pharmacophore modeling, and molecular
docking for tuberculosis

A QSAR study was conducted on thirty-four 8-methyl
quinolones by Eric et al. to determine their anti-tuberculosis
activity. Picking descriptors and building association models
relating to structural characteristics of biological activity was
done using the genetic algorithm (GA) and multiple linear
regression analysis (MLRA). The 3D structure of all compounds
was constructed using the SPARTAN “14 v 1.1.0 tool. PADEL
software for calculating molecular descriptors of all
34 compounds. The Build QSAR application was used to analyze
geometric algorithms and build QSAR models. The internal
validation was performed using the cross-validation leave-one-out
technique, and external validation was performed by utilizing them
to forecast the action of test sets. An examination of the robustness
of the QSAR design was also conducted. The GA-MLRA method
was used to construct a robust QSARmodel to predict the inhibitory
action of some quinolones. The results of this study (R2 Pred =
0.7393) imply that for novel 8-methyl quinoline analogs, the pMIC
can be calculated using the QSAR model that comes under the
model’s applicability domain before synthesizing them (Eric et al.,
2016). It applied various computational methodologies to the 2,4-
diamino quinazoline moiety to assess its efficacy in tuberculosis
between diverse biological functions (Bose et al., 2019). V-Life MDS
software was used to study all QSAR studies. Merck molecular force
field was used to get 3D structures from 2D QSAR. In 3D QSAR,
conformers were created using the conformational Monte Carlo
technique, and the conformers with the lowest energy were chosen
to align. The pharmacophore identification investigations were
performed in the V-life MDS 4.4 Mol sign module to associate
geometrical representation of the properties required for the

molecule to show activation. The docking investigation was
conducted using GOLD software. Thirty-three molecules were
docked with four distinct protein molecules, significant for anti-
TB action and crystalline protein structure. The new molecular set
was designed depending on the pharmacophore results of docking
studies and QSAR. After designing, the new molecule set was
optimized, and using Monte Carlo conformation search
conformers were generated. The 2,4-diamino quinazolines
scaffold is promising for development as a molecular lead set for
lead optimization, according to the findings of this study. According
to the QSAR study, better moieties require a perfect distribution of
steric potential and hydrophobicity in the molecular system.
Pharmacophore mapping depends on the quinazoline ring’s
1 and 3 nitrogen atoms, the 4-amino phenolates molecule at
location 4, the benzene ring, and the electronegative fluorine
replacement. According to QSAR and pharmacophore mapping
data, replacing the piperidine ring at the 2-amino position and the 4-
amino phenolate group over the 4-amino position is the main
necessity, as evidenced by the design and assessment of the
activity using a 3D QSAR model. All of the features assessed and
assumed to represent an active moiety were included in the final
molecule (Bose et al., 2019). Bhardwaj et al. explored the binding
affinity of 70 novel piperine analogs and reported the activity of
23 compounds against Mycobacterium tuberculosis. The
antitubercular effects of verapamil analogs, which are derivatives
of dimethoxy phenyl rings bound to carbon chains, are significant.
However, piperine, which also has a methylenedioxyphenyl ring
attached to a carbon chain, is found to be a structural requirement
for its activity. The similar action of these two compounds was
correlated using in silico approaches. Using DRAGON and Chem
office software, descriptors were calculated in QSAR studies. The
QSAR models were generated by performing MLRA (Multiple
Linear Regression Analysis) analysis using CODESSA®. The
structures of the compounds were sketched and optimized using
Chem Sketch software. Schrodinger, 2016–1’s GLIDE module
investigated drug-receptor interactions and designed new
compounds. www.rcsb.org provided the protein structure
(3C3W), or the Protein Prep Wizard module was used to make
the protein. The binding cavity within the protein was determined
using site mapping, which will be utilized in future studies. Using a
2D sketcher, the structure of the ligands was created and optimized.
For energy optimization, PLS3 was employed. It was concluded from
QSAR and molecular docking studies that the binding energies
range of predicted products with one hydrogen bond to five
hydrogen bonds was higher than reported compounds with one
hydrogen bond to four hydrogen bonds. Compared to reference
medications, some predicted molecules have shown good binding
affinity. As the docking scores are comparable, we may conclude that
the QSAR models created are good, and these are applied for
forecasting the anti-TB activity of novel drugs (Bhardwaj and
Dubey, 2017). The findings from the study underscore the power
of integrating diverse computational strategies in the pursuit of anti-
tubercular drug discovery. The combination of molecular docking,
DFT calculations, reactivity descriptors, QSAR modeling, ADMET
evaluation, and molecular dynamics simulations presents a
formidable approach to expedite the identification of promising
drug candidates (Stanzione et al., 2021). Ultimately, these advances
contribute significantly to the ongoing battle against TB, offering
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TABLE 1 List of some compounds discovered to target tuberculosis bacteria by using approaches of QSAR, pharmacophore modeling, and molecular docking.

Compound Database QSAR
Method

Descriptor
calculation

Method
validation

Pharmacophore
modeling

Molecular
docking
software

Result Ref

Xanthone derivatives
as Anti TB agent

Protein data bank Multiple linear
regression
(MLR)
backward
methods

Parameterized
Model Number 3
(PM3), Austin
Model 1 (AM1),
and Density
Functional
Theory (DFT),
Hartree-
Fock (HF)

-- CHIMERA 1.9 and
ChemOffice®2015

The 3,6 dihydroxy and
1,3,6 trihydroxy
xanthone derivatives
have good anti-
tuberculosis activity
when added to amide,
sulfoxide, and
carboxylate groups. A
docking study was used
to identify the inhibitory
mechanism known as
Kasa inhibitor, which is
located in the cell wall of
Mycobacterium TB.

Yuanita
et al. (2020)

Sulfathiazole Analogs
such as
mycobacterium
tuberculosis h37rv
Inhabitors

Antituberculosis
drug discovery
databases
(Substructure
mining tool
Schrodinger et al.,
2010)

Principal
Component
Regression
(PCR)
Analysis,
Multiple linear
regression
(MLR), Partial
Least Squares
(PLS)
Regression
Analysis

Vlife MDS External
validation by
predicting the
activity of each
molecule in the
test set Internal
validation
(Leave-one-out)

-- -- Compared to the other
two methods in
predicting the
antituberculosis H37RV
inhibitor effect of
sulfathiazole analogs,
PLS analysis
demonstrated
significant predictive
power and reliability

Vastrad
(2012)

Amino-pyrimidine
derivatives as
Mycobacterium
tuberculosis Protein
Kinase B inhibitors

Literature based on
the biological assay
method

MLR -- Internal and
external
validation

-- -- With an excellent
statistical fit, the QSAR
model was created using
MLR. Antituberculosis
action was discovered to
be influenced by
physicochemical
molecular and quantum
descriptors. The
researchers concluded
that a model like this
might be used to predict
the antituberculosis
action of these
compounds

Chapman
et al. (2012)

The pharmacophore
model was used as a
tool to identify a
novel inhibitor of
Mtb-DapB, a
validated
mycobacterial drug
target

The ZINC natural
product subsets
and Asinex
screening library

X-ray Crystal
structure 1C3V

-- -- e-Pharmacophore option
from the Phase module of
the Schrodinger Suite

It was discovered that
hybrid dynamic
pharmacophore models
created by employing a
computation-based
technique to screen
compounds for new
chemotypes, higher
binding affinities, and
drug-like features
outperformed
traditional models made
from native ligands.
Based on
cheminformatics-based
structure comparison,
docking scores, binding
energies, and ADMET
properties, the
compounds screened by
the hybrid
pharmacophore models
were discovered to be
more druglike, defining
the hybrid models as
useful tools for
exploring novel anti-TB
chemical space

Choudhury
and
Bhardwaj,
(2020)

Predicting the
activity of 1,2,3-
triazole and
pyrazolopyridones as

Literature MR, Principal
PCR, PLSR and
PLS-SE) the
method used to
develop

V-life MDS Internal and
external
validation

The MolSign module in
VLifeMDS

The Biopredicta
tool of V-Life MDS
software version 4.6

Utilizing
pharmacophore
modeling, QSAR
analysis, molecular
docking, and in silico

Panigrahi
et al. (2020)

(Continued on following page)
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TABLE 1 (Continued) List of some compounds discovered to target tuberculosis bacteria by using approaches of QSAR, pharmacophore modeling, and molecular
docking.

Compound Database QSAR
Method

Descriptor
calculation

Method
validation

Pharmacophore
modeling

Molecular
docking
software

Result Ref

DprE1 inhibitor
antitubercular agents

4 QSAR
models

ADME prediction, the
function of 1,2,3-triazole
and pyrazolopyridones
as DprE1 inhibitors
antitubercular drugs
were explored, offering
input into the structural
foundation and
inhibitory mechanism
represents the group of
substances serving as
DprE1 antitubercular
agents

Quinoline Schiff
bases as enoyl acyl
carrier protein
reductase inhibitors

Literature CoMFA,
CoMSIA, and
topomer
CoMFA 3D
structure of
quinoline
scaffold using
molecular
modeling
software
package
SYBYL-X 2.0

-- -- -- Surface docking The study proved that
the presence of the
-CH = N- and quinoline
rings are critical for anti-
TB activity. It was also
discovered that
compounds had a higher
lipophilic character,
making them capable of
demonstrating positive
biological activities. The
reported models could
be further investigated
to develop newer, more
powerful anti-TB drugs

Joshi et al.
(2014)

QSAR and docking
studies of pyrimidine
derivatives againstM.
tuberculosis H37Rv

-- MLR, Stepwise
selection of
Terms (SW)

-- -- -- AutoDock The study’s findings
suggested that
modifying and
substituting the
pyrimidine ring could
result in a possible lead
chemical with
antibacterial activity and
good docking. The
findings of QSAR and
docking studies on
pyrimidine derivatives
will aid the introduction
of innovative
antituberculosis
medications

Hussain
et al. (2016)

QSAR-driven
Design, Synthesis,
and Discovery of
Potent Chalcone
Derivatives with
Antitubercular
Activity

Bioassay,
PubChem,
SciFinder database,
ChEMBL, also
from literature

Avalon
fingerprints,
combined with
support vector
machine
(SVM)
gradient
boosting
machine
(GBM), and
random forest
(RF) machine
learning
methods,
MACCS,
AtomPair,
Morgan,
FeatMorgan

-- -- -- -- Identifying novel and
promising anti-TB
drugs were made
possible by integrating
into silico design a
QSAR-driven pathway
for screening,
production, and
experimental evaluation.
Thirty-three chalcone
derivatives were created
and evaluated against
Mycobacterium
tuberculosis strains. The
synthesized chalcone
compounds were proven
effective against mono-
resistant M. TB strains
of isoniazid and
rifampicin. The
compounds were not
harmful to mammalian
(VERO) cells and
appeared to be
mycobacteria-specific,
with just a little effect on
S. aureus

Gomes et al.
(2017)
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hope for developing more effective treatments in the near future
(Rajkhowa and Deka, 2013; Rajkhowa et al., 2015). A list of products
discovered for tuberculosis is presented in Table 1. A list of the drugs
(Table 2) in a clinical trial is discovered with the help of these
approaches (Ahamad et al., 2017).

The challenges and prospects of QSAR,
pharmacophore modeling, and docking of
molecules

QSAR challenges and prospects
The chemical descriptors used as input for the QSARmodel vary

throughout most QSAR research. The quality to predict traditional
QSAR approaches reduces when new substituent group traits depart
further from the training set. Some of the challenges associated with
3D QSAR are ligand geometry which is essential for computing
geometric descriptors and crucial for 3DQSAR. QSAR data sets may
contain many chemicals (>100,000) and descriptors. There is a
requirement to maintain many models (e.g., dozens) for a variety of
targets; these models should be updated regularly (e.g., monthly)
(Winkler, 2002; Cherkasov et al., 2014; Saikia and Bordoloi, 2019).
Failure to take data heterogeneity into account, unsuitable endpoint
units used, confounded and non-interpretable descriptors being
used, descriptor value errors, QSARs having a low transferability,
applicability domain is insufficient or undefined, omission of data
points that are unnoticed, data that is insufficient, chemicals in a
data set are replicated, endpoint values within a narrow range, data
that has been over-fitted, in a QSAR, using an excessive number of
descriptors, Statistics that are insufficient or missing are also
misused and misrepresented, incorrect calculation, the complexity
of the data set, validation of QSAR models, establishing the models’
scope of application in the chemical space (Aparoy et al., 2012; Ma
et al., 2015)

Significant-scale QSAR research is possible due to large data and
processing resources. Graphic processing units, Cloud technology,
and servers are very known and have been used in computer-aided
drug design and discovery streams (Aleksandrov and Myllykallio,
2019). The system pharmacology method has gained popularity
among scientists due to its ability to conduct pharmacodynamic
assessments, discover new targets, and provide a systems-level
understanding of drug-disease interactions (Maltarollo et al.,
2017). Combining QSAR with machine learning methods
enhances prediction power and is needed for the future
development of QSAR (Sabitov et al., 2017).

Pharmacophore modeling: Challenges and
prospects

The pharmacophore approach still faces numerous roadblocks
that limit its ability to reach its full potential, especially given the
current high Costs involved in medication discovery and
development. The following are some of the challenges: The
challenge associated with ligand-based pharmacophore modeling
is the modeling of ligand flexibility. The second difficulty
encountered when adopting the ligand-based strategy is
molecular alignment. Screening massive chemical databases with
flexible compounds, a fundamental problem in pharmacophore-
based VS., could take quite a long time. In many cases, the most

challenging issue with pharmacophore-based VS. is that a minor
quantity of simulated hits is genuinely bioactive (Leach et al., 2010;
Qing et al., 2014). The absence of a good scoring function in virtual
screening by pharmacophore is also one of the challenges faced
while using pharmacophore-based virtual screening. A pre-
computed conformation database is necessary for a
pharmaceutical-based virtual screening which is also a challenge
in its application (Qing et al., 2014). The de novo design using the
pharmacophore-based program new LEAD has the limitation that
new LEAD can only handle pharmacophore properties that are
concrete functional groups rather than abstract chemical features
(Leach et al., 2010; Yang, 2010). The correct selection of the training
set molecules is also a difficult task. Another drawback is the lack of a
clear approach to generating a pharmacophore query. Finding
different conformations for each ligand is also challenging using
the pharmacophore model. Another significant drawback is that the
pharmacophore confirmation may not be a ligand active form based
on free energy. Every ligand-based pharmacophore carries this risk
(Seidel et al., 2020; Muhammed and Aki, 2021).

A combination of pharmacophore modeling and other
computational techniques is needed to overcome some of the
limitations of pharmacophore modeling and stay on top of recent
discoveries (Qing et al., 2014).As a result, pharmacophore modeling
has been combined using molecular mechanics simulations. This
might help to increase some of the difficulties associated with ligand
flexibility modeling. Another issue noted is the absence of good
scoring functions utilized in virtual screening by pharmacophores.
Machine learning, which has been utilized in various computational
ways, can be used to improve such scoring functions. As a result of
recent improvements in pharmacophore modeling, structure-based
models can now be produced with enhanced properties (Yang, 2010;
Kumar et al., 2018; Muhammed and Aki-Yalcin, 2021).

The challenges and future of molecular docking
The market for drug discovery informatics is expected to rise

from 1.5 billion dollars in 2016 to 2.84 billion dollars in 2022, and it
may continue to grow. As a result, there is a growing demand for
innovative informatics solutions development and implementation.
Moving from pure research to clinical therapy is one of the primary
drivers driving the growth of the worldwide market. More qualified
individuals, multidisciplinary backgrounds, and the high cost of
informatics software might significantly influence the market’s
growth. Several well-known programs have recently been made
accessible as free or paid software or services. It will take a
considerable amount of time, effort, and resources to fully exploit
the potential of this robust approach (Meng et al., 2012; Akhter,
2016; Wang and Zhu, 2016; Dar and Mir, 2017; Kumar et al., 2018;
Lambrinidis and Tsantli, 2018; Prieto-Martínez et al., 2018).

Here are some of the difficulties that come with molecular
docking. Choosing optimal methods, tools, and parameters in
molecular docking is difficult (Naveja and Medina, 2019).
Molecular docking methods generally neglect solvent influence,
entropic effects, and polarization for binding ligands.
Experimental scoring formulas have been developed to overcome
such obstacles (Ganesan, 2008; Benet et al., 2016). Receptor
flexibility is a significant challenge in molecular docking. Docking
had another issue with the scoring function’s imperfection. When
docking molecules, keeping track of their numerous tautomeric and
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protomeric states can be challenging (Benet et al., 2016). Evaluating
molecular docking results without considering the receptor
structure’s quality is also difficult. Protein flexibility is also an
important point to be considered, as ligand binding to protein
produces conformation changes in protein, hence ignoring
protein flexibility may produce incorrect results during molecular
docking. Handling flexible protein receptors is a major challenge
during molecular docking (Eldridge et al., 1997; Allouche, 2012).

The development of Local Move Monte Carlo (LMMC) based
molecular docking in the future, where A sample that considers the
backend loops in addition to the main chain in the ligand binding of
proteins and flexible ligands may be a workable solution to the flexible
receptor docking issue. Docking applications could be propelled to the
next level by accurate and low-cost scoring techniques (Ganesan, 2008;
Benet et al., 2016). For continued progress, the molecular structure
databases must be improved. Filters must ensure that the structural
models inside them are of higher quality, as this will affect the findings’
dependability. In 1971 the protein data bank (PDB) was created as a
pioneer crystal structure database. It is now the most widely used
molecular in silico modeling resource, with over
150,000 experimentally validated 3D models. However, even with
acceptable geometrical parameters, there is no assurance that the
selected structures are error-free, which must be considered. The
presence of high-quality statistics does not imply that the structure is
flawless. As a result, improving their quality, procedures, and validation
would allow better models to be built, which would be helpful in the
inevitable process of structural refinement.

On the other hand, a better model will not be more instructive in
terms of more complex biological information, necessitating a
scientist’s interpretation (Lambrinidis and Tsantli, 2018). Despite
this, the accuracy of the docking tool and the validity of the results
can be evaluated. Although docking procedures have gotten more
complicated, false positives are still a problem with this
methodology; refining the PDB structures would surely enhance
pharmacodynamics research and yield better findings.

Conclusion

QSAR models can be used during drug development research
and development stages to develop pharmacodynamic and

pharmacokinetic profiles. These in silico investigations predict
numerous characteristics and actions that aid in optimizing and
prioritizing drug molecules. Computational approaches have
resulted in lead structures and novel drug targets, which have
sped up drug development. The computational technique may
find pharmacological leads and targets against them, as well as
attraction and effectiveness between them, before the start of clinical
trials; it saves time and money. The QSAR is a commonly used
statistical method that links a molecule’s structure to its
physiological action meant for a function of molecular
descriptors. Hence, it plays a vital role in drug development.
Pharmacophore is essential for a compound’s biological action. It
aids in de novo design, important characteristics, and high-
throughput screening in drug development. In addition to their
many applications in the examination of specific molecular
activities, structure-based virtual screening (SBVS) molecular
dynamics (MD), bounding energy, molecular interactions,
molecular docking, and structure-based virtual screening (SBVS)
are some of the most popular strategies used in structure-based drug
discovery (SBDD). The review article concluded that such
techniques will reduce traditional resource requirements by
increasing prediction based on current information and limiting
and focusing on chemical production and biological testing.

Author contributions

RB: Conceptualization, Data curation, Formal Analysis,
Methodology, Resources, Software, Validation, Visualization,
Writing–original draft, Project administration. RK:
Writing–review & editing, Data curation, Formal analysis. AM:
Investigation, Methodology, Project administration, Supervision,
Validation, Visualization, Writing–review and editing. DS:
Writing–review & editing, Data curation, Formal analysis. BV:
Data curation, Formal Analysis, Validation, Visualization,
Writing–review and editing. RN: Data curation, Formal Analysis,
Resources, Visualization, Writing–review and editing. KQ:
Resources, Validation, Visualization, Writing–review and editing.
SP: Validation, Visualization, Writing–review and editing. AA:
Funding acquisition, Validation, Visualization, Writing–review
and editing.

TABLE 2 A list of the drugs that are in a clinical trial is discovered with the help of these approaches.

Sr No. Drug Target Clinical trial stage

1 Bedaquiline ATP synthase Phase 2

2 SQ109 Cell wall synthesis (MmpL3) Phase 2

3 Gatifloxacin DNA gyrase Phase 4

4 AZD5847 Reducing the ribosome’s initiation step Phase 1

5 Linezolid Ribosome Phase 2

6 Pretomanid Cell wall inhibition Phase 1

7 Sutezolid Ribosome Phase 2

8 Moxifloxacin DNA gyrase Phase 2

9 Clofazimine Electrogenic pathway Phase 2
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