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Anti-cancer therapy has been a significant focus of research. Developing and
marketing various types andmechanisms of anti-cancer therapies benefit a variety
of patients significantly. The long-term benefit to patients in evaluating the risk-
benefit ratio of anti-cancer therapy has become a significant concern. This paper
discusses the evaluation of long-term efficacy within the estimand framework and
summarizes the various strategies for addressing potential intercurrent events.
Non-proportional hazards of survival data may arise with novel anti-cancer
therapies, leading to potential bias in conventional evaluation methods. This
paper reviews statistical methods for addressing this issue, including novel
endpoints, hypothesis testing, and efficacy estimation methods. We also
discuss the influences of treatment switching. Although advanced methods
have been developed to address the non-proportional hazard, they still have
limitations that require continued collaborative efforts to resolve issues.
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1 Introduction

As one of the most severe threats to human health, cancer has long captured the attention
of industry, academia, and regulatory authorities, driving continuous efforts to develop
effective anti-cancer treatment therapies. Notably, from 2010 to 2019, 25% of drugs
approved by the FDA were anti-cancer drugs (Brown and Wobst, 2021). The past
decade has been coined the “Golden Age of Oncology” (Landau, 2019), witnessing the
rapid emergence and approval of diverse anti-cancer treatments, including immunotherapy,
targeted therapies, and cell therapies. From 2000 to 2022, 206 anti-cancer treatments
received approval for 573 indications, including 50 cytotoxic drugs, 277 targeted drugs,
and 246 targeted biologics (Scott et al., 2023). Among these, targeted drugs and biologics
have become the leading modalities in modern anti-cancer medications.

Recent research reveals that newly approved anti-cancer drugs are crucial in
contemporary real-world cancer treatment. From 1 May 2016, to 31 May 2021, 28 drugs
were approved as first-line anti-cancer therapies, 32 as first-line alternative therapies, and
86 as second-line therapies (Benjamin et al., 2022). Furthermore, developing and using
various anti-cancer therapies have significantly improved tumor remission and long-term
patient benefits (Hoos, 2016). An extensive analysis of cancer patient survival in China
revealed a remarkable increase in survival rates from 2003 to 2015, indicating advancements
in cancer care standards. Notably, the age-standardized 5-year relative survival for all cancer
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types combined demonstrated substantial growth from 30.9% to
40.5% from 2003–2005 to 2012–2015 (Zeng et al., 2018).

In evaluating the efficacy of anti-cancer drugs, accelerated
approvals often rely on short-term outcomes, such as objective
response rate (ORR) and disease control rate. Whereas full
approvals usually need positive results in long-term outcomes,
such as progression-free survival (PFS) and overall survival (OS).
While a drug may receive accelerated approval for market entry
based on promising outcomes of short-term endpoints, conducting
rigorous randomized controlled studies to demonstrate significant
long-term benefits remains essential to obtain full approval. The
failure to demonstrate long-term benefits can lead to the withdrawal
of the drug from the market (Scott et al., 2023). Therefore, reliable
long-term benefit is crucial in determining the efficacy of anti-cancer
drugs. However, due to the diverse mechanisms of action of anti-
cancer drugs and their complex interactions, the conventional
efficacy evaluation methods may not be entirely applicable. For
example, immunotherapy exhibits unique characteristics at both
cellular and systemic levels compared to other anti-cancer drug
treatments, leading to intricate phenomena such as delayed effects
(Finn, 2012; Borcoman et al., 2019). Therefore, conducting
comprehensive and flexible evaluations of the appropriateness of
conventional statistical methods when assessing the efficacy of
different anti-cancer drugs is essential.

This paper will discuss practical considerations in assessing the
long-term efficacy of anti-cancer therapies, while details of
conventional methods are beyond the scope of this paper. The
paper is structured as follows: Section 2 reviews the significance of
estimand and its application in long-term efficacy evaluation.
Section 3 investigates the selection of endpoints for assessing
long-term efficacy, including comparing short-term and long-
term endpoints, novel long-term endpoints, and patient-reported
outcomes (PROs). Section 4 discusses statistical considerations for
evaluating long-term efficacy, including non-proportional hazards
(NPH) assumptions, hypothesis testing, efficacy estimation, and
treatment switching. We conclude with a brief discussion in
Section 5.

2 Estimand

2.1 Estimand: the attributes and significance

The primary objective of clinical drug development is to
establish the efficacy and safety of drugs through a series of
clinical trials. The information confirmed through these trials is
subsequently incorporated into drug labels to instruct physicians
and patients. However, different stakeholders (sponsors, physicians,
patients, regulatory authorities) may hold different interpretations
of a drug’s treatment effect. This disparity can impact trial design,
implementation, evaluation, and interpretation of clinical efficacy
outcomes.

The International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (ICH) drafted
E9(R1): “Estimating Objectives and Sensitivity Analysis in Clinical
Trials” in October 2014. This addendum guides precise definitions
and accurate descriptions of the treatment effects within trial
protocols. E9(R1) proposes a structured framework to help clarify

the objective, design, implementation, analysis, and interpretation of
trials. This framework facilitates efficient dialogue among various
stakeholders involved in clinical trials and enhances clarity
regarding treatment effects in clinical trials. To align domestic
drug registration standards with international practices, many
countries worldwide, including the United States and European
Union member states, incorporate the principles outlined in E9(R1)
into their regulatory frameworks for clinical trials. For example,
China’s National Medical Products Administration (NMPA)
mandated the implementation of ICH E9(R1) in drug clinical
research, effective from 25 January 2022. To foster industry
comprehension and implementation of “estimand” and
“sensitivity analysis,” the DIA China Statistics Community
collaborated with domestic industry experts to develop a
bluebook. This document includes detailed explanations of these
concepts and case studies to promote comprehension and
application of E9(R1) in China.

The principle of E9(R1) is constructing a framework that
harmonizes the alignment between trial objectives and
implementation. This framework fosters thoughtful
considerations and effective communication among diverse
stakeholders. The framework consists of three steps. The first
step involves clearly defining the trial objective based on the
specific clinical question of interest. Before initiating the clinical
trial, it is crucial to comprehend the indications and
characteristics of the drug thoroughly, as well as evaluate the
potential intercurrent events (ICEs) that may impact efficacy
assessment. This initial step forms the foundation for setting the
estimand, constituting the subsequent steps. The second step
entails defining an appropriate estimand based on the
predetermined study objective. The clinical study can
effectively address specific questions and precisely define the
treatment effect based on the insights gained from the first step
with the defined estimand. The third step involves quantifying
the well-defined treatment effect through primary and sensitivity
analyses. In addition, researchers can incorporate supplementary
analyses to provide a comprehensive understanding of the
outcomes. Following this framework, researchers can
coordinate the consistency between the study’s objective and
implementation, foster effective communication among
stakeholders, and enhance the overall quality and
interpretation of the clinical study results.

The most crucial concept in E9(R1) is estimand. It addresses
the clinical question by describing the treatment effect at the
population rather than the individual level. When comparing
the treatment effects among different groups, it is crucial to
ensure that the estimated effect purely results from the
treatment differences rather than confounding factors such as
baseline differences between the treatment groups or variations
in trial implementation.

The estimand consists of five attributes: population, treatment,
variable or endpoint, ICEs and their handling strategies, and the
population-level summary. Please refer to the E9(R1) guidance for
detailed explanations of these attributes. E9(R1) consolidates these
attributes into the concept of “estimand” rather than focusing solely
on variables. It is important to note that these attributes are
interconnected rather than isolated. The determination of the five
attributes relies on the clinical question, particularly the ICEs that
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may occur during the trial. Therefore, when the trial objective may
not be apparent at the outset of the clinical trial design, discussing
the five attributes can help clarify the trial objective further.

2.2 Intercurrent events and handling
strategies

In the estimand framework, ICE plays a crucial role. It
encompasses events that may occur after treatment initiation that
can affect clinical interpretations of the observed treatment effect or
the existence of the measurements associated with the clinical
question of interest. ICE is interconnected with other attributes
of estimand. For example, the use of rescue medication is linked to
treatment; treatment switching is associated with the population. Of
note, ICEs cannot be removed by randomization; unlike protocol
deviations, the occurrence of ICEs is inevitable and does not indicate
flaws in trial design or implementation. However, the strategies for
handling them should be carefully considered during the trial design
stage. ICH E9(R1) introduces five commonly used strategies to
address them, including treatment policy strategy, hypothetical
strategies, composite variable strategies, while on treatment
strategies, and principal stratum strategies. The selection of a
suitable strategy in practical applications depends on the
objective and specific circumstances of the trial.

Long-term clinical practice has established relatively
comprehensive design rules in anti-cancer drug research. The
associated guidelines provide us with ideas on how to handle
ICEs. An example is present in the FDA guidance “Clinical Trial
Endpoints for the Approval of Non-Small Cell Lung Cancer Drugs
and Biologics,” which provides various censoring rules for PFS.
According to this guidance, patients receiving new anti-cancer
therapy before experiencing disease progression or death can be
censored at the last tumor assessment for the PFS endpoints. In the
estimand framework, it can be considered a hypothetical strategy.
Conversely, during the follow-up period after the occurrence of an
ICE, if patients experience disease progression or death, this is
regarded as the occurrence of the endpoint, representing the
treatment policy strategy. These guidelines offer valuable insights
into different approaches for addressing ICEs and selecting
appropriate treatment strategies in clinical trials for anti-cancer
drugs.

The endpoints used to assess the long-term efficacy of anti-
cancer therapies, such as OS, PFS, time-to-second objective disease
progression, and disease-free survival, are typically time-to-event
data, measuring the time from randomization or treatment
initiation to the occurrence of the clinical event of interest. If
ICEs occur before the observation of the endpoint, researchers
have various approaches for handling them. For example, they
can censor the data at the time of the unexpected event’s
occurrence or treat it as a competing risk. Alternatively, the
endpoint can be combined with the other events to construct a
composite endpoint. It is essential to highlight that the events can be
either ICEs or events that lead to missing data. Both types of events
can be effectively handled through censoring. In the trial design
stage, the investigators should differentiate between ICEs and events
leading to missing data and select appropriate strategies for
addressing them.

Within the E9(R1) framework, it is essential to proactively assess
all potential ICEs during the trial design stage and establish
appropriate strategies to address them. When dealing with time-
to-event clinical endpoints, censoring is a commonly used method.
For instance, patients who receive new anti-cancer therapy may be
censored at their last efficacy assessment. However, the feasibility of
the censoring strategy relies on the assumption that the probability
of observing the clinical endpoint is the same for censored and
uncensored patients, i.e., non-informative censoring. Nevertheless,
these ICEs can indeed influence the probability of event occurrence.
For instance, treatment switching may lead to informative censoring
when assessing OS. In a randomized trial, a patient who responds
poorly to his/her allocated treatment or experiences severe adverse
events may switch to the other treatment due to ethical
considerations. In this scenario, it is reasonable to anticipate an
improved OS after treatment switching (Jin and Fang, 2023). Thus, it
is necessary to determine whether censoring based on ICEs is non-
informative or informative and employ suitable statistical methods
for data analysis. Furthermore, the determination of handling
strategies should be founded on the characteristics of specific
ICEs and the applicability of censoring rules rather than blindly
employing the censoring rule outlined in existing regulatory
guidance since the provided rules may only cover some possible
scenarios encountered in real-world practice. The results obtained
using these rules may only partially address the clinical questions of
interest. Therefore, it is necessary to carefully consider the
importance of ICEs and censoring rules in the context of the
specific clinical goals and adapt the strategies accordingly.

The choice of strategy for handling them should be based on a
precise definition and comprehensive discussion regarding the
trial objectives and the corresponding estimands. For example, if
OS is the primary efficacy endpoint in a clinical study, the
occurrence of receiving new anti-cancer therapies is a
common ICE. If a patient is treatment-naïve, various
subsequent treatment options are available after disease
progression or intolerance or even participation in another
clinical trial. In such cases, the receipt of new anti-cancer
treatments can significantly influence the estimation of OS in
the current clinical study. Therefore, employing a hypothetical
strategy and censoring when receiving a new anti-cancer
treatment is feasible. On the other hand, last-line patients
have limited subsequent treatments with a substantial impact
on efficacy after disease progression or intolerance. In this
scenario, adopting a treatment policy strategy is reasonable.
By carefully considering the characteristics of the patient
population, the availability of treatment options, and the
potential impact on estimating the treatment effect during the
trial design stage, researchers can determine the appropriate
strategies for addressing ICEs.

3 Choosing an appropriate endpoint

In late-phase clinical studies of anti-cancer therapies,
conventional anti-cancer treatment clinical studies are commonly
employed, including objective response-related and long-term
benefits-related measurements (Anagnostou et al., 2017).
Objective response endpoints are often considered surrogate
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endpoints for long-term benefits. Long-term benefit endpoints
mainly include PFS and OS, with the former usually used when
the prognosis of the tumor type is relatively long.

3.1 Short-term benefits V.S. long-term
benefits

In the past 25 years, regulatory authorities have granted
conditional approval to many anti-cancer drugs based on the
promising outcome associated with ORR. However, subsequent
studies are necessary to demonstrate long-term efficacy (Beaver
et al., 2018). A promising objective response is the first step in
demonstrating the clinical efficacy of an anti-cancer treatment. A
fundamental assumption of using objective response as a surrogate
endpoint of long-term efficacy is that the two are closely correlated,
which has strong evidence in chemotherapy and targeted therapy
(Burzykowski et al., 2008; Blumenthal et al., 2015; Topalian et al.,
2023). Nevertheless, a similar relationship has not been
conclusively established for immunotherapy and other emerging
therapies (Roviello et al., 2017; Kaufman et al., 2018). The
uncertain relationship between short-term and long-term
endpoints is led by multiple reasons, such as the mechanism of
action (Ritchie et al., 2018), late/delayed effects, and quality of life.
Furthermore, the limited sample size (Paz-Ares et al., 2017) and
population heterogeneity across different clinical studies may
reverse the clinical trial results. On the other hand, the
relationship between duration of response (DOR) and long-
term endpoints, i.e., PFS and OS, is also unclear. Therefore, it is
critical to verify the long-term benefits based on the positive ORR
and long DOR for immunotherapy.

3.2 Novel long-term endpoints

Probably, time-to-event data do not adhere to the proportional
hazards (PH) assumption, leading to inaccurate estimates of
commonly used metrics, such as median OS and median PFS.
Furthermore, anti-cancer therapies have the potential to provide
extended survival benefits, necessitating longer follow-up periods
compared to conventional treatments. The delayed effects of these
novel therapies pose challenges in interpreting their benefits using
conventional measures such as hazard ratio (HR), median OS, and
median PFS. Additionally, due to the complex mechanism of action,
specific therapies may primarily impact the later stages of cancer
progression or metastasis, which are more relevant to OS, rather
than the early stages of tumor progression (i.e., PFS) (Hess et al.,
2019). Therefore, anti-cancer therapies may demonstrate a
significant OS benefit while an insignificant PFS benefit,
especially in a relatively short follow-up time. In a clinical study
investigating the therapeutic effects of nivolumab versus docetaxel in
advanced non–squamous non–small–cell lung cancer (Brahmer
et al., 2015), the results highlight a significant advantage favoring
nivolumab in terms of OS. Nivolumab exhibits a substantial
extension in median OS by 3.2 months. In contrast, when
examining PFS, the results do not support nivolumab. Patients
receiving nivolumab experience a median PFS of 0.7 months
shorter than those treated with docetaxel. Adjustments to sample

size and statistical models are also necessary when the data severely
violate the PH assumption. These factors collectively present
challenges in evaluating the long-term efficacy of anti-cancer
therapies.

One approach to address the abovementioned issues is to
employ milestone survival analysis (Chen, 2015). It is vital to
distinguish milestone survival analysis from the Landmark method
(Anderson et al., 1983), as they are distinct techniques. Milestone
survival analysis involves conducting cross-sectional analyses of
survival data at predefined time points, allowing for qualitative or
quantitative assessments. When utilizing milestone survival
analysis, we should carefully select the appropriate time points,
as this method may not capture the long-term benefits of the
experimental treatment. Typically, milestone survival analysis is
conducted as an interim analysis and includes multiple time
points, such as 1-year survival rate and 2-year survival rate.
Therefore, it is necessary to consider alpha spending in this
strategy.

In addition, restricted mean survival time (RMST) has gained
significant attention as an endpoint in anti-cancer therapies, mainly
when the PH assumption is unmet (Royston and Parmar, 2013;
A’Hern, 2016). RMST is the area under the survival curve up to a
specific time. The critical issue in utilizing RMST is the selection of
time, which should be carefully determined during the planning
stage of a clinical study (Hasegawa et al., 2020). The choice of time
point can be based on clinical expertise or the overall trial duration
(Tian et al., 2020).

Net survival benefits is a statistical method that utilizes
generalized pairwise comparison to assess treatment outcomes
(Péron et al., 2019). It is the difference between the probability
that patients in the experimental group survive longer than those in
the control group and the opposite scenario in a randomized clinical
trial (Péron et al., 2018). A positive net survival benefit indicates that
the experimental group outperforms the control group, while a
negative value suggests the superiority of the control group. The
investigators can also evaluate the net survival benefit within a
specific time frame. For instance, the 6-month net survival benefit
measures the difference between the probability of a randomized
patient in the experimental group surviving at least 6 months longer
compared to the control group. It is important to note that the
estimated net survival benefit can be influenced by the duration of
follow-up, particularly when the time to event extends beyond the
follow-up period.

3.3 Patient-reported outcomes

As the subjects of clinical trials, patients have the most direct
experience of their disease state and treatment process, making them
a valuable source of information during the drug development
procedure. The concept of “patient-focused” has emerged as a
crucial guiding principle in drug research, emphasizing patient
needs and clinical value as the ultimate goal. Regulatory agencies
are proactively promoting strategies to design and implement
“patient-focused” clinical trials while incorporating patient’s
perceptions into the benefit-risk assessment of drugs. In line with
this, the NMPA issued guidance for industry (NMPA, 2022a;
NMPA, 2022b; NMPA, 2022c; NMPA, 2022d; NMPA, 2022e;
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NMPA, 2023), including “General considerations for involving
patients in drug development” and “Technical guidance for
patient-focused clinical trial design.” Meanwhile, the FDA has
issued eight guidelines on this topic (FDA, 2016; FDA, 2018;
FDA, 2021; FDA, 2022a; FDA, 2022b; FDA, 2022c; FDA, 2023),
including “Patient-reported outcome measures: Use in medical
product development to support labeling claims: Guidance for
industry,” “Core patient-reported outcomes in cancer clinical
trials: Draft guidance for industry.” These guidelines reflect
regulatory considerations on integrating patient’s perceptions into
evaluating drug efficacy and safety. ICH has also developed patient-
focused initiatives. In 2020, ICH conducted a public consultation on
its “Reflection Paper on Patient-Focused Drug Development
(PFDD)," which explores including patient’s perceptions
throughout the drug development process.

In clinical trials, it is essential to incorporate patient experience
data and prioritize patient’s perceptions into design considerations
while adhering to conventional clinical trial design principles. By
doing so, the clinical trial can better reflect patient clinical benefits.
Firstly, patient needs are foremost throughout the drug development
process. Researchers are encouraged to engage with patients and
continuously seek their input throughout the lifecycle to identify
unmet clinical needs. Furthermore, a patient-focused clinical trial
should comprehensively assess the clinical benefits for patients in
terms of their physical and mental wellbeing, functionality, and
quality of life. This involves considering the research objectives,
target population, control selection, and safety and efficacy
evaluation methods from the patient’s perceptions. Additionally,
trial designs should adopt a format acceptable to the patients to
reduce participant dropout rates, improve subject
representativeness, and enhance compliance. While maintaining
scientific rigor and integrity, the trial design should strive to
provide convenience and minimize the burden on patients. This
can enhance the overall patient experience in the trial.

In patient-focused clinical research, PROs are essential tools.
PROs refer to the status of a patient’s health condition that comes
directly from the patient, without interpretation by a clinician or
anyone else (FDA, 2009; NMPA, 2022b). PRO assessments should
come directly from the patients themselves. In cases where patients
cannot self-report, the investigators may consider using proxy
reports. However, in such situations, it is essential to evaluate the
bias that proxy reports may introduce carefully. The extent of bias
introduced by proxy reports in a specific PRO measurement hinges
on various factors, including the indication, the patient population,
the measurements, and other clinical characteristics. Therefore, the
acceptability of proxy bias should be evaluated on a case-by-case
basis, including assessing the concordance between patient-reported
and proxy-reported outcomes through a clinical study that
compares both types of reports for the same individuals (Sneeuw
et al., 1998; Duncan et al., 2002; Roydhouse et al., 2018). If the
difference between these two sets of outcomes is negligible, the bias
introduced by proxy reports may be deemed acceptable. However, if
substantial disparities exist, the clinical study should implement
measures to mitigate this bias through statistical methodologies,
consider excluding the outcomes provided by proxies, or explore
alternative objective measurements. When measuring PROs, scales
are usually helpful in evaluating various aspects, such as pain
intensity and quality of life. The first choice is to employ well-

established and validated scales whenever possible. However, if
suitable scales are unavailable, developing new scales tailored to
the research objectives may be necessary. This includes considering
the scale’s relevance for evaluating treatment efficacy, its
interpretability in terms of clinical value, and its ability to guide
treatment decision-making. Before implementation, the newly
developed scale should undergo rigorous validation, including
pre-investigations among the target population, to ensure its
reliability and validity. Reliability refers to the consistency of
scale results under similar conditions, indicating the scale’s
robustness. Conversely, validity assesses the extent to which the
scale accurately measures the intended attribute or concept,
demonstrating its effectiveness in capturing the construct of
interest. To ensure accuracy, it is essential to thoroughly plan
and develop PRO measurements during the design phase to
guarantee their reliability, validity, and capacity to detect
meaningful changes. From an operational perspective, specific
vital characteristics, including the concepts, number of items, as
well as the conceptual framework of the instrument, demand careful
attention. For a more comprehensive understanding of assessing the
appropriateness of a PRO measurement, we recommend that
readers refer to the guidance provided by regulatory agencies. It
is essential to acknowledge that PRO measurements are inherently
subjective, as they rely on patients’ self-reported experiences and
perceptions. Therefore, we do not anticipate complete objectivity in
patients’ responses. However, a well-designed PRO measurement
should possess the necessary validity to generate accurate estimates
of the targeted concept of interest.

In anti-cancer research, the benefit-risk evaluation for anti-cancer
treatments traditionally focuses on survival benefits, tumor remission,
prevention of tumor progression, and physician-evaluated adverse
events. However, with the advancements in drug development, cancer
patients are now experiencing prolonged survival, and some patients
can even achieve lifespans comparable to those of healthy individuals.
As a result, patients’ experiences and quality of life during the
treatment journey gain increasing importance in clinical research
on anti-cancer drugs, aligning with “patient-focused” care. In clinical
research for anti-cancer treatments, a range of PRO measurements
can be employed to capture the patient’s perceptions of their disease
and treatment experience. Disease symptoms, symptomatic adverse
events, and physical function are among the core PROs contributing
to a patient’s health-related quality of life. They can be sensitive to the
disease progress and treatment effect. Patient-reported disease-related
symptoms provide valuable insights, especially when there are
variations in the type and frequency of symptoms among patients
(Kluetz et al., 2016). Direct reports from patients regarding
symptomatic adverse events yield additional safety data beyond
that in traditional clinical studies. However, it is crucial to carefully
select the assessment items based on the treatment’s mechanism of
action, early clinical data, and patient and healthcare provider input.
Additionally, capturing a summary measure of the side effects can be
valuable in assessing the overall tolerability of a treatment.
Furthermore, evaluating physical function, which refers to a
patient’s ability to perform activities, and role function, which
relates to their ability to work and carry out daily tasks, are also
essential aspects of PRO evaluation (FDA, 2021).

Another important consideration when utilizing PRO measures
for anti-cancer treatments is the frequency of assessment. Since
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patients typically receive anti-cancer drugs in cycles, PRO measures
should align with these treatment cycles, with varying emphasis on
different measures. For instance, assessing symptomatic adverse
events may be more frequent during intensive drug use. On the
other hand, physical function and role function measures can serve
as representative indicators of patients’ functional preservation or
improvement. Therefore, conducting more frequent assessments of
these measures is advisable when the drug is highly probable to
demonstrate efficacy. By considering the treatment cycles and the
specific outcomes of interest, researchers can optimize the
assessment frequency of PRO measures, thereby capturing the
relevant patient experiences and treatment outcomes more
comprehensively. To prevent data bias, the researchers should
elaborate on the methods for addressing potential issues, such as
missing data, before receiving patients’ reports. Establishing criteria
for valid responses and determining appropriate methods for
handling missing values within the trial protocol are essential
steps. By addressing these considerations, the integrity and
reliability of the PRO data can be guaranteed, ensuring a more
accurate representation of patients’ experiences and outcomes in
anti-cancer clinical trials.

Including PRO results in drug labeling requires high-quality
data and rigorous study design and implementation. Several
considerations are necessary to ensure the validity and
meaningful interpretation of PRO results. Firstly, when
comparing PRO results between treatments, conclusions of “no
meaningful difference” should be based on non-inferiority or
equivalence testing rather than superiority testing. Secondly, since
PRO assessments often encompass multiple measurements, it is
crucial to address the issue of multiplicity and control type I error.
Additionally, exploratory PRO results that were not pre-specified in
the statistical analysis plan generally cannot be included in the drug
labeling, even if they demonstrate promising outcomes. The
regulatory agencies will carefully evaluate the appropriateness of
including such results in the labeling.

4 Long-term efficacy evaluation

4.1 Non-proportional hazard (NPH)
assumption

PFS and OS typically serve as primary efficacy endpoints in
clinical studies when assessing long-term efficacy. Commonly
employed statistical methods to evaluate these endpoints include
the log-rank test and the Cox PH model. Additionally, researchers
employ the Kaplan-Meier (KM) method to construct the survival
curves and estimate the median survival time. It is important to note
that these methods rely on the PH assumption, which implies that
the HR remains constant over time.

However, in the context of anti-cancer therapies, time-to-event
data usually do not satisfy the PH assumption. Several reasons can
lead to this violation: 1) Delayed effect: There is often a prolonged
delay before the survival curves begin to separate. For
immunotherapy, this delay results from the complex mechanisms
of immunotherapy and immune resistance. 2) Gradual decrease in
treatment effect: The survival curves tend to converge over time,
indicating a diminishing treatment effect. The decrease of treatment

effect in the later stage is due to the natural development of indolent
tumors in patients who are not sensitive to anti-cancer therapies
(Maio et al., 2015). 3) Crossing hazards: The survival curves intersect
or cross at a specific time. This crossing can occur due to delayed
effect or hyperprogression in patients (Borcoman et al., 2019). The
crossing of survival curves suggests that there may be variables or
factors that significantly impact the treatment outcomes. In other
words, different subgroups of patients may experience distinct
treatment effects (Mok et al., 2009).

In practice, there will always be some degree of violation. The
log-rank test will still be valid in case of violation, although it may
not be optimal. HR estimate of the Cox regression model would be a
weighted estimate of hazard ratio over time, which is meaningful to a
certain degree, especially when the violation is minor. Besides, since
these methods have been used to analyze historical trials, applying
them to new trials makes the comparison fair. We should
continually improve the analysis methods. However, when the
data suggests a significant violation of the PH assumption,
analyzing time-to-event data using statistical methods based on
such an assumption can lead to several issues, including reduced
statistical reliability (Chen, 2013), unreliable interim analysis results
(Chen, 2015; Korn and Freidlin, 2018), and challenges in
interpreting final results (Pak et al., 2017; Liang et al., 2018).
Consequently, improving existing statistical methods or
developing new ones to address the challenges is necessary. To
suit NPH assumptions, the development of efficacy analysis focuses
on hypothesis testing methods and efficacy estimation methods
tailored to different NPH scenarios. When evaluating new statistical
methods, there are various perspectives to consider, with two
important ones being: 1) Impact on type I and type II errors: It
is essential to assess whether the new method increases the
probability of committing type I or type II errors. Controlling
error rates at acceptable levels is crucial for the validity and
reliability of statistical inference. 2) Applicability across diverse
scenarios: The new statistical method should exhibit stable
performance across different situations. It should be adaptable
and effective in handling various types of NPH, ensuring its
utility and reliability in a wide range of research settings since
the true nature of the data cannot be predicted in advance. By
addressing these considerations, researchers can strive to develop
robust and versatile statistical methods that overcome the challenges
posed by NPH in analyzing time-to-event data.

4.2 Hypothesis testing in the presence
of NPH

Several hypothesis testing methods are available for NPH
models, including the weighted log-rank and the RMST-based
tests. Furthermore, additional methods are specifically designed
to evaluate the efficacy of anti-cancer therapies (Ye and Yu, 2018;
Ding and Wu, 2020).

The weighted log-rank test extends the standard log-rank test by
incorporating a time-varying weighting function. By using various
function forms and parameters, the weighted log-rank test assigns
different weights to different parts of the data, allowing for the
consideration of varying HRs over different time intervals (Zucker
and Lakatos, 1990; Lin and León, 2017). Specifically, we can assign
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higher weights to the parts of data that we focus on. In delayed
effects, assigning more weight to later data can increase the trial’s
statistical power (Fine, 2007; Thomas and Fleming, 2011). However,
the weighted log-rank test has certain limitations. It is challenging to
evaluate the suitability of the selected weighting function before
observing the actual data, whereas determining the weighting
function after obtaining the outcomes would violate the
principles of clinical trial design. Such ad-hoc analysis is unlikely
to be accepted by regulatory agencies. Additionally, interpreting the
results generated by the weighted log-rank test is more complex. It
can be challenging to translate significant test results obtained by
weighting data from different periods into meaningful clinical
conclusions, especially when conventional log-rank tests fail to
yield significant results. It is also essential to contemplate the
potential issue that various weighted log-rank tests could produce
divergent results (Royston and Parmar MK, 2020). Furthermore, we
should also acknowledge the risk that weighted log-rank tests may
reduce statistical power if the PH assumption holds (Karrison,
2016a).

The RMST-based test compares the area under the KM
curves, and the difference in RMST between groups can be
tested using a t-test assuming normal distribution (Hasegawa
et al., 2020). Therefore, the test’s significance relies heavily on
the selection time point τ. Currently, there are various methods
for choosing τ in RMST analysis, some of which aim to maximize
the difference in RMST between groups (Andersen and Pohar
Perme, 2009; Guyot et al., 2012). However, this approach also
introduces confusion regarding whether the RMST based on the
chosen time point represents clinically meaningful treatment
efficacy.

In the design of clinical trials, pre-specifying statistical
methods are crucial to increase the reliability of trial results.
However, when evaluating anti-cancer therapies that do not
meet the PH assumption, accurately pre-specifying the
hypothesis testing method becomes challenging due to the
unpredictable nature of the time-to-event data. To address this
issue, some researchers have attempted to pre-specify multiple
tests by using a versatile testing approach at the design stage. For
example, the Gρ,γ family of weighted log-rank tests (Lee, 1996)
assigns different weights to survival data in different stages under
different values of ρ and γ. The test statistics G0,0, G1,0, and G0,1 can
be combined (Karrison, 2016b). Simulation results have shown
that the statistic Z � max(|Z0,0|, |Z1,0|, |Z0,1|) can better control the
type I error compared to other joint testing methods (Chi and Tsai,
2001; Royston and Parmar, 2016). Furthermore, versatile testing
methods offer advantages in retaining statistical power. The
essence of joint testing is to test different scenarios under the
NPH assumption of time-to-event data and select the scenario
most likely to reach statistical significance. This approach helps
reduce the false negative rate and identify the treatments with the
largest potential to have therapeutic effects.

4.3 Efficacy evaluation in the presence
of NPH

Estimating efficacy plays a crucial role in conducting risk-
benefit assessments for medical interventions. In cases where the

PH assumption can no longer hold, there are two strategies to
improve efficacy estimation: modifying commonly used methods
and establishing new ones. By employing these strategies,
researchers can obtain a more accurate assessment of the
benefits associated with the experimental treatment.

The commonly used efficacy endpoint is the HR, estimated by
the Cox PH model. To mitigate the risk of NPH, alternative
modifications of the Cox model can be considered, such as the
stratified Cox model and the time-dependent covariate Cox model
(Kleinbaum and Klein, 1996), to generate more accurate and
reasonable results. Various methods can be employed to
examine whether a covariate violates the PH assumption.
Firstly, experts’ opinions can provide preliminary knowledge
about which covariates are likely to violate the PH assumption.
Statistically, we can use graphical approaches (e.g., log-log plots,
observed versus expected plots) and hypothesis testing approaches
(e.g., good-of-fit testing) to check the PH assumption (Kleinbaum
and Klein, 1996). A stratified Cox model can be used when some
covariates meet the PH assumption while others do not.
Specifically, we put the patients with the same covariates that
do not satisfy the PH assumption into one stratum. By doing so,
the PH assumption is satisfied within each stratum, so the Cox PH
model can work in a single stratum. The stratified Cox model
allows for different baseline hazards for each stratum, so the
between-group differences in a trial consist of differences at
baseline and in covariates incorporated in the model. Under the
no-interaction assumption, the HR of each covariate is consistent
at different strata. That is, the covariates and their coefficients
included in the models of different strata are the same. In practice,
if there is still uncertainty about the interaction between the
covariates incorporated in the model and that used for
stratification, rigorous sensitivity analyses may be helpful to
assess the feasibility of the no-interaction. When using a
stratified Cox model, a key consideration is that a sufficient
number of events within each stratum is needed to ensure the
robustness and reliability of the analysis. Besides, obtaining a
conclusive result for the whole population through the stratified
Cox model is difficult, especially when the no-interaction
assumption is not satisfied. This is a crucial problem in clinical
research.

The covariates are assumed to be time-independent in the
standard and the stratified Cox models. However, we can also
extend the Cox model by incorporating time-dependent
covariates, allowing for a more comprehensive analysis in
complex cases. The extended Cox model for time-dependent
variables produces a time-varying HR by introducing time-
dependent covariates. It allows for a more accurate
representation of the dynamic nature of the covariates and their
impact on survival outcomes. The extended Cox model for time-
dependent variables offers greater flexibility in analyzing survival
data. Still, it is also more complex compared to standard and
stratified Cox models. Despite its advantages, the extended Cox
model presents several challenges. One is the selection and precise
definition of time-dependent variables. Careful consideration and
expertise are required to determine the appropriate time-
dependent variables in a clinical study. Another challenge is
interpreting the model when endpoint changes result in
covariate changes. This situation can make understanding the
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relationship between the variables and their impact on the
outcome more challenging. Additionally, the extended Cox
model faces limitations in predicting the future status of
patients. Since the model relies on the available covariate
information, it cannot predict the status of a patient at future
time points when the covariates are unknown (Fisher and Lin,
1999).

It is essential to highlight that when employing variations of
the Cox model, their application should be grounded in clinical
judgments rather than pursued solely to mitigate the risk of
NPH. For instance, consider stratified analysis founded on the
premise that the levels of particular covariates impact the
experimental treatment’s effectiveness. We should identify the
causes of the PH assumption breach and take suitable measures.
On the other hand, every statistical analysis method carries its
own set of advantages and disadvantages. While the modified
Cox models can be employed to tackle broader issues, it is also
important to acknowledge their inherent limitations. As a result,
we should utilize these methodologies with careful
consideration.

As discussed in Section 3, several novel efficacy endpoints are
available for estimating long-term efficacy, among which RMST is
one of the most widely discussed (Blumenthal et al., 2015; Topalian
et al., 2023). In practice, it supports descriptive statistics and
interim analyses of cancer therapies. For example, a randomized
controlled trial investigating trastuzumab as adjuvant therapy for
HER2-positive elderly patients who did not receive chemotherapy
employed RMST (Sawaki et al., 2018). The between-group
difference in RMST can be supplied as a complementary
efficacy estimate (Eng et al., 2015). RMST is similar to the
median survival time, but the clinical significance of its results
depends on the specification of the time point τ. However, the
experience of applying the RMST is currently limited due to the
absence of a standardized method for determining the optimal
time point τ.

Other efficacy measures, such as net survival benefit, can be
utilized as complementary indicators to primary efficacy estimates.
The clinical interpretation of net survival benefit is straightforward,
as it represents the probability of experiencing a longer survival time
after receiving treatment in the experimental group compared to the
control group.

Once again, it is essential to recognize that encountering a
violation of the PH assumption is not uncommon in practical
applications. Taking measures to counter the risk of NPH could
bring forth new challenges. In implementing pioneering
methodologies designed to tackle NPH, it is crucial to balance
the potential risks and benefits carefully. Therefore, an acceptable
approach could entail adopting conventional analytical methods as
the primary analysis, complemented by exploring ancillary analyses
employing alternative methodologies.

4.4 Treatment switching

Treatment switching refers to the process in a clinical trial where
patients discontinue their assigned experimental or control
treatment and switch to an alternative therapy according to the
protocol. This alternative treatment can be the other treatment

incorporated within the trial, such as changing from the
experimental group to the active control group or vice versa.
Alternatively, it can involve other treatments used in clinical
practice, such as new anti-cancer therapies, later-line treatments,
or best supportive care. More complicated scenarios may arise in
actual clinical studies. For example, patients may undergo multiple
switches, such as transitioning from the control to the experimental
group and then to a later-line treatment. However, these complex
scenarios are beyond the scope of this paper. Currently, limited
specific guidance is available regarding switching treatments in
clinical trials. The European Medicines Agency has published a
question-and-answer document that provides advice on switching
methods.

In the study of anti-cancer drugs, the impact of treatment
switching varies depending on the endpoint. If treatment switching
occurs after the occurrence of the event of interest, it typically does
not affect the efficacy evaluation. For example, in a case where the
primary efficacy endpoint is PFS, and treatment switching is only
allowed after the occurrence of disease progression, it does not
impact the evaluation of PFS. However, if treatment switching
happens before the occurrence of the event of interest, it can have
an impact on efficacy evaluation. For instance, if the primary
efficacy endpoint is OS, patients may undergo treatment switching
for various reasons before death, and the effect of switching
treatment on efficacy evaluation can be substantial. Therefore,
to maintain the integrity of the trial, it is generally not
recommended to allow treatment switching before observing
the endpoint. Otherwise, treatment switching can significantly
influence the assessment of treatment effect, and analyzing its
impact can be challenging. However, providing more effective
treatments to more participants in clinical research is ethically
more appropriate. Therefore, when treatment switching occurs
and impacts the efficacy evaluation, appropriate handling
strategies and statistical methods should be employed to assess
this impact.

There are two main approaches to addressing the treatment
switching. The first approach is the non-counterfactual method,
which relies on objective and observable clinical factors (such as
treatments received and crossover) to estimate the overall survival
benefit of the experimental treatment compared to the control
treatment. Non-counterfactual methods are relatively simple, and
their conclusions are easily understood, making them commonly
used in current clinical trial methodologies. Standard methods
include intention-to-treat (ITT), per-protocol method, censoring
method, as-treated method, crossover design (Law and Kaldor,
1996), and inverse probability censoring weighting (Hernán et al.,
2000).

The second approach is the counterfactual method, which is
based on hypothetical conditions (such as assuming no crossover
occurred) to evaluate the treatment effect difference of the
experimental drug on the target population. However, this
hypothetical condition is usually unobservable in clinical studies,
and the validity of its results often relies on whether the causal
estimand can meet the basic assumptions of consistency, positivity,
and exchangeability. Standard counterfactual methods used to
adjust for crossover include the two-stage estimation method
(Latimer et al., 2016), rank-preserving structural failure time
(RPSFT) model, and iterative parameter estimation method
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(IPE). The specific concepts of these methods are not described in
this paper. The methods above are not commonly used as primary
analysis methods. However, they often serve as sensitivity analyses
to evaluate the robustness of efficacy results or when the event of
interest is a secondary efficacy endpoint.

The approach to address treatment switching should align with
the research objective, precisely the scientific question of interest.
The feasibility of implementing crossover rules depends on
multiple factors, such as the trial design, clinical endpoint, and
indication. In the clinical trial design, careful consideration and
comprehensive demonstration of the necessity and feasibility of
allowing treatment switching are crucial. A complete overview of
strategies and statistical analysis methods for handling treatment
switching in different clinical scenarios has been provided (Manitz
et al., 2022). For instance, if treatment switching reflects real-world
clinical practice, the treatment policy strategy is a reasonable
choice, and the conventional Cox models or KM methods are
appropriate for the primary analysis. On the other hand, if the
main reason for treatment switching is disease progression, it is
necessary to adjust the observed treatment effect using
hypothetical strategies. Specifically, counterfactual survival times
are applicable for estimating HRs or modified KM through a two-
stage method. The IPCW and RPSFT methods may also be
suitable. The treatment policy strategy is still suitable for
treatment switching caused by other reasons. In summary,
selecting an appropriate evaluation method for treatment
switching should consider the specific research objectives, trial
design considerations, and statistical approaches that best address
the clinical questions of interest.

In addition, it is crucial to evaluate the impact of treatment
switching on trial integrity and develop appropriate methods to
safeguard trial integrity if necessary. We recommend that the
sponsors communicate with regulatory agencies regarding the
protocol details before conducting the pivotal clinical studies.

5 Discussion

As research in anti-cancer treatment advances, the evaluation of
the benefits of tumor drugs develops accordingly. Prolonging patients’
survival time remains the ultimate goal, and it is crucial in assessing
treatment benefits. To address unmet clinical needs, regulatory
agencies may grant marketing approvals to specific drugs based on
promising short-term outcomes, such as tumor remission, to expedite
the drug approval process and enable patients to access new
treatments more quickly. However, positive responses in surrogate
endpoints may not indicate actual benefit. As more anti-cancer drugs
are available, patients now have various treatment options. Therefore,
regulatory agencies will evaluate the benefit-risk of drugs based on
solid evidence, focusing on significant long-term benefits. On the
other hand, the correlation between short-term and long-term efficacy
varies among different types of anti-cancer drugs. For cytotoxic drugs,
significant outcomes of short-term efficacy endpoints often provide
substantial evidence indicating long-term benefits. However, such a
positive correlation only sometimes holds in the case of
immunotherapy. Despite achieving positive results in ORR and

DOR, it is essential to verify the long-term benefits through
additional clinical trials. Besides, in cell therapy, patients may
experience rapid response, but the investigators should be mindful
of potential relapses. Evaluating long-term benefits becomes even
more critical, given anti-cancer therapies’ intricacy and diverse
characteristics.

In evaluating long-term efficacy, a severe violation of the PH
assumption will render the commonly used statistical methods for
efficacy evaluation inadequate. Several efficacy endpoints and
statistical methods have been developed to address this issue,
including milestone survival analysis, RMST, net survival benefit,
joint tests, time-varying covariate Cox models, and accelerated failure
time (AFT) models. Each method has advantages and limitations but
has yet to be widely accepted as the primary statistical method for
market approval applications (Buyse et al., 2020). However, it is worth
noting that each efficacy endpoint provides valuable insights into the
clinical benefits of a treatment from a specific perspective. Therefore,
we recommend considering these novel endpoints as secondary
evidence when evaluating the clinical benefits of a treatment. For
instance, in a clinical trial (NCT02506153) investigating the treatment
of high-risk stage III-IV melanoma patients who underwent surgical
resection, high-dose recombinant interferon alfa-2b, ipilimumab, or
pembrolizumab, RMST was employed to assess the primary efficacy
endpoints, OS and recurrence-free survival (RFS). Another example is
the Lung-Map study (NCT05096663) comparing the efficacy of
combined immunotherapy and conventional treatment in patients
with advanced non-small cell lung cancer. In this study, both
conventional log-rank and weighted log-rank tests were employed
to evaluate the primary efficacy endpoint, OS.

For researchers, violating the PH assumption when using
conventional statistical methods can lead to an unexpected
decrease in statistical power. On the other hand, using methods
specifically designed for NPH can introduce challenges in clinical
interpretation. Therefore, it is crucial to thoroughly evaluate
different statistical methods and select appropriate ones during
the planning stage of a clinical study. Furthermore, studies have
suggested several strategies to address the issue of power reduction
caused by violations of the PH assumption. These strategies include
increasing the sample size by 10% (Hoering et al., 2017), conducting
additional follow-up (Pak et al., 2017), or implementing adjusted
interim futility analysis (Korn and Freidlin, 2018). By adopting these
approaches, the impact of NPH can be mitigated, and the study’s
statistical power can be improved.

With increasing available treatment options, assessing long-
term efficacy becomes even more critical for patients to make
informed decisions regarding the optimal treatment therapy. To
approach this, the framework of E9(R1) offers a valuable tool to
describe the clinical question precisely. This involves
comprehensively assessing potential ICEs and their
corresponding handling strategies to describe long-term efficacy
evaluations in specific real-world scenarios. These scenarios include
situations where patients switch to the standard of care or receive the
best supportive care. On the other hand, patients’ treatment
switching can also impact long-term efficacy evaluation, leading
to a potential loss of statistical power and an inaccurate estimation of
treatment effects.
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As medical advancements continue to unfold, we can expect the
emergence of innovative statistical methods to address the current
challenges in evaluating long-term efficacy and the discovery of
more efficient therapies for cancer patients. We need to learn from
past experiences and proactively promote the development of anti-
cancer treatments.
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