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Background: Topical lidocaine microemulsion preparations with low toxicity, low
irritation, strong transdermal capability and convenient administration are urgently
needed.

Methods: Box-Behnken designwas performed for three preparation conditions of
5% lidocaine microemulsions: mass ratio of the mass ratio of surfactant/(oil phase
+ surfactant) (X1), themass ratio of olive oil/(α-linolenic acid + linoleic acid) (X2) and
the water content W% (X3). Then, five multi-objective genetic algorithms were
used to optimize the three evaluation indices to optimize the effects of lidocaine
microemulsion preparations. Finally, the ideal optimization scheme was
experimentally verified.

Results: Non-dominated Sorting Genetic Algorithm-II was used for 30 random
searches. Among these, Scheme 2: X1 = 0.75, X2 = 0.35, X3 = 75%, which resulted in
Y1 = 0.17 μg/(cm2·s) and Y2 = 0.74 mg/cm2; and the Scheme 19: X1 = 0.68, X2 =
1.42, X3 = 75% which resulted in Y1 = 0.14 μg/(cm2·s) and Y2 = 0.80 mg/cm2,
provided the best matches for the objective function requirements. Themaximum
and average fitness of the method have reached stability after 3 generations of
evolution. Experimental verification of the above two schemes showed that there
were no statistically significant differences between themeasured values of Y1 and
Y2 and the predicted values obtained by optimization (p > 0.05) and are close to
the target value.

Conclusion: Two lidocaine microemulsion preparation protocols were proposed
in this study. These preparations resulted in good transdermal performance or
long anesthesia duration, respectively.
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1 Introduction

Lidocaine is widely used in clinical local anesthetic drugs (Jiamin
et al., 2013). Preparation as a surface anesthetic with strong
penetrating ability can promote rapid pain relief, overcome the
first-pass effect of the liver, and reduce pain following laser
cosmetic surgery, dermatological surgery, and puncture
examination, resulting in better outcomes. Microemulsion is a
novel transdermal drug delivery preparation. Microemulsions are
simple to prepare and promote transdermal drug absorption,
improve drug solubility and stability, and reduce skin irritation
(Tian et al., 2012). Microemulsions are the preferred type of
preparation for local anesthetic drugs. Microemulsions are
transparent or translucent, thermodynamically stable colloidal
systems formulated with an oil phase, water, surfactant, and
cosurfactant (Callender et al., 2017). Preparation of
microemulsions generally requires a chemically stable oil phase, in
which the drug is soluble. In addition, microemulsions must support
penetration and association of the drug with the surfactant molecules
(Heuschkel et al., 2008). Long chain triglycerides of vegetable origin
such as hemp oil, cottonseed oil, and soybean oil are commonly used
oil phases. Surfactants, also known as emulsifiers or amphoteric
compounds, play an important role in formation of
microemulsions through their ability to solubilize and reduce
interfacial tension between the oil and water phases (Brosig et al.,
2023). Surfactants can be classified as nonionic and ionic. Commonly
used surfactants are lecithin (phosphatidylcholine), sodium
deoxycholate (bile salt), polyoxyethlene sorbitan monolaurate
(Tween 20, 40, 60, 80) and sorbitan monolaurate (Span 20, 40, 60,
80) (Bonferoni et al., 2019). Cosurfactant further reduce interfacial
tension, and increase the fluidity of the interface, thereby increasing
the entropy of the system. Cosurfactantsmay also adjust the curvature
of the interfacial film by partitioning between the tails of the surfactant
chains, allowing greater penetration of the oil between the surfactant
tails (Flanagan and Singh, 2006; Golwala et al., 2020). Medium- or
short-chain alcohols such as ethanol, ethylene glycol, propylene glycol
and polyethylene glycol are commonly used as cosurfactants (Zhang
et al., 2014).

Selecting the right surfactant and cosurfactant is a major step in
designing a microemulsion system. However, surfactants and
cosurfactant have potential to irritate or corrode tissues
(Lawrence and Rees, 2000). Many surfactants irritate the skin
through their relative ability to dissolve lipid membranes
(Effendy and Maibach, 1995). A study by Fitsum F. Sahle showed
that increased surfactant content resulted in increased epidermal
irritation (Sahle et al., 2014). Therefore, reduction of surfactant
content is important in topical lidocaine microemulsions to promote
low toxicity, low irritation, strong transdermal properties, and
convenient administration. The following key findings have
driven microemulsion development: (1) Use of mixed oil as the
oil phase can significantly increase the microemulsion area, thereby
reducing the amount of surfactant used in the preparation process
(You et al., 2014); (2) The method of mixing surfactant can
effectively improve the solubility of surfactant, thus increasing
the area of microemulsion, allowing for use of less surfactant
(Sun et al., 2014); (3) The microemulsion area of olive oil (OL) is
larger in the absence of cosurfactant than in the presence of
cosurfactant under the action of mixed surfactant, and vitamin E

succinate (VES) can further increase the area of microemulsion of
OL (Jing et al., 2019). Based on the above research basis, the group,
Prof. Tian, conducted a research on the preparation process of low
surfactant, co-surfactant free lidocaine microemulsion with vitamin
E succinate assisted mixed oil phase.

During the development process, we evaluated the effectiveness
of lidocaine microemulsion preparation using the following three
indicators: steady-state penetration rate, skin retention and
microemulsion particle size. Steady-state permeation rate and
skin retention are two important parameters related to
transdermal drug delivery, which are commonly used to study
and evaluate drug penetration and absorption in the skin.
Among them, steady state permeation rate is the rate at which a
drug passes through the membrane or interface of an organism or
drug delivery system to reach a steady state. This parameter is
important for determining efficiency and control of drug
transdermal delivery because it can be used to estimate the rate
of drug absorption in the skin. Skin retention refers to the amount of
drug that remains in skin tissue after a certain period of time. This
parameter is used to evaluate the residence time of drugs on the skin.
The amount of skin retention is crucial for evaluation of local
treatment and skin irritation. Therefore, this study required
multi-objective optimization (Bansal et al., 2021) to optimize
microemulsion preparation conditions for the three objectives
simultaneously. However, traditional multi-objective optimization
methods such as contour plots (Li et al., 2011; Patel et al., 2014),
multi-objective weighting (Horn et al., 1994; Augusto et al., 2006),
goal programming (Horn et al., 1994; Tamiz et al., 1998; Corne et al.,
2000), the constraint method (Haimes et al., 1971) and the minimax
method (Li and Li, 1996) can only provide an unique optimal
solution. However, these approaches violate the principle of
multi-objective optimization and is highly subjective in assigning
target weights. Therefore, we need to coordinate and compromise
among the sub-objectives to optimize each sub-objective (Xunxue,
2006).The genetic algorithm approach (Holland, 1975; Farhang-
Mehr et al., 2002) is suitable for optimizing complex multi-objective,
nonlinear systems with good global search performance. Genetic
algorithms can obtain a set of solutions in each run such that each
target is optimal, and no other solution in the search space is
superior. This result is called the Pareto non-inferior solution set
(De Jong, 1975; Konak et al., 2006; Xunxue, 2006; Bansal et al.,
2021). As a result, researchers can be provided with a variety of
alternative, uncontrolled optimal solutions.

In this study, five multi-objective genetic algorithms were used
to optimize the preparation conditions for a lidocaine
microemulsion. The optimization effects of the five genetic
algorithms were compared to select the relatively optimal
preparation scheme, and the most ideal scheme was
experimentally verified to determine the optimal preparation
conditions of a lidocaine microemulsion formulation.

2 Materials and methods

2.1 Materials

The test materials and chemical sources are detailed in the paper
“Design, optimization and evaluation of cosurfactant free
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microemulsion-based hydrogel with low surfactant for enhanced
transdermal delivery of lidocaine” published in International
Journal of Pharmaceutics by our group in August 2020 (Zhang
et al., 2020).

2.2 Preparation of lidocaine microemulsions

The lidocaine microemulsion is comprised of lidocaine 5% (w/
w), Alpha-linolenic acid (ALA), linoleic acid (LA), OL, VES,
Cremophor RH40, sorbitan monooleate 80 (Span 80), and water.

Preparation of mixed oil phase (O) was performed as follows:
ALA and LA were mixed at a 1:4 ratio. This mixture was then mixed
with OL at 1:4, 1:1, and 4:1 to obtain mixed oils O1, O2 and O3,
respectively. Vitamin E succinate was used as the auxiliary oil, and
complexes of O1-VES, O2-VES and O3-VES (6:1 w/w) were used as
the oil phase, which significantly increased the microemulsion area,
allowing for reduced amount of surfactant.

Preparation of mixed surfactant (S) was performed as follows:
RH40 and Span 80 were mixed at a 5:1 (w/w) ratio. This allowed for
improved the solubility of the surfactant, increased microemulsion
area, and reduced the amount of surfactant.

Microemulsions containing lidocaine were prepared by
dissolving lidocaine 5% (w/w) in a mixture of different
proportions of O and S at room temperature, then slowly adding
the appropriate amount of water with magnetic stirring.The mass
ratio of mixed oil phase to mixed surfactant, the weight ratio of oil
phase mixing, and the water content as lidocaine microemulsion
drug delivery system were determined based on our previous study.
These factors were expressed as the mass ratio of S/(O + S) (X1), the
weight ratio of OL/(ALA + LA) (X2), and the water content W%
(X3), respectively.

A 3-factor, 3-level Box-Behnken design was used for the above
factors, with a total of 15 test protocols, each replicated six times.
The levels of X1, X2, and X3 were 0.6–0.8, 0.25–4, and 65%–75%,
respectively. Steady-state permeation rate (Y1), skin retention (Y2),
and microemulsion particle size (Y3) were used as evaluation indices
to evaluate the effects of the preparation process. A larger Y1 value
results in better microemulsion transdermal properties, and a larger
Y2 value results in longer duration of anesthetic effects. The Y3 must
be less than 100 nm to guarantee the transdermal properties of the
microemulsion. The steady-state permeability, skin retention, and
particle size of the lidocaine microemulsions are shown in Table 1.
Although the microemulsion particle size (Y3) met the requirement
of less than 100 nm in all 15 protocols, the steady-state permeation
rate (Y1) and skin retention (Y2) were not simultaneously optimal in
the test results. Therefore, the preparation process conditions must
be optimized using mathematical modeling combined with a multi-
objective optimization approach to optimize Y1 and Y2

simultaneously.

2.3 Methods of model building

Since the microemulsion particle sizes were all less than 100 nm,
Y3 was no longer modeled. Steady-state permeation rate (Y1) and
skin retention (Y2) were used as dependent variables, and the mass
ratio of S/(O + S) (X1), weight ratio of OL/(ALA + LA) (X2), andW%
(X3) were used as independent variables. Quadratic polynomial
models were developed for Y1 and Y2 as the objective functions
for the multi-objective optimization of process conditions.

The fit of the model is determined by the coefficient of
determination (R2). R2 is an indicator for evaluating the
effectiveness of model fitting, which estimates how well the fitted

TABLE 1 Box-Behnken design scheme and results for lidocaine microemulsion formulation.

Solutions X1 X2 X3 (%) Y1 (mg/(cm2·s)) Y2 (mg/cm2) Y3 (nm)

1 0.8 0.25 70 0.1568 ± 0.003 0.2629 ± 0.026 17.83 ± 3.668

2 0.8 1 65 0.1878 ± 0.035 0.4089 ± 0.015 13.64 ± 0.340

3 0.8 1 75 0.1498 ± 0.019 0.6672 ± 0.340 16.31 ± 1.849

4 0.8 4 70 0.0907 ± 0.012 0.2670 ± 0.035 23.21 ± 0.594

5 0.7 0.25 65 0.1098 ± 0.038 0.3216 ± 0.045 20.13 ± 0.109

6 0.7 0.25 75 0.1034 ± 0.039 0.8754 ± 0.072 22.98 ± 0.390

7 0.7 4 65 0.0986 ± 0.027 0.2787 ± 0.028 19.86 ± 0.247

8 0.7 4 75 0.1226 ± 0.021 1.0292 ± 0.376 22.70 ± 0.376

9 0.6 0.25 70 0.1395 ± 0.035 0.3090 ± 0.182 42.38 ± 0.182

10 0.6 1 75 0.1279 ± 0.011 0.6596 ± 0.025 41.36 ± 0.157

11 0.6 1 65 0.0893 ± 0.009 0.5231 ± 0.071 36.35 ± 0.183

12 0.6 4 70 0.0902 ± 0.024 0.4388 ± 0.139 41.39 ± 0.149

13 0.7 1 70 0.1527 ± 0.029 0.3586 ± 0.094 20.78 ± 0.183

14 0.7 1 70 0.1001 ± 0.003 0.3167 ± 0.032 20.81 ± 0.132

15 0.7 1 70 0.1062 ± 0.009 0.2928 ± 0.026 21.31 ± 0.128

Note: Bold indicates the most ideal result. The values were expressed as Mean ± SD (n = 6).
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model fits the observed values. An R2 of 1 indicates that the predicted
values of the model exactly match the actual values, and values closer
to 1 indicate high accuracy.

The model expressions are as follows:

ŷ � β̂0 +∑
m

i�1
β̂ixi+∑

m

i�1
β̂ixi

2 +∑
m

i�1
∑
m

j�1
β̂ijxixj

(i < j, m is the number of factors)

2.4 Multi-objective genetic algorithms

A quadratic polynomial full model established by Y1 and Y2 are
set as the objective functions of multi-objective optimization, and
the two objective functions are set to be maximized. The ranges of
the three factors were set as X1: 0.6–0.8, X2: 0.25–4.0 and X3: 65%–
75%. Five multi-objective genetic algorithms, detailed in Sections
2.4.1–2.4.5, were used to optimize the drug delivery system.

2.4.1 Vector evaluated genetic algorithm
Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985;

Xunxue and Chuang, 2005; Dias and De Vasconcelos, 2002) is a
population-based non-Pareto method (Dan and Rui, 2004). This
method uses a proportional selection mechanism, which is superior
to a single-objective algorithm. The principle of VEGA is to generate
a corresponding subpopulation for each sub-objective function. If
the number of sub-objectives of a multi-objective problem is k, the
population needs to be randomly and equally divided into k
subpopulations of equal size, where the size of each
subpopulation is N/k (N is the size of entire population). Each
sub-objective function completes selection, evaluation, and
operation in its corresponding subpopulation independently, then
forms a new group for crossover and variation operation. Therefore,
the process of “splitting, juxtaposition, evaluation, selection, and
merging”is executed in a cycle, resulting in a non-inferior solution to
the problem.

2.4.2 Multiple objective genetic algorithm
Multiple Objective Genetic Algorithm (MOGA) (Fonseca

and Fleming, 1993) ranks each individual in the population
using the concept of “Pareto Optimal Individuals”, so that the
best individuals values in the population have a greater chances
to be inherited by the next-generation population. Following a
specified number of generations of cycles, the optimal solution of
the multi-objective optimization problem can finally be searched.
The algorithm flow of MOGA is as follows: an initial population p
with sample number N is randomly generated. After the non-
dominated sorting, the first generation population Q is generated
by cross-variance and other operations. Then, the parent
population p is merged with the child population Q to
generate the second generation population, and the non-
dominated set is constructed by non-dominated sorting and
calculating the distance between individuals. A new
population is generated by crossover and mutation, and the
cycle is repeated until the termination condition is satisfied.
Finally, the distance between individuals is calculated, and the
optimal alternative is obtained by reordering the fitness
according to the base.

2.4.3 Niched pareto genetic algorithm
Niched Pareto Genetic Algorithm (NPGA) (Fonseca and

Fleming, 1993; Horn et al., 1994) uses a tournament selection
mechanism to select the best individuals for subsequent
evolutionary reproduction, while incorporating niche technique
to maintain the diversity and homogeneity of the distribution of
individuals in the candidate solution set. The selection mechanism
of NPGA is a combination of tournament selection and external
auxiliary selection. After obtaining the initial population,
10 individuals are randomly selected to form the external
comparison set CS. In addition, two individuals, pi and pj, are
randomly selected to make a two-by-two comparison with the
above 10 individuals. If one of these is superior to the
comparison set and the other is inferior to the comparison set,
the former is selected and copied. If both randomly selected
individuals are superior or inferior to the external comparison
set, the better of the two is selected using the sharing
mechanism. That is, according to the number of niches, focus on
selecting individuals with the smallest number of niche for
replication to obtain the optimal solution with uniform
distribution on the front end.

2.4.4 Non-dominated sorting genetic algorithm
Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas

and Deb, 1994) uses non-dominated sorting as the solution sorting
criterion, and the fitness is reasonably assigned to a diverse search
space (Heris et al., 2011). In this approach, all individuals are graded
at different levels, and before performing the selection operator, the
population is graded and sorted according to dominance and non-
dominance relationships. To maintain population diversity, all
individuals in the population are assigned a virtual fitness value
(generally proportional to the population size), and individuals at
the same level have the same virtual fitness value, thus ensuring that
individuals at the same level have the same probability of replication.
This group of graded individuals is then ignored, and the other
individuals in the population are graded again according to the
dominance non-dominance relationship and given new virtual
fitness values that are less than the values in the previous level.
This operation is repeated for the remaining individuals until all
individuals in the population are graded.

2.4.5 Non-dominated sorting genetic algorithm-II
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb

et al., 2000) greatly reduces computational complexity by
introducing a fast non-dominated sorting algorithm, using an
elite strategy design to increase the sample space, and using
individual crowding and crowding comparison operators as
grading criteria. This can provide a multi-objective optimized
Pareto non-inferiority solution set and ensure the diversity of the
population. The algorithm process of NSGA-II is as follows. First,
the parent population Pn is used to generate the child population Qn,
and the two populations are combined to form a population Rn of
size 2n. A non-inferiority classification operation is performed on
this population. Then, the crowding degree of all individuals in each
non-inferior class is calculated. The next-generation population Pn+1
is generated according to the principle of crowding selection
operator, and the number of evolutionary generations is n+1.
Then, whether the number of evolutionary generations of this
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population is greater than the maximum number of evolutionary
generations is determined. If yes, then the algorithm ends, otherwise
it continues to evolve. The algorithm continues to evolve until it
reaches the maximum number of evolutionary generations specified.

2.5 Optimization parameters

The parameters of the five multi-objective genetic algorithms
were set as follows: the initial population was 30, the probability
crossover was 0.8, the probability of mutation was 0.05, the
maximum evolutionary generation was 100, and 30 random
searches were performed to give the Pareto non-inferiority
solution set.

2.6 Measurement of steady-state
permeation rate, skin retention, and particle
size

The abdominal skin (free of subcutaneous fat and adherent
tissue) of guinea pigs was rinsed with saline and fixed with the
horned layer facing upward between the supply and receiving cell.
We added 1.0 g of each formulation was placed on the skin surface of
the supply cells, and 15 mL of the receiving solution consisting of
phosphate buffered saline and ethanol was placed under a magnetic
rotor (set to 350 rpm) in the receiving cells. The temperature was
maintained at 37°C ± 0.1°C. Samples (2.0 mL) were taken at
predetermined time points (0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, and
12.0 h), and filtered through 0.45-µm microporous filtration
membrane. The cells were then replenished with an equal
amount of fresh receiving solution. The filtrates were analyzed
using high performance liquid chromatography (HPLC), the peak
areas were determined, and the corresponding drug concentrations
were calculated. The cumulative permeation of the drug was then
calculated based on the transdermal diffusion area, the drug
concentration at different time points, and the volumes of the
receiving pool and the sampling volume. The slope of the linear
regression curve of the cumulative permeation of the drug against t
(h) represents the steady-state permeation rate.

After the skin permeability measurement was completed, the
skin was rinsed with fresh receiving solution. The skin was dried on
filter paper, then cut and soaked in methanol (4 mL) for 24 h to fully
extract the drug remaining in the skin. The concentration of
lidocaine in the supernatant was then analyzed using HPLC to
determine skin retention.

The microemulsion was diluted 50-fold with distilled water and
particle size was determined using a Nano Zetasizer (ZS90, Malvern
Instruments, Worcestershire, UK).

2.7 Statistical software

Model establishment and statistical analysis of optimization
results were performed using SPSS 22.0. Multi-objective genetic
algorithm optimization was performed using aMatlab 2009a plug-in
SGALAB toolbox bete5008 written by a member of the group, Chen,
a software engineer at the University of Glasgow, United Kingdom.

The average level of Pareto non-inferiority solutions and objective
function values were expressed as the median and interquartile
range.

3 Results

3.1 Quadratic polynomial model and model
fitting results

The quadratic polynomial full model and model fit results for
steady-state infiltration rate (Y1) and skin retention (Y2) are shown
below. The R2 value of the two models were 0.6537 and 0.7264,
respectively, which indicated that the respective variables could
explain 65.4% and 72.6% of the variation in Y1 and Y2,
respectively. The explanations of the respective variables of the
models are high, and the models are well fitted.

Ŷ1 � 0.921 + 2.312X1 + 0.041X2 − 5.138X3 + 0.442X1
2 + 0.005X2

2

+ 5.847X3
2 − 0.044X1X2 − 3.829X1X3 − 0.062X2X3

R2 � 0.6537

Ŷ2 � 54.716 − 0.722X1 − 0.629X2 − 057.078X3 − 3.039X1
2

+ 0.004X2
2 + 110.563X3

2 − 0.174X1X2 + 6.889X1X3

+ 1.072X2X3

R2 � 0.7264

3.2 Multi-objective genetic algorithm
optimization results

The random search results, fitness evolution algebra, and
optimal non-inferiority solution schemes of VEGA, MOGA, and
NSGA were inferior to those obtained using NPGA and NSGA-Ⅱ.
To remain concise, only the random search results and maximum
fitness and average fitness evolution curves from NPGA and NSGA-
Ⅱ, which have relatively better optimization effects, are listed in this
manuscript. The optimization results of the remaining three
methods are summarized in the appendix.

Our primary criterion for determining the most desirable
regimen is that the regimen results in a relatively maximum
steady-state penetration rate, and skin retention. On the basis of
the above we would like to use less surfactant. Additionally, based on
these two criteria, the amount of material in the formulation would
be relatively small.

3.2.1 NPGA optimization results
The non-inferior solution schemes obtained from the NPGA

random search (30 iterations) are shown in Table 2. According to
the requirements for the objective function, the optimal process
conditions were selected in the Pareto solution set with X1 = 0.68,
X2 = 0.89, and X3 = 75% for Scheme 20. The steady-state permeation
rate and skin retention of lidocaine microemulsion were Y1 =
0.15 mg/(cm2·s) and Y2 = 0.77 mg/cm2.

The maximum fitness and average fitness evolution curves of
the two sub-objective functions obtained using NPGA
optimization are shown in Figures 1, 2. The maximum fitness
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evolution curve is used to evaluate the convergence performance
of the algorithm, reflecting the change in the solution. This is a
measure of whether the algorithm can find the global optimal
solution to the problem with infinite iterations. As shown in
Figure 1, NPGA found the maximum fitness for Y1 and Y2 only
after 7 generations of evolution. These values were 0.153 mg/
(cm2·s) and 0.761 mg/cm2, respectively. The convergence of
NPGA was general. The average fitness evolution curve was
used to evaluate the dynamic performance of the algorithm,

reflecting the change of the objective function with the best
fitness and the largest value in each generation with the
number of evolutionary generations. As shown in Figure 2, the
objective function in the initial generations had lower adaptation
and smaller objective function values. As the number of
evolutionary generations increased, the fitness of the objective
function increased rapidly and the objective function value
increased. There was a slight degradation around five
generations of evolution. After about seven generations of

TABLE 2 NPGA random search results.

Solutions Pareto optimal solution set Response Surfactant (%)

X1 X2 X3 (%) Y1 (μg/(cm2·s)) Y2 (mg/cm2)

1 0.79 2.32 75 0.12 0.82 15.8

2 0.67 1.07 75 0.15 0.75 13.4

3 0.75 0.28 74 0.17 0.64 15.8

4 0.63 1.85 75 0.13 0.81 12.6

5 0.77 1.53 74 0.14 0.70 16.2

6 0.67 2.08 74 0.12 0.71 14.1

7 0.64 1.05 74 0.14 0.61 13.4

8 0.78 0.65 75 0.16 0.69 15.6

9 0.63 1.06 74 0.14 0.62 13.2

10 0.60 0.62 75 0.16 0.69 12.0

11 0.62 2.06 75 0.13 0.82 12.4

12 0.68 3.62 74 0.11 0.81 14.3

13 0.77 2.88 75 0.12 0.85 15.4

14 0.74 2.65 73 0.11 0.63 16.3

15 0.68 1.21 75 0.14 0.72 13.6

16 0.60 0.44 75 0.17 0.70 12.0

17 0.68 1.49 75 0.13 0.75 13.6

18 0.70 1.06 74 0.14 0.69 14.7

19 0.72 0.65 74 0.15 0.62 15.1

20 0.68 0.89 75 0.15 0.77 13.6

21 0.68 1.93 73 0.12 0.63 15.0

22 0.79 4.00 74 0.11 0.80 16.6

23 0.61 0.72 75 0.15 0.68 12.2

24 0.74 0.53 75 0.16 0.73 14.8

25 0.66 1.23 75 0.14 0.74 13.2

26 0.79 1.58 74 0.13 0.60 16.6

27 0.60 1.75 75 0.13 0.74 12.0

28 0.77 3.26 74 0.11 0.76 16.2

29 0.62 3.55 74 0.12 0.81 13.0

30 0.77 2.48 75 0.12 0.80 15.4

Note: Bold indicates the most ideal solution for this method.
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evolution, the values of Y1 and Y2 were stable at 0.15 mg/(cm2·s)
and 0.76 mg/cm2, respectively. The dynamic performance of
NPGA was average.

3.2.2 NSGA-Ⅱ optimization results
The non-inferior solution schemes obtained from 30 random

searches using NSGA-II are shown in Table 3. According to the
requirements for the objective function, the optimal process
conditions were Scheme 2 with X1 = 0.75, X2 = 0.35, and X3 = 75%

in the Pareto solution set. The corresponding steady-state permeation
rate and skin retention of lidocaine microemulsion were Y1 = 0.17 mg/
(cm2·s) and Y2 = 0.74 mg/cm2, respectively. Scheme 19, with X1 = 0.68,
X2 = 1.42, and X3 = 75% also presented optimal process conditions to
obtain Y1 = 0.14 mg/(cm2·s) and Y2 = 0.80 mg/cm2.

The evolution curves of maximum fitness and average fitness of
the two sub-objective functions obtained by NSGA-II search are
shown in Figures 3, 4. As shown in Figure 3, NSGA-II found the
maximum fitness of Y1 and Y2 at the third generation of evolution,

FIGURE 1
NPGA maximum adaptation evolutionary curve.

FIGURE 2
NPGA average adaptation evolutionary curve.
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with results of 0.139 mg/(cm2·s) and 0.788 mg/cm2, respectively. The
convergence of NSGA-II was better. As shown in Figure 4, the initial
generations of objective function had lower adaptation and smaller
objective function values. As the number of generations of evolution
increased, the fitness of the objective function increases rapidly and
the value of objective function increased. After three generations of
evolution, the values of Y1 and Y2 stabilized at 0.14 mg/(cm2·s) and
0.79 mg/cm2, respectively. The dynamic performance of NSGA-II
was better.

3.3 Comparison of five multi-objective
genetic algorithms for ideal non-inferior
solution schemes

According to the objective requirements of Y1 and Y2, the
objective function values, maximum fitness, and average fitness
evolutionary generations corresponding to the most ideal Pareto
non-inferiority solution schemes in the set of five multi-objective
genetic algorithms Pareto non-inferiority solutions were determined

TABLE 3 NSGA-II random search results.

Solutions Pareto optimal solution set Response Surfactant (%)

X1 X2 X3 (%) Y1 (mg/(cm2·s)) Y2 (mg/cm2)

1 0.78 0.43 75 0.17 0.74 15.6

2 0.75 0.35 75 0.17 0.74 15.0

3 0.63 0.57 75 0.16 0.73 12.6

4 0.68 1.84 74 0.12 0.65 14.3

5 0.64 0.98 75 0.15 0.76 12.8

6 0.69 1.37 74 0.14 0.71 14.5

7 0.80 0.96 73 0.15 0.49 17.6

8 0.79 0.39 75 0.17 0.73 15.8

9 0.79 0.29 75 0.18 0.72 15.8

10 0.66 0.38 75 0.17 0.73 13.2

11 0.63 1.81 72 0.11 0.50 14.5

12 0.75 1.13 75 0.15 0.78 15.0

13 0.63 1.04 75 0.15 0.77 12.6

14 0.70 0.75 75 0.16 0.76 14.0

15 0.77 0.30 74 0.17 0.64 16.2

16 0.75 1.41 74 0.14 0.70 15.8

17 0.62 2.21 75 0.13 0.85 12.4

18 0.60 3.94 75 0.13 1.01 12.0

19 0.68 1.42 75 0.14 0.80 13.6

20 0.69 0.46 74 0.16 0.66 14.5

21 0.68 1.28 75 0.14 0.80 13.7

22 0.61 0.40 74 0.16 0.63 12.8

23 0.68 0.70 74 0.15 0.67 14.3

24 0.74 1.34 75 0.14 0.79 14.8

25 0.61 0.43 75 0.17 0.71 12.2

26 0.67 3.79 75 0.12 0.99 13.4

27 0.65 0.32 75 0.17 0.72 13.0

28 0.62 2.06 74 0.13 0.74 13.0

29 0.66 0.49 75 0.16 0.74 13.2

30 0.72 0.79 74 0.15 0.67 15.1

Note: Bold indicates the most ideal solution for this method.
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as shown in Table 4. Scheme 2 of NSGA-II: X1 = 0.75, X2 = 0.35, X3 =
75%; Scheme 19 of NSGA-II: X1 = 0.68, X2 = 1.42, X3 = 75%; and
NPGA Scheme 20: X1 = 0.68, X2 = 0.89, X3 = 75% were better fits
than optimal schemes determined using VEGA,MOGA, and NSGA.
However, compared with NPGA, which evolved for seven
generations to reach stability in maximum and average fitness,
NSGA-II only required three generations, and the convergence
and dynamics of the algorithm were better. The ideal Pareto
solution schemes of MOGA, VEGA, and NSGA did not match

the preparation process requirements and were prone to early
convergence, with poor local search capability and dynamics.

3.4 Comparison of the search performance
of five multi-objective genetic algorithms

Most of the Pareto non-inferior solutions and objective function
values of the five multi-objective genetic algorithms did not have

FIGURE 3
NSGA-II maximum adaptation evolutionary curve.

FIGURE 4
NSGA-II average adaptation evolutionary curve.
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TABLE 4 Comparison of five multi-objective genetic algorithms for ideal non-inferior solution schemes.

Methods Solutions Pareto optimal
solution set

Response Maximum fitness Average fitness

X1 X2 X3 (%) Y1 (mg/(cm2·s)) Y2 (mg/cm2)

VEGA 29 0.65 0.83 75 0.15 0.75 9 9

MOGA 6 0.75 0.99 75 0.15 0.70 11 11

NPGA 20 0.68 0.89 75 0.15 0.77 7 7

NSGA 1 0.71 0.29 65 0.14 0.42 8 8

NSGA-II 2 0.75 0.35 75 0.17 0.74 3 3

19 0.68 1.42 75 0.14 0.80

Note: Bold indicates the relatively ideal scheme among the five approaches.

TABLE 5 The average level of objective function values and the Pareto non-inferiority solutions of five multi-objective genetic algorithm.

Methods Variables Median P25 P75 IQR Test of normality

W p

VEGA X1 0.70 0.66 0.74 0.08 0.97 0.58

X2 1.13 0.63 1.63 1.00 0.86 <0.001

X3 75.00 74.00 75.00 1.00 0.67 <0.001

Y1 0.14 0.13 0.16 0.03 0.94 0.08

Y2 0.73 0.67 0.75 0.08 0.83 <0.001

MOGA X1 0.71 0.65 0.75 0.10 0.96 0.30

X2 2.33 0.99 3.11 2.12 0.94 0.09

X3 71.00 68.00 73.00 5.00 0.94 0.08

Y1 0.11 0.10 0.13 0.03 0.94 0.09

Y2 0.38 0.32 0.53 0.21 0.89 0.01

NPGA X1 0.68 0.63 0.77 0.14 0.91 0.02

X2 1.51 0.85 2.36 1.51 0.93 0.05

X3 75.00 74.00 75.00 1.00 0.73 <0.001

Y1 0.14 0.12 0.15 0.03 0.94 0.09

Y2 0.73 0.67 0.80 0.13 0.95 0.16

NSGA X1 0.72 0.67 0.76 0.09 0.96 0.27

X2 2.14 0.97 3.15 2.18 0.92 0.03

X3 65.00 65.00 66.00 1.00 0.60 <0.001

Y1 0.11 0.09 0.29 0.05 0.96 0.23

Y2 0.34 0.29 0.40 0.11 0.96 0.27

NSGA-II X1 0.68 0.63 0.75 0.12 0.93 0.06

X2 0.88 0.42 1.41 0.99 0.79 <0.001

X3 75.00 74.00 75.00 1.00 0.66 <0.001

Y1 0.15 0.14 0.17 0.03 0.94 0.11

Y2 0.73 0.67 0.77 0.10 0.91 0.01
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normal distributions. Therefore, the median (M) and interquartile
range (IQR) were used to describe the center and variance of the
solutions and objective values (Table 5). The median levels of the
sub-objective function values obtained by NSGA-II optimization
wereMY1 = 0.15 andMY2 = 0.73, which were higher than themedian
levels of the other four methods. The interquartile ranges for NSGA-
II optimization were IQRY1 = 0.03 and IQRY2 = 0.10, respectively,
and the variability was relatively small, and the search accuracy was
better than was observed using the other four algorithms. The
medians of the Pareto non-inferior solutions obtained by NSGA-
II random search were MX1 = 0.68, MX2 = 0.88, and MX3 = 75.00,
respectively, X1 and X2 were lower than the medians of the other
four methods. These results show that NSGA-II could minimize
surfactant use in the oil phase and reduced toxicity and irritation of
the microemulsions. It also reduced the amount of olive oil used,
which represents a cost benefit. Compared with MOGA and NSGA,
the median level of X3 of Pareto non-inferior solution of NSGA-II
was higher, which agreed with the results from VEGA and NPGA.
The higher water content has the advantage of improving the
transdermal properties of the microemulsion in the oil-water
mixed state. The interquartile ranges of the Pareto non-inferiority
solutions of NSGA-II were IQRx1 = 0.12, IQRx2 = 0.99 and IQRx3 =
1.00, which were relatively low. The non-inferiority solutions had
good stability.

3.5 Experimental validation results

The Pareto non-inferior solution Scheme 2: X1 = 0.75, X2 = 0.35,
X3 = 75% and Scheme 19: X1 = 0.68, X2 = 1.42, X3 = 75% obtained
from NSGA-II search were selected and validated in three trials, the
median and interquartile range values are shown in Table 6. The
median levels of both Y1 and Y2 obtained by experimental validation
were not statistically different from the target values obtained by
NSGA-II search (p > 0.05). These results confirmed that the
modeling and multi-objective optimization of this study were
satisfactory. Therefore, both of these schemes can be used for
lidocaine microemulsion preparation, and the preparation
scheme according to desired preparation effects.

4 Discussion

In this study, five multi-objective genetic algorithms, VEGA,
MOGA, NPGA, NSGA, and NSGA-II, were used for multi-objective
optimization of steady-state penetration rate and skin retention in
lidocaine microemulsion preparations. We compared the optimization
results of the fivemulti-objective genetic algorithms in terms of themost
desirable optimization scheme and the search performance of the

algorithms. Then, we experimentally validated that the modeling
and optimization schemes proposed in this study work matched
performance. A formulator focused on better transdermal properties
may choose preparation conditions with a mass ratio of S/(O + S) of
0.75, a weight ratio of OL/(ALA + LA) of 0.35, and a water content of
75%. The resultingmicroemulsion shows a steady-state permeation rate
of 0.17μg/(cm2·s) and skin retention of 0.74 mg/cm2. The
corresponding optimal microemulsion formulation determined by
this scheme was 1.11% OL, 0.64% ALA, 2.54% LA, 0.71% VES,
15.00% surfactant, 5.00% lidocaine, and 75.00% water. A formulator
focused on preparing microemulsions with durations of action could
choose a mass ratio of S/(O + S) of 0.68, a weight ratio of OL/(ALA +
LA) of 1.42, and awater content of 75%. This results in amicroemulsion
with a steady-state permeation rate of 0.14μg/(cm2·s) and a skin
retention of 0.80 mg/cm2. The corresponding optimal microemulsion
formulation determined by this scheme was 3.23% OL, 0.45% ALA,
1.81% LA, 0.91% VES, 13.60% surfactant, 5.00% lidocaine, and 75.00%
water.

Many studies have aimed to optimize formulations for
microemulsions in the pharmaceutical and food industries.
However, the transdermal permeation rates reported in the in vitro
permeability experiments of these microemulsion formulations are
not satisfactory compared to the permeation rates of Scheme
2 provided in this study. For example, Patel et al. conducted a
study on the effect of different mixing ratios of excipients on the
in vitro permeation of ketoconazole in a microemulsion, and found
that the highest permeation rate of the optimal formula was 54.65 ±
1.72 μg/cm2/h (Patel et al., 2011). In an in vitro permeation study of a
topical dosage form of hesperidin, Tsai et al. determined that the
optimal microemulsion formulation had a permeation rate of
46.56 μg/cm2/h (Tsai et al., 2010). Wang et al. (2019) evaluated use
of microemulsions for transdermal administration of high doses of
lidocaine and prepared microemulsions for experimental evaluation.
The permeability flux of the microemulsion formulation was
determined 500.40 ± 23.34 μg/cm2/h. In contrast, our formulations
showed a higher steady-state penetration rate of lidocaine
microemulsion (0.17 μg/(cm2·s)), which was significantly higher
than the penetration effect of the microemulsion formulations
studied above. In our preparation targeted for longer duration of
action, the penetration rate of lidocaine microemulsion reached
0.14 μg/(cm2·s)

Similarly, a few studies evaluating microemulsion preparation
have explored the effect of microemulsion on skin retention. Maulvi
et al. prepared a lidocaine tripotassium phosphate complex
microemulsion. Skin retention studies showed that the
microemulsion reached a maximum retention of 350 μg/g at 2 h
(Maulvi et al., 2020). Boonme et al. evaluated the properties,
stability, and skin permeability and retention of microemulsions
containing nicotinamide. The 24 h nicotinamide infiltration into

TABLE 6 Experimental validation results.

Response Scheme 2 Scheme 19

Observed Predicted p Observed Predicted p

Y1 0.15 ± 0.08 0.17 0.62 0.18 ± 0.07 0.14 0.23

Y2 0.81 ± 0.08 0.74 0.09 0.80 ± 0.14 0.80 1.00
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receptor fluids was 777.46 ± 60.11 μg/cm2 (Boonme et al., 2016). Niu
et al. conducted a study on microemulsion-based keratin-chitosan
gel to improve skin penetration/retention and activity of curcumin.
The maximum skin drug retention was 3.75 ± 0.24 μg/cm2 for this
microemulsion formulation (Niu et al., 2023). Scheme 19 in our
study resulted in a longer duration of action of 0.80 mg/cm2. Which
was higher than the skin retention in the above study. The skin
retention in Scheme 2 reached 0.74 mg/cm2. Therefore, the regimens
for preparation of lidocaine microemulsions proposed in this study
performed well in terms of both penetration rate and skin retention.

Most microemulsion formulations contain more than 20% of
surfactant. For example, Zhao, Jiang et al. studied a microemulsion
preparation of Antarctic krill oil with 24% surfactant and 8%
cosurfactant (Zhao et al., 2020). Wang et al. (2019) studied the
feasibility of using microemulsions containing of 28% surfactants
and cosurfactants for transdermal delivery of high-dose lidocaine.
Ngawhirunpat et al. (2013) studied the preparation of ketoprofen
microemulsions for transdermal delivery. Among the formulations
that achieved the highest skin permeation flux, the dosage of
surfactant (Cremophor RH40) was 22.5%, and the dosage of
cosurfactant (PEG 400) was 22.5%. Xu et al. (2016) prepared
microalgae oil microemulsions without co-surfactants, but but
with more than 20% surfactant. These studies show that many
microemulsion formulations rely on higher amounts of surfactant
and cosurfactant. In our study, Scheme 2 and Scheme 19 had
surfactant content below 15% and as low as 13.6%. This result
demonstrates our progress in reducing the amount of surfactant and
cosurfactant in microemulsion formulations, which should reduce
toxicity and skin irritation.

In conclusion, the preparation schemes proposed in this study were
practical and improved upon previously developed formulations using
an optimization algorithm. In addition, NSGA-II greatly reduced the
number of pre-experiments necessary to optimize preparation
conditions, resulted in reduced use of materials and significant cost
savings. Furthermore, our study demonstrated the value of using a
multi-objective optimization strategy in the pharmaceutical field.

5 Conclusion

This study proposed two sets of lidocaine microemulsion
preparation. The first included a mass ratio of surfactant/(oil
phase + surfactant) (X1) = 0.75, a mass ratio of olive oil/(α-
linolenic acid + linoleic acid) (X2) = 0.35, and water content W%
(X3) = 75%, which resulted in better transdermal performance.
When X1 = 0.68, X2 = 1.42, and X3 = 75%, the microemulsion
resulted in longer anesthesia duration.
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