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Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism
and present in various cells throughout the body. Its diverse physiological
functions encompass glycolysis, and its abnormal activity is associated with
numerous diseases. Targeting LDH has emerged as a vital approach in drug
discovery, leading to the identification of LDH inhibitors among natural
compounds, such as polyphenols, alkaloids, and terpenoids. These compounds
demonstrate therapeutic potential against LDH-related diseases, including anti-
cancer effects. However, challenges concerning limited bioavailability, poor
solubility, and potential toxicity must be addressed. Combining natural
compounds with LDH inhibitors has led to promising outcomes in preclinical
studies. This review highlights the promise of natural compounds as LDH inhibitors
for treating cancer, cardiovascular, and neurodegenerative diseases.
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1 Introduction

LDH is a crucial enzyme in metabolism, catalyzing the interconversion of pyruvate and lactate
(Farhana and Lappin, 2022). It plays a vital role in physiological processes, including energy
metabolism, glycolysis, and intracellular redox regulation (Kane, 2014). In recent years, there has
been an increase recognition of the therapeutic potential of natural compounds inmodulating LDH
activity and expression and addressing LDH-related diseases (Gao and Chen, 2015; Li et al., 2019b;
Forkasiewicz et al., 2020). The regulation of LDHcan lead to various effects, including anti-oxidative
stress, anti-inflammatory responses, and anti-apoptotic processes (Liu, 1995; Liu et al., 2010;
Venkatesan et al., 2015). It can also affect related pathways and downstream signaling associated
with the LDH (Zha et al., 2011; Miao et al., 2013; Feng et al., 2018). The involvement of LDH in
several diseases, such as cancer, cardiovascular diseases, and neurodegenerative disorders, suggests
that natural compounds have a broader therapeutic potential for LDH-related diseases (Liao et al.,
2012; Liu et al., 2017; Morandi and Indraccolo, 2017).

Aberrant LDH activity has made the enzyme an attractive target for drug discovery
(Varghese et al., 2020). Many LDH inhibitors have been discovered (Rivera et al., 2009),
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including natural compounds, such as polyphenols, alkaloids, and
terpenoids (Gallagher et al., 2017; He et al., 2021; Ramakrishna et al.,
2021). Polyphenols, abundant in plants, inhibit LDH activity by
binding to its active site, decreasing lactate production (Granchi
et al., 2010). Promising polyphenols for treatment of diseases related
to abnormal LDH activity, such as cancer, include quercetin,
kaempferol, and apigenin (Miean and Mohamed, 2001).
Alkaloids, including berberine and magnoflorine, also inhibit
LDH by binding to its active site, thereby preventing lactate
production (Huang et al., 2009; Kooshki et al., 2022), and exert
various pharmacological effects, including anti-cancer, anti-
microbial, and anti-inflammatory activities (Aggarwal et al., 2011;
Gurung and De, 2017; Reddy et al., 2020). Similarly, terpenoids, such
as carnosic acid and artemisinin, inhibit LDH activity (Akinloye
et al., 2021) by binding to the enzyme’s active site (Cameron et al.,
2004; Hou et al., 2012) and show potential as anti-cancer agents,
with their additional pharmacological effects including anti-
inflammatory and anti-microbial activities (Salminen et al., 2008;
Doughari, 2012).

However, natural compounds face challenges in terms of clinical
development owing to limited bioavailability, inadequate solubility, and
potential toxicity (Shishir et al., 2019; Yadav et al., 2019; Garcia-Oliveira
et al., 2021). Researchers have attempted to enhance their bioavailability
while minimizing toxicity using drug delivery systems (Aqil et al., 2013;
Ting et al., 2014). Combining LDH inhibitors from natural compounds
with synthetic compounds in therapy has shown promise in preclinical
studies, suggesting that these compounds could enhance therapeutic
effects (Li et al., 2013; Han et al., 2015; Cui et al., 2017).

This review explores the significance of LDH in a range of
diseases, including cancer, cardiovascular diseases, and
neurodegenerative diseases. It discusses the challenges in
developing and using natural LDH inhibitors, their impact on
downstream signaling pathways after LDH modulation, the
mechanisms of their actions, and potential combination
treatments with conventional medications. Natural compounds
have the potential to be beneficial therapeutics for LDH-related
diseases, and future research opportunities are also discussed.

2 Lactate dehydrogenase

LDH is a vital enzyme present in almost all cells, playing an
essential role in energy metabolism (Le et al., 2010; Hu et al., 2016).
It catalyzes the conversion of lactate to pyruvate and vice versa,
depending on cellular energy demands (Gladden, 2004; Farhana and
Lappin, 2022). This reaction involves the interconversion of
cofactors, nicotinamide adenine dinucleotide (NAD+) and ß-
nicotinamide adenine dinucleotide hydrate (NADH), which are
essential for energy transfer in living organisms (Rodriguez et al.,
2019). LDH operates as a proton donor, with His (193) serving as the
proton donor, Arg (99) as the coenzyme, Asn(138) as the hydrogen
bond donor, and Arg (106), Arg (169), and Thr (248) as substrate
binding residues (Holmes and Goldberg, 2009).

LDH consists of two subunits: LDH-heart (H) and LDH-muscle
(M), encoded by the genes LDHA and LDHB, respectively
(Al-Jassabi, 2002). The H subunit is predominant in the brain
and heart, whereas the M subunit is found in skeletal muscle
tissues (Woodford et al., 2019). Two popular isoforms of LDH

exist, resulting in five isotype enzymes: LDH1 (H4), LDH2 (H3M1),
LDH3 (H2M2), LDH4 (H1M3), and LDH5 (M4) (Al-Jassabi, 2002).
LDHA, also known as LDH5, is highly expressed in skeletal muscle
and catalyzes pyruvate and NADH to lactate and NAD+, with this
reaction being crucial for aerobic glycolysis metabolism in skeletal
muscle (Kane, 2014). Conversely, LDHB, also known as LDH1, is
abundant in the heart and brain, where it converts lactate and NAD
+ to pyruvate and NADH (Read et al., 2001a; Doherty and
Cleveland, 2013). LDH2, LDH3, and LDH4 are found in lung
tissue, bone marrow, and the pancreas (Aliberti et al., 1997; Ben
et al., 2007). Each isotype enzyme exhibits intermediate activity
levels from LDHA to LDHB, depending on tissue metabolic needs
(Johari et al., 2018) (Figure 1).

LDH activity is associated with various diseases, including
cancer, cardiovascular diseases, and neurodegenerative disorders
(Dhanasekaran and Ren, 2005; Roychoudhury et al., 2021).
Dysregulated LDH activity contributes significantly to cancer
development, promoting the Warburg effect (Chen et al., 2007),
which involves increased glucose uptake and lactate production,
even in the presence of oxygen, to meet the energy demands of
rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai
et al., 2016b). LDHA overexpression favors pyruvate to lactate
conversion, leading to tumor microenvironment acidification and
aiding cancer progression and metastasis (Vander Heiden et al.,
2009). Abnormal LDH activity is also observed in other diseases. For
example, increased LDH activity has been reported in cardiovascular
diseases, such as myocardial infarction and heart failure, reflecting
cardiac tissue damage and necrosis (Ndrepepa, 2021).
Neurodegenerative diseases, including Alzheimer’s disease and
Parkinson’s disease, are associated with elevated LDH activity,
potentially reflecting neuronal damage and inflammation (Fahrig
et al., 2005; Di Domenico et al., 2017).

Given the critical role of LDH in disease development, targeting
the enzyme has become an essential strategy for drug discovery.

FIGURE 1
LDH composition and function. LDH is a tetrameric enzyme with
five isotypes. Each isotype consists of two subunit types: H (heart) and
M (muscle). LDH1 and LDH5, represented by LDHB and LDHA, play
roles in converting lactate to pyruvate and pyruvate to lactate,
respectively.
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Numerous natural compounds, including polyphenols, alkaloids,
and terpenoids, have shown promising results as potential LDH
inhibitors for disease treatment.

3 LDH inhibitors: types, mechanisms,
and therapeutic applications

3.1 Categorization of LDH inhibitors

We now explore LDH inhibitors in more depth, classifying them
based on their chemical structures and modes of action into two
categories: small-molecule inhibitors and RNA-based inhibitors.

3.1.1 Small-molecule inhibitors
Small-molecule inhibitors, compounds with low molecular weight,

are often effective LDH inhibitors that can penetrate cell membranes
and bind to the active site of the enzyme, hindering its function (Vander
Heiden et al., 2010; Granchi et al., 2013). These inhibitors can be further
categorized based on their chemical composition, with main
subcategories including quinoline-based inhibitors with quinoline
rings, benzoxazole-based inhibitors with benzoxazole rings, and
benzimidazole-based inhibitors with benzimidazole rings (Holmes
et al., 2006; Madapa et al., 2008; Kanwal et al., 2018). Studies have
shown that these inhibitors effectively reduce LDH activity in cancerous
cells and possess anti-cancer properties both in vitro and in vivo
(Granchi and Minutolo, 2012; Piekuś-Słomka et al., 2019; Zhou
et al., 2020). Some specific LDHA inhibitors, such as FX-11 (a
benzoxazole-based inhibitor) and Compound 3a (a quinoline-based
inhibitor), have shown selective inhibition of cancer cell growth.
Another effective class of inhibitors is the benzimidazole
anthelmintics (Miao et al., 2013; Rani and Kumar, 2016; Son et al.,
2020). Depending on their chemical structure, small-molecule
inhibitors may selectively target LDHA or LDHB isoforms (Fiume
et al., 2014) (Figure 2).

3.1.2 RNA-based inhibitors
A novel group of LDH inhibitors is RNA-based, with these

inhibitors specifically hindering the expression of LDH-related
enzymes (Liu et al., 2021). RNA-based inhibitors are categorized
into two types based on their underlying mechanisms: RNA
interference (RNAi) and antisense oligonucleotides (ASOs)
(Post et al., 2019; Maruyama and Yokota, 2020).

RNAi occurs naturally, where small interfering RNAs (siRNAs)
degrade mRNA, leading to gene silencing (McManus and Sharp,
2002). By pairing with complementary mRNA sequences, double-
stranded RNA molecules trigger the RNA-induced silencing
complex, breaking down the mRNA (Sontheimer, 2005). RNAi-
based LDH inhibitors target mRNA sequences responsible for
encoding LDH, resulting in its downregulation and decreased
LDH activity (Yang and Zhang, 2012).

ASOs inhibit protein translation by binding to complementary
mRNA sequences. ASOs are short single-stranded RNA molecules
with effective inhibition capabilities (Ding and Lawrence, 2001).
LDH-specific ASOs can be designed to target mRNA sequences
encoding the LDH enzyme, leading to decreased expression and
inhibition of its activity (Manjunath et al., 2022). RNA-based
inhibitors offer advantages over small-molecule inhibitors (Blom
et al., 2022). For instance, they can be designed for highly selective
LDH inhibition by targeting specific mRNA sequences (Manjunath
et al., 2022). Furthermore, RNA-based inhibitors can exhibit longer
action time for inhibition and can be administered using viral
vectors and lipid nanoparticles (Mogler and Kamrud, 2015; Bajan
and Hutvagner, 2020; Aldosari et al., 2021).

3.2 Mechanisms of action

Various natural compounds can inhibit LDH activity through
different mechanisms. The most common approach involves direct
binding to the enzyme’s active site, leading to the inhibition of

FIGURE 2
Schematic representation of small-molecule inhibitors. Inhibitors are categorized as quinolines, benzoxazoles, and benzimidazoles. They bind to
the LDH active site and effectively inhibit cancer growth.
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pyruvate conversion to lactate (Conners et al., 2005). Polyphenols,
such as quercetin and epigallocatechin gallate (EGCG), can bind to
the active site of LDH, reducing its activity levels (Gradišar et al.,
2007). Additionally, some natural compounds modulate other
components involved with LDH, including lactate transporters or
mitochondrial enzymes. For instance, rosmarinic acid affects the
lactate transporters of cancer cells (Marin-Hernandez et al., 2009;
Cerella et al., 2013; Ma et al., 2018).

Another mechanism underlying inhibition of LDH by natural
compounds is the regulation of LDH gene expression. Various
compounds, such as curcumin, resveratrol, and quercetin, can
inhibit LDH expression by reducing LDH gene transcription or
promoting LDH protein degradation (Yang et al., 2018; Reyes-Farias
and Carrasco-Pozo, 2019; Soni et al., 2020). In contrast to small-
molecule inhibitors, RNA-based inhibitors target LDH expression
by interfering with its mRNA. As discussed earlier, RNAi and ASOs
are commonly used for inhibiting LDH expression, which is
achieved at the mRNA level (Wood et al., 2019; Bockstahler
et al., 2022).

3.2.1 Inhibition of LDH enzyme activity
As low-molecular-weight substances, small-molecule inhibitors,

often referred to as drug-like molecules, can easily penetrate cells
and interact with their target enzymes (Makley and Gestwicki,
2013). These inhibitors effectively block the enzyme’s catalytic
activity by competing with the substrate for binding to the active
site (Copeland et al., 2007). Based on their mode of action, small-
molecule inhibitors can be further categorized as reversible or
irreversible inhibitors (Roskoski Jr, 2016). Reversible inhibitors
bind to the enzyme’s active site noncovalently and can be
displaced by excess substrate, whereas irreversible inhibitors bind
to the enzyme covalently, leading to permanent inactivation (Purich,
2010) Examples of small-molecule LDH inhibitors include FX11,
which selectively inhibits LDHA, and gossypol, which inhibits both
LDHA and LDHB (Conners et al., 2005; Granchi et al., 2011).

3.2.2 Inhibition of LDH enzyme expression
RNA-based inhibitors are employed to inhibit LDH enzyme

expression, through RNAi and ASOs (Liu et al., 2021). These
inhibitors induce mRNA degradation through siRNAs and
inhibit mRNA translation via complementary sequences with
ASOs (Ding and Lawrence, 2001; Sontheimer, 2005). RNA-based
inhibitors exhibit high specificity, selectively targeting enzymes and
effectively inhibiting LDH. Moreover, they can be efficiently
delivered to the target using lipid nanoparticles or viral vectors
(Mogler and Kamrud, 2015; Younis et al., 2021). However, some
limitations, such as off-target effects and limited delivery to specific
tissues or cell types, exist (Sibley et al., 2010; Lu and Thum, 2019).

3.3 Therapeutic applications

Several studies have demonstrated the potential therapeutic
effects of LDH inhibitors in diseases associated with abnormal
LDH activity (Granchi et al., 2010; Valvona et al., 2016). For
instance, preclinical studies have shown that LDH inhibitors can
suppress tumor growth both as a monotreatment and in
combination with other cancer therapies, such as chemotherapy

and radiation therapy (Capula et al., 2019; Qiao et al., 2021). LDH
inhibitors have also been investigated as potential therapeutics in
cardiovascular diseases (Ji et al., 2021), as well as for their effects on
Alzheimer’s disease and Parkinson’s disease (Newington et al., 2013;
Acharya et al., 2019).

3.3.1 Cancer
Cancer cells often exhibit high levels of LDH activity, which

supports uncontrolled cell growth andmigration, (Gallo et al., 2015),
especially under hypoxic conditions (Han et al., 2021).
Consequently, LDH inhibition has emerged as a promising
therapeutic approach for cancer therapy (Pi et al., 2022). In
preclinical studies, LDH inhibition has resulted in anti-cancer
effects both under monotreatment and combination therapy with
chemotherapy and radiation therapy (Abdel-Wahab et al., 2019).
For example, the LDH inhibitor FX-11 has been shown to reduce
tumor growth and enhance the efficacy of chemotherapy (Fantin
et al., 2006). As FX-11 inhibits LDH activity, it promotes a shift
toward oxidative phosphorylation and impaired cancer cell growth
and survival (Le et al., 2010). LDHA inhibition by oxamate resulted
in the accumulation of reactive oxygen species (ROS) and depletion
of adenosine triphosphate (ATP), leading to increased sensitivity to
radiotherapy in A549 and H1975 cancer cells (Yang et al., 2021).

Silibinin, a natural compound found in milk thistle, has also
been proven to inhibit LDH and reduce tumor growth in various
cancer cell lines (Milić et al., 2013). In a chemically induced skin
cancer model in mice, silibinin reduced the expression of the tumor
necrosis factor-α endogenous promoter (Zhao et al., 1999). In
hepatocellular carcinoma in rats, it decreased levels of
malondialdehyde (MDA)-DNA (Ramakrishnan et al., 2007).
Silibinin’s potential extends to human ovarian cancer, where it
inhibits tumor growth by downregulating VEGFR receptor 3
(Gallo et al., 2003). In cervical cancer, silibinin induces apoptosis
through MAPK (mitogen activated protein kinase) activation,
characterized by chromatin condensation and nuclear
fragmentation (Huang et al., 2005). Moreover, silibinin’s pre-
treatment reduces the phosphorylation of signal transducer and
activator of transcription 1 (STAT1) and signal transducer and
activator of transcription 3 (STAT3) induced by cytokines
responsible for the proliferation of A549 human lung cancer cells
in vitro. Silibinin also inhibits the AP-1 transcription factor of DNA
and blocks the MAPK cascade (Chittezhath et al., 2008). In prostate
cancer, it downregulates epidermal growth factor receptor (EGFR)
signaling, leading to cell cycle arrest and reduced expression of
tumor growth factor (TGF-α) (Singh and Agarwal, 2004). Silibinin’s
effects extend to oral cancer, where it decreases cell viability by
inhibiting akt phosphorylation, resulting in apoptosis (Su et al.,
2013). Additionally, Silibinin shows potential in treating gastric
cancer by inhibiting the growth of SGC-7901 cells, lowering
p34cdc2 levels, and increasing the expression of p53 and p21
(Zhang et al., 2013b). Lastly, in colon cancer, silibinin induces
dose-dependent cell cycle arrest, affects autocrine TGF-α
secretion, and inhibits EGFR expression (Hogan et al., 2007). It
also inhibited oxidative damage caused by lung and brain sepsis by
balancing the oxidative status and modulating inflammatory
mediators (Toklu et al., 2008). It induces apoptosis, suppresses
angiogenesis, and decreases the expression of hypoxia-inducible
factors (Sameri et al., 2021).
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Similarly, the LDH inhibitor galloflavin is known to enhance
efficacy in radiation therapy in preclinical studies (Kozal et al.,
2021), which it achieves by sensitizing cancer cells to radiation-
induced DNA damage, leading to enhanced cancer cell death (Fiume
et al., 2013). Galloflavin has demonstrated its efficacy in inhibiting
cell growth in endometrial cancer cell lines and primary cultures of
human endometrial cancer. It achieves this by engaging with
multiple signaling pathways that regulate crucial aspects such as
metabolism, cell cycle progression, apoptosis, cellular stress
responses, and metastasis (Han et al., 2015). Moreover, inhibition
of LDH by galloflavin can exert a growth-inhibitory effect in breast
cancer cells. This anti-proliferative effect may result from various
mechanisms, including the downregulation of survival signaling
pathways and the induction of oxidative stress states (Farabegoli
et al., 2012). In Burkitt lymphoma cells, the LDH inhibitor
galloflavin reduces cellular NAD levels and leads to the inhibition
of sirtuin-1. As confirmed in previous studies, sirtuin-1 inhibition
leads to a reduction in MYC protein levels, depriving Burkitt
lymphoma cells of a crucial survival signal (Vettraino et al.,
2013). Furthermore, in pancreatic cancer cells, a combination of
galloflavin and metformin has been found to enhance their
effectiveness in inhibiting the proliferation of cancer cells (Wendt
et al., 2020).

3.3.2 Cardiovascular diseases
LDH has been implicated in the pathogenesis of various

cardiovascular diseases, including cardiac failure and ischemia-
reperfusion injury (Kotlyar et al., 2010). Elevated LDH levels under
these conditions indicate cellular damage and impaired
metabolism (Ait-Aissa et al., 2019). LDH inhibitors have
exhibited protective effects against ischemia-reperfusion injury
and heart failure in preclinical studies (Zhou et al., 2015). For
example, in a rat model simulating myocardial ischemia-
reperfusion injury, the LDH inhibitor galloflavin showed the
potential to decrease infarct size and improve cardiac function
(Gandhi et al., 2022). EGCG has also been shown to inhibit LDH
activity, leading to reduced lactate production and
cardioprotective effects (Eng et al., 2018). Additionally,
S-allylcysteine treatment was shown to improve cardiac
function in rats while decreasing oxidative stress and
mitochondrial permeability (Aziz et al., 2021). Allicin, found in
garlic, demonstrated a significant vasodilating effect on coronary
arteries, leading to increased coronary blood flow in the
experimental group both before ischemia and during
reperfusion. This effect is attributed to a reduced concentration
of LDH release (Adegbola et al., 2017). Similarly, curcumin also
exhibits cardioprotective effects, as demonstrated in a rat model of
acute myocardial infarction by a reduction in serum LDH levels by
curcumin intake (Rahnavard et al., 2019).

3.3.3 Neurodegenerative diseases
Increased LDH activity has been detected in the brains of

patients with Alzheimer’s (Bigl et al., 1999). The effects of Lycium
barbarum extract on cell models of Alzheimer’s disease have
been investigated, with a significant reduction in the release of
LDH and a dose-dependent neuroprotective effect observed (Yu
et al., 2005). This extract has also demonstrated effectiveness in
treating Alzheimer’s disease by protecting against neurotoxicity

caused by beta-amyloid peptides (Ho et al., 2007). EGCG has
demonstrated enhanced effectiveness in neuroprotection by
significantly reducing lactate dehydrogenase release in a cell
model of Parkinson’s disease. Furthermore, Western blot
analysis indicated that Akt might be one of the specific
signaling pathways stimulated by EGCG in the context of
neuroprotection (Chao et al., 2010). Overexpression and
abnormal accumulation of a-synuclein are associated with
Parkinson’s disease and result in increased intracellular ROS,
causing mitochondrial dysfunction and oxidative damage in a
Parkinson’s disease model. The use of curcumin demonstrated a
reduction in LDH release, alleviating αS-induced toxicity,
lowering ROS levels, and providing protection to cells against
apoptosis (Wang et al., 2010).

4 Natural compounds as LDH
inhibitors: Polyphenols, alkaloids,
terpenoids and sulfur-containing agent

4.1 Polyphenols and cancer

Flavonoids, a group of polyphenols abundant in fruit, vegetables,
and medicinal plants, function as LDH inhibitors (Huang et al.,
2009). Studies have shown that the flavonoids curcumin and
quercetin inhibit LDH activity and reduce lactate synthesis in
cancer cells (Maurya and Vinayak, 2015; Unlu et al., 2016;
Reyes-Farias and Carrasco-Pozo, 2019). Curcumin treatment
reduces LDHA expression in human colorectal cancer cells,
leading to decreased lactate production and cellular proliferation
(Wang et al., 2015b). Quercetin, found in several foods, including
apples and onions (Kopustinskiene et al., 2020), reduces LDHA
activity and triggers apoptosis in cancer cells, effectively inhibiting
cellular glycolysis by reducing LDHA expression, thereby
suppressing lactic acid generation and glucose uptake (Jia et al.,
2018). Kaempferol, found in tea and various fruit, downregulates
LDHA expression in human breast cancer cells through inhibition of
STAT3 activity (Narayan and Kumar, 2014). Galloflavin binds to the
NADH-binding site in LDHA, inhibiting its ability to bind to single-
stranded DNA and suppressing colorectal cancer growth (Fiume
et al., 2013). Moreover, galloflavin has been shown to completely
inhibit both LDHA and LDHB (Manerba et al., 2012). EGCG, the
primary flavanol in green tea, inhibits LDHA and exhibits anti-
cancer activity in pancreatic cancer cells, and it significantly slows
the growth of breast cancer cells, triggering apoptosis through its
action as an LDHA inhibitor (Wang et al., 2015a; Gao and Chen,
2015). Combining catechin, epicatechin, and gallocatechin with
epigallocatechin enhanced the inhibitory effect on LDHA (Cheng
et al., 2020). Apigenin reduces LDHA mRNA expression in
HepG2 cells, a human hepatocellular carcinoma cell line (Korga
et al., 2019). Although the precise mechanism underlying inhibition
of LDH by flavonoids is not fully understood, it may involve direct
enzyme binding, gene expression modulation, or protein stability
regulation (Bader et al., 2015; Yao et al., 2022). Luteolin acts as an
LDH inhibitor and has been found to bind effectively to the active
pocket residues of LDH (Li et al., 2021b). Additionally, luteolin 7-O-
β-d-glucoside, found in Phlomis kurdica, non-specifically inhibits
both LDH-1 and LDH-5 (Bader et al., 2015).
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4.2 Polyphenols and cardiovascular diseases

Flavonoids have been shown to exert beneficial effects on
cardiovascular health, preventing atherosclerosis, hypertension,
and myocardial infarction (Stangl et al., 2006). Quercetin
treatment was found to significantly decrease infarct size and
improve cardiac function in rats with myocardial infarction
(Zaafan et al., 2013), with quercetin’s capacity to lower oxidative
stress, inflammation, and apoptosis in the heart considered possible
causes of its cardioprotective effects.

Hesperidin, found in citrus fruits, exhibits anti-hypertensive and
anti-atherosclerotic properties (Mahmoud et al., 2019). It has been
shown to lower blood pressure and enhance endothelial function in
hypertensive rats (Morand et al., 2011), and it prevents
atherosclerotic plaque formation in apolipoprotein E–knockout
mice (Sugasawa et al., 2019). Catechin in tea and resveratrol in
red wine also improve cardiovascular health (Gross, 2004), with the
former regulating lipid metabolism and the latter reducing
inflammation, oxidative stress, and platelet aggregation (Chen
et al., 2016). These mechanisms contribute to improved
cardiovascular disease outcomes (Gresele et al., 2011).

4.3 Polyphenols and neurodegenerative
diseases

Flavonoids have been extensively studied for their potential in
treating neurodegenerative diseases owing to their anti-
inflammatory, anti-oxidant, and neuroprotective properties
(Spagnuolo et al., 2018). In animal models of neurodegenerative
diseases, including Alzheimer’s disease, Parkinson’s disease, and
Huntington’s disease, flavonoids prevent neurodegeneration and
cognitive decline (Solanki et al., 2015) by inhibiting oxidative stress,
inflammation, and protein misfolding, and modulating the signaling
pathways involved in cell survival, synaptic plasticity, and
neurogenesis (Khan et al., 2020; Numakawa and Odaka, 2021).
Some flavonoids may also protect against metabolic dysregulation in
neurodegenerative processes by inhibiting LDHA activity in the
brain (Zhang et al., 2015a). Additionally, flavonoids have been
reported to alleviate brain damage caused by ischemia and

reperfusion through LDH inhibition and anti-oxidant effects
(Dong et al., 2013). The flavonoid oroxylin A reduces LDH
expression (Sajeev et al., 2022) and shows potential for
preventing and treating neurological diseases (Lu et al., 2016).

4.4 Alkaloids and cancer

Alkaloids, nitrogen-containing compounds widely distributed in
the plant kingdom (Roy, 2017), have been recognized for their
potential in LDH inhibition and drug discovery (Khazir et al., 2013).
Berberine, an isoquinoline alkaloid found in plants, including
goldenseal and barberry, possesses anti-bacterial and anti-
inflammatory properties, making it a valuable component in
Chinese medicine (Imanshahidi and Hosseinzadeh, 2008).
Berberine is known to exhibit anti-cancer activity through
inhibition of LDHA activity and reduction of lactate production
in cancer cells (Tan et al., 2015). In mouse models of breast, colon,
and lung cancer, berberine has demonstrated significant anti-cancer
effects, inhibiting tumor growth and reducing lactate production
(Sun et al., 2009; Mao et al., 2018). Moreover, berberine has shown
the ability to suppress LDHA activity, inhibiting pancreatic cancer
cell proliferation (Cheng et al., 2021). Papaverine, an isoquinoline-
type alkaloid reported to inhibit LDHA, is currently undergoing
clinical trials as a radiosensitizer aimed at reducing tumor hypoxia
and enhancing the radiotherapy response in A549 non-small cell
lung cancer cell (NSCLC) and EO771 breast cancer xenografts
(Kapp and Whiteley, 1991; Benej et al., 2018).

4.5 Alkaloids and cardiovascular diseases

Alkaloids, such as berberine, vincamine, rutaecarpine,
chelerythrine, and matrine, have been investigated for their
therapeutic potential in various cardiovascular diseases
(Yamamoto et al., 2001; Jia and Hu, 2010; Zhang and Yan, 2020;
Zhang et al., 2021b; Cai et al., 2021). Berberine has been found to
inhibit LDH activity in H9c2 cardiomyocytes, providing protection
against ischemia/reperfusion injury (Zhu et al., 2020). Berberine
treatment has also been shown to decrease lactate production and

FIGURE 3
Schematic representation of natural compound LDH inhibitors. Among polyphenols, alkaloids, and terpenoids extracted from plants, certain
compounds have therapeutic effects against cancer, cardiovascular diseases, and neurodegenerative diseases through inhibition of LDH.
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increase ATP production in cardiomyocytes, improving cellular
energy metabolism through LDH activity inhibition (Lv et al., 2012).

Leonurine, derived from the Lamiaceae family, exhibits
cardioprotective effects by decreasing LDH activity and exerting
anti-oxidative activity (Liu et al., 2010). Additionally, rutaecarpine,
chelerythrine, and matrine have been shown to inhibit LDH levels
(Bao et al., 2011; Chen and Huang, 2012; Wu et al., 2022). Of these,
rutaecarpine confers protection against myocardial cell injury by
inhibiting the NADPH oxidase–ROS pathway (Tian et al., 2019).

4.6 Alkaloids and neurodegenerative
diseases

In neurological diseases, LDH can serve as a marker for cell
damage or death (Adan et al., 2016). Conditions such as stroke,
traumatic brain injury, or neurodegenerative disorders can lead to
cellular injury or necrosis (Mehta et al., 2013), causing LDH release
into the extracellular space (Al Shammari et al., 2015). Elevated LDH
levels in the cerebrospinal fluid or blood indicate cellular damage or
loss (Fang et al., 2022). Alkaloids derived from Amaryllidaceae
species have shown acetylcholinesterase (AChE) inhibitory
activity, making them potential candidates for Alzheimer’s
disease treatment (Marucci et al., 2021). These alkaloids protect
neurons against glutamate-induced damage, reducing apoptotic
nuclei and LDH release, indicating reduced cell death and
damage (Cortes et al., 2015). These alkaloids may indirectly affect
LDH activity through the regulation of acetylcholine levels, which
impact cellular metabolism (Kim et al., 2017).

4.7 Terpenoids and cancer

Terpenoids, also known as isoprenoids, are a diverse class of
chemical compounds found in a wide range of fruits, vegetables, and
herbs (Thoppil and Bishayee, 2011). They exhibit numerous
biological activities, including anti-cancer properties, (Yang et al.,
2020), making them effective against various cancers, such as skin,
breast, colon, pancreatic, and prostate cancers. Terpenoids also
possess immune-modulating, anti-viral, anti-allergic, and anti-
bacterial properties (Thoppil and Bishayee, 2011). Some
terpenoids have shown potential for developing anti-cancer drugs
as they inhibit LDH activity and reduce lactate production in cancer
cells (Kooshki et al., 2022). In patients with idiopathic pulmonary
fibrosis, increased levels of LDHA protein and lactate have been
associated with reduced lung function (Judge et al., 2018), and
gossypol, a terpenoid, has been studied for its potential to
decrease the expression of hypoxia-inducible factor 1 alpha (HIF-
1α) in lung fibroblast cells (Judge et al., 2017).

Artemisinins, derived from sweet wormwood (Artemisia
annua), are well-known for their anti-malarial properties and are
widely used for malaria treatment (Das, 2012). Dihydroartemisinin,
an artemisinin derivative, exerts inhibitory effects on glycolytic
metabolism in NSCLC cell lines by suppressing the glucose
transporter glucose transporter 1 and impeding glucose
absorption (Mi et al., 2015). This compound can also induce
perturbations in lactate generation and a concomitant reduction
in ATP synthesis (Guerra et al., 2018). Additional experiments have

shown that dihydroartemisinin effectively reduces the expression of
pyruvate kinase M2 (PKM2) in K562, HepG2, and ESCC cells (Li
et al., 2019a).

Limonin, a limonoid present in tangerines, grapefruit, and
oranges, exhibits diverse biological functions, including anti-
inflammatory and anti-viral properties (Balestrieri et al., 2011;
Yang et al., 2014; Gualdani et al., 2016). It has been reported to
have anti-tumor activity against breast, liver, colon, and pancreatic
cancers (Rahman et al., 2015; Murthy et al., 2021a). Limonin’s
inhibitory effect on hexokinase-2 (HK-2) activity was investigated
in hepatocellular carcinoma cells, where it effectively suppressed
HK-2 activity, leading to decreased cell proliferation and colony
formation through reduced glucose consumption and lactate
production (Yao et al., 2018). Nimbolide, a limonoid derived
from the neem tree (Azadirachta indica A. Juss), has
demonstrated cytotoxic effects by regulating proliferation,
apoptosis, migration, and invasion in various cancer cell lines
(Jaiswara and Kumar, 2022).

Oleanolic acid, a natural triterpenoid, is known for its beneficial
properties, including anti-inflammatory, anti-oxidant, anti-
microbial, hepatoprotective, and anti-cancer activities (Liu, 1995).
In endometriosis research, it inhibits LDHA activity in cell lines and
induces apoptotic signaling pathways (Cho et al., 2022). Moreover, it
suppresses the mTOR signaling pathway and PKM2 production in
other breast and prostate cancer cell lines (Liu et al., 2014).

Ursolic acid, another triterpenoid found in various plants,
including apple, basil, rosemary, and lavender (Zerin et al., 2016),
exhibits various physiological functions, including antibacterial,
anti-cancer, anti-diabetic, anti-inflammatory, and anti-oxidant
effects (Mlala et al., 2019). For example, it has been shown to
reduce LDHA expression in a breast cancer cell line (Wang et al.,
2021a). Additionally, betulinic acid, astragalus saponin, and crocetin
have been found to suppress LDHA activity and expression, leading
to reduced glucose uptake and downregulation of the glycolysis
pathway (Kim et al., 2014; Granchi et al., 2017; Guo et al., 2019; Jiao
et al., 2019).

4.8 Terpenoids and cardiovascular diseases

In one study, the terpenoid ferruginol was found to reduce LDH
and creatine kinase MB levels, indicators of doxorubicin-induced
tissue damage (Li et al., 2021a). The study revealed that ferruginol
mitigated apoptosis progression, as shown in a TUNEL assay in
response to doxorubicin. Ferruginol’s cardioprotective action was
demonstrated through the preservation of mitochondrial integrity,
limitation of ROS-induced heart damage, and attenuation of
apoptosis. These effects are likely mediated through the
SIRT1 pathway, which regulates mitochondrial biogenesis and
fatty acid oxidation.

Thymoquinone, known for its anti-inflammatory, anti-tumor,
and analgesic properties (De Sousa, 2011; Sá et al., 2014; Sobral et al.,
2014), exhibits anti-oxidant and vascular relaxant effects in
experimental models of cardiovascular disease. Thymoquinone
administration in mice improved superoxide dismutase activity,
reduced interleukin-6 levels, and prevented cardiovascular side
effects (Nemmar et al., 2011). In rats with isoproterenol-induced
myocardial infarction treated with thymoquinone, dose-related
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decreases in plasmatic LDH, thiobarbituric acid reactive substances,
and glutathione reductase were observed (Randhawa et al., 2013).

Regarding ursolic acid, prominent expression of LDH among
serum marker enzymes was observed in myocardial
ischemia–induced mice. Following ursolic acid treatment,
significant protection against cardiac injury was evident, with a
marked reduction in LDH activity (Radhiga et al., 2012).

4.9 Terpenoids and neurodegenerative
diseases

Derived from Ginkgo biloba leaves, Ginkgolide B is a terpenoid
diterpene lactone (Iwamoto et al., 2019) known for its anti-
inflammatory and neuroprotective properties (Zhang et al., 2011).
Ginkgolide B activates the Trk/Ras/MAPK signaling pathway,
promoting neurite growth and secretion of brain-derived
neurotrophic factors while reducing levels of ROS, LDH, caspase-
3, and other proapoptotic factors.

Limonoids have been shown to enhance neuronal differentiation
and neurite outgrowth in rat macrophages by activating the PKA/
ERK1/2 signaling pathway (Roy and Saraf, 2006), stimulating the
secretion of nerve growth factor, and attenuating LDH activity
(Zhang et al., 2013a). Through activation of this pathway, limonoids
promote neurite outgrowth in rat macrophages, enhancing neuronal
differentiation (Gotoh et al., 1990; Yu et al., 2004).

The vibrant orange hue of carrots and sweet potatoes is due to the
presence of ß-carotene (Zeb and Mehmood, 2004), a compound that
serves as a precursor to vitamin A and is known for its anti-oxidant
properties and potential health benefits (Thomas and Oyediran, 2008).
ß-carotene plays a protective role in the brain, guarding against the
harmful effects of cadmium-induced oxidative stress (Gonzalez-Burgos
and Gómez-Serranillos, 2012). It enhances ATPase activity, reduces
LDH activity and lipid peroxidation, and contributes to the surge of
both enzymatic anti-oxidants, such as glutathione S-transferase and
superoxide dismutase, and nonenzymatic anti-oxidants, including
glutathione (Park et al., 2011).

Eucommia ulmoides Oliv. Bark contains geniposidic acid, one of
its active ingredients (Xie et al., 2015). Geniposidic acid not only
inhibits LDH but also PARP, cleaved caspase 3, MMPs, and
cytochrome C, while increasing the levels of Bcl-2, Bcl-xL, and
BDNF (Kwon et al., 2012). These combined effects result in an anti-
apoptotic effect and suggest potential applications in the prevention
or treatment of neurodegenerative diseases, such as Alzheimer’s
disease (Venkatesan et al., 2015).

4.10 Sulfur-containing agents and cancer,
cardiovascular disease, neurodegenerative
disease

Allicin is a bioactive sulfur compound mainly stored in a precursor
form in various plant parts. It is known to possess cardioprotective, anti-
microbial, cholesterol-lowering, anti-inflammatory, and anti-tumor
properties (Catanzaro et al., 2022). In experiments involving the
combination treatment of tamoxifen and allicin on Ehrlich ascites
carcinoma, both in vitro and in vivo, LDH levels were reduced, and
there was a significant decrease in tumor growth (Suddek, 2014).

Furthermore, in an experiment conducted on male Swiss albino
mice, it was confirmed that cardiac oxidative damage was reduced
when allicin and doxorubicin were administered together. This
reduction in oxidative damage was attributed to a decrease in
myocardial expression of activated caspase-3 and cyclooxygenase-2
(Abdel-Daim et al., 2017). In Parkinson’s disease, allicin is also
known to have a protective effect against nerve damage related to
Parkinson’s disease through its inherent antioxidant function and its
ability to reduce LDH release (Liu et al., 2015).

Taurine, an organic compound containing sulfur in its chemical
structure, possesses anti-inflammatory, anti-oxidant, and various
physiological functions within the cardiovascular, kidney, endocrine,
and immune systems (Kim and Cha, 2014). Treatment of the
HepG2 cell line, a hepatocellular carcinoma cell line, with taurine
resulted in a significant increase in apoptosis-related factors at both
the gene and protein levels. Additionally, LDH activity was markedly
reduced, indicating the inhibition of glycolysis and cell proliferation
(Nabi et al., 2021). Furthermore, taurine has been found to prevent
cardiac injury by reducing LDH activity, which is increased by cisplatin
(Chowdhury et al., 2016). In neurons, taurine reduced nickel-induced
LDH release andmitigated the decrease in ROS production, superoxide
dismutase activity, and glutathione concentration, demonstrating its
neuroprotective effect through the reduction of oxidative stress (Xu
et al., 2015) (Figures 3, 4 and Table 1).

5 Challenges associated with using
natural compounds as LDH inhibitors

Owing to their accessibility, diversity, and low toxicity, natural
compounds have gained attention as potential disease treatments
(David et al., 2015; Rochlani et al., 2017; Mohd Sairazi and
Sirajudeen, 2020), with compounds capable of inhibiting LDH
activity being of particular interest in disease therapy given its
role in energy metabolism (Gallo et al., 2015; Lum et al., 2021;
Zhao et al., 2021). However, using natural compounds as LDH
inhibitors comes with several challenges that must be addressed
before the compounds can become effective treatment options.
Some of these challenges are discussed below.

5.1 Limited bioavailability

Natural compounds can be rapidly metabolized or excreted
from the body, limiting their effectiveness as therapeutics
(Fernandes et al., 2014). To address this issue, researchers are
exploring various strategies, such as drug delivery systems,
chemical modifications, and formulation approaches, to improve
the bioavailability of these compounds (Prajapati et al., 2013).

5.2 Lack of specificity

Natural compounds often interact withmultiple targets in the body,
leading to unexpected side effects (David et al., 2015). Some natural
compounds may have off-target effects, resulting in side effects, while
others may lack specificity toward cancer cells, causing toxicity to
normal cells (Mehta et al., 2010). Researchers are developing
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combination therapies to enhance the specificity of some compounds
for cancer cells and minimize side effects (Koehn and Carter, 2005).

5.3 Limited understanding of themechanism
of action

The exact mechanism of action for natural compounds as LDH
inhibitors remains unclear, hindering their development as
therapeutic agents (Augoff et al., 2015). This lack of
understanding makes it challenging to enhance their efficacy and
minimize potential side effects. Researchers are employing various
methods, including computational modeling, biochemical analysis,
and proteomics, to elucidate the mechanisms (Lahlou, 2013).

5.4 Lack of standardized protocols

The absence of standardized protocols for screening and testing
natural compounds as LDH inhibitors leads to inconsistent results.
Variations in cell lines and assay conditions can contribute to
discrepancies in study outcomes. To address this, many
researchers are striving to establish a standardized protocol for
screening and evaluating natural compounds (Cos et al., 2006).

5.5 Limited commercial interest

The nonpatentable nature of natural compounds has reduced
commercial interest in their development as therapeutic agents (Li
and Vederas, 2009). Additionally, the high costs associated with
clinical trials and regulatory approval pose challenges for investing
in natural compound–based drugs (Thomford et al., 2018). To

overcome these obstacles, researchers are exploring various
business models, such as open-source drug discovery, to
incentivize the development of natural compounds as therapeutic
agents (Sugumaran, 2012).

6 Strategies used to overcome
challenges in natural compound
development

Several strategies can be employed to address the challenges in
developing natural compounds into viable drugs. Some of these
strategies are discussed below.

6.1 Identification of bioactive compounds

To develop safe and effective drugs, it is essential to identify the
major functional compounds in complex natural compounds.
Techniques such as high-performance liquid chromatography,
gas chromatography–mass spectrometry, and nuclear magnetic
resonance, can be used for this purpose (Tsao et al., 2003; Garcia
and Barbas, 2011; Wang et al., 2021b). The complexity of some
natural compounds makes it challenging to pinpoint the desired
therapeutic effect. Utilizing various methods can help identify the
principal operational constituent within the complex blend,
facilitating the formulation of effective and secure pharmaceuticals.

6.2 Optimization of bioactivity

Natural compounds often have low potency and selectivity
against the target enzyme due to their low concentrations in their

FIGURE 4
Schematic diagram illustrating the effects of natural compounds on anti-oxidative stress, anti-inflammatory, and anti-apoptosis signals resulting
from the inhibition of LDH.
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TABLE 1 Natural compounds as LDH inhibitors.

Target Compound Types of study Mechanism of action Ref

LDHA Curcumin In vitro (HCT116, HT29) Inhibit LDHA expression Mittal et al. (2020), Fu et al. (2021)

LDHA Quercetin In vitro (MCF-7, MDA-
MB-231)

Inhibit LDHA activity and
mRNA expression

Maurya and Vinayak (2015), Jia et al.
(2018), Reyes-Farias and Carrasco-Pozo
(2019)

In vivo (DL mice, BALB/c nude
mice)

Induce apoptosis

LDHA Kaempferol (Polyphenolic components of
Achyranthes aspera)

In vivo (BALB/c mice) Inhibit LDHA mRNA
expression

Narayan and Kumar (2014)

LDHA
LDHB

Galloflavin In vitro (PLC/PRF/5, SW620) Inhibit LDHA, LDHB activity Manerba et al. (2012), Fiume et al. (2013)

LDHA Epigallocatechin (Spatholobus suberectus
aqueous extract)

In vitro (MCF-7, MDA-
MB-231)

Inhibit LDHA activity and
expression

Wang et al. (2013)

In vivo (Nude mice) Accelerated HIF-1α
proteasome degradation

LDHA Epigallocatechin gallate In vitro (MIA PaCa-2) Inhibit LDHA activity and
expression

Lu et al. (2015)

LDHA Apigenin In vitro (HepG2) Inhibit LDHA expression Korga et al. (2019)

LDHA Catechin In vitro (SNU620,
SNU620/5FU)

Inhibit LDHA activity and
expression

Han et al. (2021)

LDHA Oroxylin A In vitro (HepG2) Inhibit LDHA mRNA
expression

Dai et al. (2016a)

LDHA Berberine In vitro (MCF-7, Hct116,
KM12C, pancreatic cancer cell
lines)

Inhibit LDHA protein, mRNA
expression and activity

Tan et al. (2015), Mao et al. (2018), Cheng
et al. (2021)

LDHA Gossypol In vitro (Mv1Lu) Inhibit LDHA mRNA
expression and activity

Judge et al. (2015), Judge et al. (2017),
Judge et al. (2018)

In vivo (C57BL/6 J)

LDHA Oleanolic acid In vitro (T-HESCs, 12Z) Inhibit LDHA activity Cho et al. (2022)

In vivo (C57BL/6 J) Induce apoptosis

(Continued on following page)
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natural sources (Ochoa-Villarreal et al., 2016; Cazzaniga et al., 2021).
Optimization of bioactivity can be achieved through structural
modification, semi-synthesis, or total synthesis of natural compounds
(Prachayasittikul et al., 2015). Structural modification can be applied to
enhance the pharmacological properties of natural compounds (Guo,
2017). This process entails altering the compound’s stereochemistry or
adding and removing functional groups. For instance, taxol, a natural
compoundwith limited therapeutic potential owing to its low solubility in
water (Dordunoo and Burt, 1996), underwent chemical modification to
create a more soluble variant known as docetaxel, which has become a
popular cancer medication (Hanauske et al., 1992; Fitzpatrick and
Wheeler, 2003). Semi-synthesis, which involves analog production
through chemical reactions, is another approach for enhancing the
pharmacological properties of natural compounds (Lourenco et al.,
2012). Although it is not as demanding as total synthesis, semi-
synthesis remains effective in improving the compound’s bioactivity.
An excellent example of semi-synthesis is the transformation of
artemisinin into artesunate, resulting in a more potent variant now
used in malaria treatment (White and Olliaro, 1998). Total synthesis
the complete chemical synthesis of the natural compound from simple
starting materials (Atanasov et al., 2021), represents the most challenging
method of bioactivity optimization, but it can also be the most effective.
For example, the natural compound shikonin has been completely
synthesized, leading to the development of new drugs for the
treatment of cancer and other diseases (Andujar et al., 2012; Wang
et al., 2012).

6.3 Pharmacokinetic optimization

Pharmacokinetic properties, including solubility, stability,
bioavailability, and metabolic stability, are crucial considerations
in drug development (Sang et al., 2019). Some natural compounds

exhibit poor pharmacokinetic properties, which can impede their
development as therapeutic agents (Ma et al., 2022). To address this,
prodrugs can be used, which are inert compounds that undergo
metabolic transformation within the body to generate the active
drug (Huttunen et al., 2011). Prodrugs can enhance the stability,
solubility, and bioavailability of natural compounds, making them
more effective in disease treatment. Additionally, formulation
technologies, such as liposomes, nanoparticles, and cyclodextrins,
can improve the solubility, stability, and release control of natural
compounds, making them easier to administer and more effective
(Augustin et al., 2013). Conjugation with suitable carriers, including
polyethylene glycol, albumin, and dendrimers, is another approach
to optimize pharmacokinetic properties, with this strategy aiming to
enhance the overall efficacy of natural compounds as potential
therapeutic agents (Gidwani and Vyas, 2015).

6.4 Nano-formulations and green synthesis

There are various nano-formulation types, including liposomes,
hydrogels, solid lipid nanoparticles, polymeric nanomicelles,
dendrimers, chitosan-based nanoparticles, metal nanoparticles,
and nanocrystals, which are under investigation for their
application with natural compounds (Murthy et al., 2021b).
Nano-formulations can safeguard polyphenols against
degradation, enhance absorption, and reduce toxicity, making
them well-suited for delivering compounds (Khiev et al., 2021).
These delivery systems offer advantages such as improved solubility,
oral absorption, safety, and bioavailability. Researchers are currently
testing the in vitro and in vivo efficacy of polyphenols like curcumin,
quercetin, resveratrol, silybin, luteolin, naringenin, genistein,
gossypol, ellagic acid, and hesperidin for treating various diseases
(Murthy et al., 2021b).

TABLE 1 (Continued) Natural compounds as LDH inhibitors.

Target Compound Types of study Mechanism of action Ref

LDHA Ursolic acid In vitro (MCF-7, MDA-MB-
231, 4T1, HBL-100,
T-HESCs, 12Z)

Inhibit LDHA activity and
expression

Wang et al. (2021a), Cho et al. (2022)

In vivo (zebrafish, Balb/c mice,
C57BL/6 J mice)

Induce apoptosis

LDHA Betulinic acid In vitro (MCF-7, MDA-
MB-231)

Inhibit LDHA expression Jiao et al. (2019)

In vivo (zebrafish, caveolin-1
knock-out mice)

LDHA Astragalus saponin In vitro (HT-29, SW620) Inhibit LDHA activity and
expression

Guo et al. (2019)

In vivo (C57BL/6 J mice)

LDHA Crocetin In vitro (HeLa) Inhibit LDHA activity and
expression

Kim et al. (2014), Granchi et al. (2017)

LDHA Limonoid (Azadirachta indica A. Juss) In vitro (DL) Inhibit LDHA protein, mRNA
expression

Jaiswara and Kumar (2022)

In vivo (Balb/c mice)
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Curcumin, a polyphenol, exhibits variations in its effects
depending on the type and form of nanoparticles and has been
extensively studied in various disease models, including malaria,
cancer, and cerebral ischemia (Maheshwari et al., 2006; Tsai et al.,
2011; Rahimi et al., 2016). The application of these nanoparticle
forms has resulted in various effects, including increased solubility
and circulation time, enhanced anti-tumor effects and
bioavailability, improved anti-oxidative properties, and brain
delivery (Liu and Chang, 2011; Liu et al., 2011; Liu et al., 2013).
Camptothecin, a natural plant alkaloid, has demonstrated potent
anti-tumor activity by targeting intracellular topoisomerase I
(Pommier, 2006). The application of nanoformulation has been
shown to enhance the efficacy of cancer treatment by addressing
limiting factors such as water insolubility (Ghanbari-Movahed et al.,
2021). Terpenoids have also been studied for their potential to
improve the effectiveness of gastric cancer treatment by increasing
anti-cancer and anti-bacterial efficacy through nanoconjugates, and
by addressing shortcomings such as target delivery, stability, and
half-life (Attri et al., 2023).

The green synthesis of silver nanoparticles from extracts of
various plant parts has attracted widespread interest among
researchers due to their unique optical and structural properties
(Habeeb Rahuman et al., 2022). The green synthesis of nanoparticles
is biocompatible and has potential applications in catalysts, anti-
bacterial agents, energy harvesting, cancer/gene therapy, and sensing
(Rana et al., 2020). Biological methods for nanoparticle synthesis are
more economical, easier to implement, have a lower environmental
impact, and require fewer processing steps than chemical and
physical methods (Kumari et al., 2019). Plants contain
polyphenols, flavonoids, alkaloids, and other biomolecules that
work synergistically to inhibit oxidative damage to cellular
components, leading to the reduction of metal ions into
nanoparticles (Mohanpuria et al., 2008; Krishnaraj et al., 2014).
Numerous studies have reported the synthesis of gold nanoparticles
(AuNPs) using extracts from various plant parts. The putative
biomolecules involved in the reduction of gold salts to gold
nanoparticles include flavonoids, gingerol, shogaols, gingerone,
paradol, catechin, proteins, aromatic amines, and aliphatic
amines (Raghunandan et al., 2010; Kumar et al., 2011; Suman
et al., 2014). However, the fundamental molecular mechanisms
involved in nanoparticle formation are not fully understood, and
further studies using natural products are needed.

6.5 Target specificity

Natural compounds often possess broad-spectrum activity
against multiple targets, posing a challenge in developing specific
inhibitors for the target enzyme. Target specificity is crucial in drug
development, as it minimizes the potential for off-target effects and
improves the therapeutic index of the drug (Mizuno et al., 2003).
Several methods can be employed to enhance the specificity of
natural compounds. Structure-based design uses computer
modeling to develop compounds that specifically bind to target
enzymes (Read et al., 2001b), with this approach being especially
effective when the three-dimensional structure of the enzyme is
already known (Schmidt et al., 2014). Molecular docking, employing
computer algorithms, predicts compound binding to the intended

enzyme (Abdolmaleki et al., 2017). To improve specificity, one
strategy involves identifying compounds that favor the target
enzyme while having minimal impact on off-target enzymes (Xu
et al., 2021). High-throughput screening on compound libraries is
another approach (Mayr and Bojanic, 2009), testing a large number
of compounds to identify those that work well with the target
enzyme while suppressing other enzymes (Bachovchin et al., 2009).

6.6 Toxicity

Toxicity concerns are prevalent in drug development, especially
when working with natural compounds, as they have the potential to
harm healthy cells (Ali Abdalla et al., 2022). One approach to reduce
toxicity is through the use of prodrugs and proper carriers. Various
techniques, including conjugation, can decrease toxicity by refining
pharmacokinetic features, enhancing precision in targeting disease
cells, and minimizing risks to healthy cells (Ma et al., 2019).

Combining natural compounds with suitable carriers has led to
successful cancer treatments, such as antibody-drug conjugates,
which function by attaching a toxin to an antibody that
specifically targets cancer cells, delivering the toxin directly to the
intended site (Dosio et al., 2011). This targeted delivery system not
only reduces toxicity in healthy cells but also enhances the cancer
cell specificity of natural compounds (Puthenveetil et al., 2016). An
example of this progressive method involves combining a special
peptide with curcumin, which specifically targets EGFR and has a
more pronounced impact on suppressing breast cancer cells. The
peptide–curcumin conjugate directs its attention toward EGFR-
positive cancer cells, hindering their growth without significantly
affecting healthy cells (Jin et al., 2017).

6.7 Intellectual property

The development of natural compounds as LDH inhibitors faces
a major obstacle in the form of intellectual property challenges.
Given that these compounds are found in nature, they cannot be
patented, preventing companies from obtaining exclusive rights to
their use (Harrison, 2014). To address this issue, one possible
solution is to create modified medications with unique
characteristics (Kirschning et al., 2007). These modified versions
can be patented as fresh innovations, protecting the investment in
drug development while still making the original natural compound
available for other purposes. Additionally, exploring innovative
delivery systems can enhance the potency of natural compounds
and reduce their harmful effects. Overcoming the complexities of
intellectual property allows companies to secure exclusive rights to
the use of delivery technologies, facilitating the development of
effective and commercially viable natural compound–based drugs.

6.8 Clinical trials

Clinical trials play a critical role in evaluating the safety and
efficacy of drug candidates before their approval for human use
(Deore et al., 2019). Extensive preclinical and clinical testing is
essential for natural compounds being developed as LDH inhibitors
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to assess their safety and efficacy in humans. Clinical trials for LDH
inhibitors present unique challenges but are vital for evaluating the
safety and efficacy of these compounds in humans. Developing LDH
inhibitors for cancer treatment requires specific patient populations
and endpoints for clinical trials. Currently, no United States Food
and Drug Administration–approved LDH inhibitors for cancer
treatment exist, and their development necessitates comprehensive
clinical testing to assess efficacy and safety. Some natural
compounds, such as gossypol and galloflavin, have shown potential
as LDH inhibitors in preclinical studies, demonstrating both LDH
activity inhibition and anti-cancer properties (Cui et al., 2017; Rani and
Kumar, 2017). LDHB is associatedwith an aggressive cancer phenotype,
and there are studies aimed at identifying and clinically applying
selective inhibitors for LDHB (McCleland et al., 2012; Shibata et al.,
2021). In a study of clinical samples from colorectal cancer patients, a
significant correlation was observed between MYC expression and the
expression ofmultiplemetabolic genes, accompanied by elevated LDHB
levels, while LDHA levels remained unchanged (Satoh et al., 2017). The
approach of promoting cancer cell necrosis through the inhibition of
lactate transport is presently being employed in initial clinical trials as a
potential cancer treatment strategy, utilizing the selective MCT-1
inhibitor known as AZD3965 (Beloueche-Babari et al., 2020).

No existing LDH inhibitors have yet shown clinically significant
effects, but research is underway to discover new ones using
computer-based structure-based virtual screening methods (Di
Magno et al., 2022). However, the clinical advancement of these
compounds faces challenges, including effectiveness, toxicity,
specificity, and bioavailability. These obstacles underscore the
importance of thorough preclinical and clinical testing in
advancing natural compounds as LDH inhibitors.

7 Combination therapy: Natural
compounds and LDH inhibitors

Natural compounds and LDH inhibitors show promise as
therapeutic agents for various conditions, including cancer,
inflammation, and metabolic disorders (Granchi et al., 2010; Jacobs
et al., 2017). However, using these agents alone may not yield optimal
treatment results in certain scenarios. Employing combination therapy,
which involves multiple drugs with complementary mechanisms of
action, could offer a more effective treatment option (Luo et al., 2017;
Cummings et al., 2019). By combining natural compounds with LDH
inhibitors, treatment efficacy can be enhanced while minimizing the
risk of toxicity (Augoff et al., 2015). Natural compounds and LDH
inhibitors can target different pathways relevant to disease progression,
complementing each other and improving therapeutic outcomes
(Gallagher et al., 2017). Additionally, using natural compounds may
mitigate certain drawbacks of LDH inhibitors, such as potential toxicity
and restricted specificity to targets (Fiume et al., 2014).

Several studies have investigated the combination of existing
therapeutic agents and LDH inhibitors for cancer treatment (Gallo
et al., 2015). For instance, in breast cancer cells, the combination of
the LDH inhibitor gallic acid with the phenolic compound curcumin
induces apoptosis through glutathione reduction, ROS induction,
and mitochondrial dysfunction (Moghtaderi et al., 2018). In
androgen-dependent prostate cancer cells (LAPC-4 and LNCaP),
the combination of quercetin and arctigenin significantly inhibited

the PI3K/Akt pathway, resulting in enhanced anti-proliferative
effects (Wang et al., 2015c).

In glioblastoma treatment, quercetin has shown the ability to
augment the effects of drugs, including temozolomide, a DNA-
methylating agent. When administered together, quercetin and
temozolomide induced apoptosis in T98G cells by promoting
cytochrome c release and reducing mitochondrial membrane
potential (ΔΨm) (Jakubowicz-Gil et al., 2013). Moreover,
quercetin enhances the sensitivity of glioblastoma cells to
temozolomide by inhibiting the expression of heat shock protein
27, a molecular chaperone involved in apoptosis regulation (Sang
et al., 2014). Combining curcumin and quercetin provides potent
protection against myocardial toxicity induced by ischemia-
reperfusion injury in rats (Chakraborty et al., 2018). In glioma
stem-like cells, the combination of EGCG and temozolomide
exerted inhibitory effects on neurosphere formation and cell
migration (Zhang et al., 2015b), affecting migration and adhesion
processes (Pilorget et al., 2003).

In a rat study, the combination of resveratrol and syringic acid
showed synergistic protection against cardiotoxicity by reducing
nuclear factor kappa B activation and lowering tumor necrosis factor
alpha levels (Shaik et al., 2020). The combined treatment of
resveratrol and paclitaxel in DBTRG glioblastoma cells led to
increased apoptosis marker levels, caspase 3 activity, Ca2+

fluorescence intensity, ROS levels, mitochondrial function,
mitochondrial membrane depolarization, and TRPM2 current
density, resulting in reduced cell viability (Øztürk et al., 2019).

The mechanism underlying the synergistic effects of combining
natural compounds and LDH inhibitors in therapy is not fully
understood. Nevertheless, natural compounds may enhance the anti-
tumor effects of LDH inhibitors by influencing the tumor
microenvironment and promoting tumor cell demise (Kooshki et al.,
2022). Through LDH inhibition, natural compounds may heighten the
susceptibility of tumor cells, decreasing their energy metabolism and
increasing their dependence on glycolysis (Gao and Chen, 2015).
Combining natural compounds and LDH inhibitors can overcome
the limitations of each agent used alone by reducing their concentration
in the body. This approach alleviates the toxicity of LDH inhibitors and
enhances the specificity of targeting tumor cells (Akbari et al., 2022).

8 Conclusion

Natural compounds such as LDH inhibitors have shown great
potential for treating various diseases, including cancer,
cardiovascular diseases, and neurodegenerative diseases (Leuci
et al., 2020; Mohd Sairazi and Sirajudeen, 2020). Despite notable
challenges that must be addressed, preclinical studies have
demonstrated the safety and effectiveness of these compounds in
this inhibitory role (Rani and Kumar, 2016; 2017). Combining
natural compounds with existing LDH inhibitors has also shown
promise in improving therapeutic outcomes and reducing toxicity
(Augoff et al., 2015). These findings suggest that developing natural
compounds as LDH inhibitors could lead to new treatments for
several diseases. Indeed, natural compounds could be used as
monotherapy for less aggressive tumors, as adjuvants to enhance
chemotherapy effectiveness, and as complementary therapy for
cardiovascular diseases and neurodegenerative diseases.
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However, before using natural compounds as LDH inhibitors in
clinical settings, several issues need to be addressed. Improving
natural compound bioavailability and pharmacokinetics is essential
to ensure optimal efficacy (Nowak et al., 2019). This can be achieved
through the use of delivery systems, such as nanoparticles or
liposomes, or by modifying the chemical structure of natural
compounds (Aqil et al., 2013; Gunasekaran et al., 2014).
Additionally, more research is needed to understand the
molecular mechanisms through which natural compounds act as
LDH inhibitors. Identifying specific targets and pathways influenced
by natural compounds could lead to more effective and targeted
therapies (Dutta et al., 2019). Furthermore, thorough clinical trials
are necessary to assess the safety and toxicity of natural compounds.
Despite being generally considered safe, some natural compounds
may have undesirable side effects or interact with other medications
(Scott and Elmer, 2002; Butler, 2008). Therefore, before using
natural compounds in clinical settings, their safety and toxicity
must be carefully evaluated.

Despite these challenges, the potential clinical uses of natural
compounds as LDH inhibitors are promising. The development of
natural compounds as LDH inhibitors offers hope for patients with
various diseases. They can be used asmonotherapy or adjuvants in cancer
treatment (Rani and Kumar, 2016; Memariani et al., 2021), as a
complementary therapy in cardiovascular disease, or to halt the
progression of atherosclerosis (Zhang et al., 2021a), and to reduce
neuroinflammation and oxidative stress as key pathological features in
neurodegenerative diseases (Chen et al., 2020). In conclusion, natural
compounds have shown promise as LDH inhibitors for treating various
diseases. Although challenges remain in their clinical application, further
research and development could pave the way for novel treatments,
offering renewed hope to patients suffering from diverse diseases.
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