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Introduction: Target therapy for cancer cell mutation has brought attention to
several challenges in clinical applications, including limited therapeutic targets,
less patient benefits, and susceptibility to acquired due to their clear biological
mechanisms and high specificity in targeting cancers with specific mutations.
However, the identification of truly lethal synthetic lethal therapeutic targets for
cancer cells remains uncommon, primarily due to compensatory mechanisms.

Methods: In our pursuit of core therapeutic targets (CTTs) that exhibit extensive
synthetic lethality in cancer and the corresponding potential drugs, we have
developed a machine-learning model that utilizes multiple levels and
dimensions of cancer characterization. This is achieved through the
consideration of the transcriptional and post-transcriptional regulation of
cancer-specific genes and the construction of a model that integrates statistics
and machine learning. The model incorporates statistics such as Wilcoxon and
Pearson, as well as random forest. Through WGCNA and network analysis, we
identify hub genes in the SL network that serve as CTTs. Additionally, we establish
regulatory networks for non-coding RNA (ncRNA) and drug-target interactions.

Results: Our model has uncovered 7277 potential SL interactions, while WGCNA
has identified 13 gene modules. Through network analysis, we have identified 30
CTTs with the highest degree in these modules. Based on these CTTs, we have
constructed networks for ncRNA regulation and drug targets. Furthermore, by
applying the same process to lung cancer and renal cell carcinoma, we have
identified corresponding CTTs and potential therapeutic drugs. We have also
analyzed common therapeutic targets among all three cancers.

Discussion: The results of our study have broad applicability across various
dimensions and histological data, as our model identifies potential therapeutic
targets by learning multidimensional complex features from known synthetic
lethal gene pairs. The incorporation of statistical screening and network
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analysis further enhances the confidence in these potential targets. Our approach
provides novel theoretical insights and methodological support for the
identification of CTTs and drugs in diverse types of cancer.

KEYWORDS

synthetic lethality, targeted therapy, multi-omics data, core therapeutic targets, targeted
drug screening

Highlights

• A strategy for the identification and drug screening of core
therapeutic targets (CTTs) is proposed to address the narrow
population of beneficiaries of targeted cancer therapies and the
vulnerability of patients to drug resistance.

• A comprehensive character extraction and representation
approach based on big data from multi-omics biology was
established at different levels such as gene expression,
epigenetic and genomic variation and different perspectives
such as expression regulation and post-transcriptional
regulation. The fundamental characteristics of the synthetic
lethal mechanism of cancer are further revealed.

• The predictive model based on synthetic lethal mechanisms
proposed in this study can identify novel targets that play a
central role in multiple cancer-related disease pathways at the
level of gene expression, genetic and genomic variation, and
screen for potential therapeutic agents in different dimensions
of gene transcriptional regulation and post-transcriptional
regulation, greatly expanding the existing theoretical and
technical approaches to target identification and drug
screening in targeted cancer therapy.

• Case studies of the identification of CTTs and the discovery of
corresponding targeted therapeutics in colorectal, lung and
kidney cancers, as well as results from other research
literature, databases and wet experiments, suggest that our
target and drug identification models are quite generalizable.
The nature and biology of the cancers identified by the CTTs
model are widely present in different cancer types and have
great potential for application and reference value for
therapeutic target discovery across cancer types.

1 Introduction

Molecular targeted therapy, which specifically destroys cancer cells
through biological mechanisms such as inhibition of tumor growth,
metastasis, angiogenesis, and promotion of apoptosis, has rapidly
become the first-line clinical treatment for cancer due to its high
efficacy and low toxicity, significantly improving the survival time of
cancer patients (Bennouna et al., 2019; Sveen et al., 2020; Chan et al.,
2022; Hussain et al., 2022; Jaaks et al., 2022; Tan and Tan, 2022).
Unfortunately, targeted therapeutic approaches target certain specific
genetic mutations in cancer patients, which has resulted in a scarcity of
clinical candidate therapeutic targets and targeted therapeutic drugs.
The small range of populations benefiting from targeted therapies (Saito
et al., 2018) and the acquired resistance of patients after long-term
application are also major challenges in current clinical practice (Saito
et al., 2018; Cabanos and Hata, 2021; Zugazagoitia and Paz-Ares, 2022).

Synthetic lethality (SL) is a phenomenon in which simultaneous
repression of two non-lethal genes results in cell death while only one of
the genes is repressed and the cell still survives. Synthetic lethality offers
the potential for precision targeting of incompetent gene mutations in
cancer cells (Bortlikova et al., 2019). Targeted therapies based on SL
mechanism increase the number of candidate targets on the one hand
and solve the challenge of acquiring drug resistance on the other hand.
When genomic defects or compensatory pathways are combined with
targeted therapy, it has significant antitumor activity (Lopez and Banerji,
2017). Precision therapies based on the SL mechanism have been
gradually applied to cancer, such as PARP inhibitors (Lord and
Ashworth, 2017), Farmer and Bryant et al. proposed a new strategy
of PARP inhibitors of BRCA1 or BRCA2 for the treatment of breast
cancer patients with BRCA mutations (Bryant et al., 2005; Farmer et al.,
2005) and Taylor et al. proposed a treatment strategy for patients with
locally advanced and metastatic breast cancer with HER2 mutations
(Taylor et al., 2021). At present, the computational method of SL pairs
recognition is mainly based on transcriptional spectrum data (Apaolaza
et al., 2017) andmachine learning (Sinha et al., 2017; Liu et al., 2018), but
the effectiveness of prediction results needs to be improved. In addition, it
is usually possible to identify SL pairs through large-scale gene knockout
experiments (Dhanjal et al., 2017), but it is time-consuming and
expensive. These factors limit the discovery of SL pairs, which leads
to the scarcity of SL target candidates and targeted therapeutic drugs.

Therefore, we propose to overcome this problem by identifying
“core therapeutic targets" (CTTs) that is the hub genes in the network. A
core therapeutic target is a potential therapeutic target that has a central
position in the process of performing therapeutic effects through
multiple related biological processes. Due to the large number of
mutations in genes that are synthetic lethal partners of CTTs,
identifying and targeting CTTs can maximize the therapeutic effect,
reduce drug resistance and expand the potential beneficiary population.
In addition, cancer-related specific regulatory signals are often
important contributors to its development and progression. Potential
targets are regulated at multiple levels, which not only reflects the
complexity of the biological processes in which they are involved, but
also provides a wider range of possibilities for new drug development.
We therefore analyzed the regulatory factors of CTTs such as miRNAs,
lncRNAs and super-enhancers, and finally identified CTTs in CRC as
new potential drug targets. These regulatory characteristics provide the
possibility for new potential therapeutic drug targets in the synthetic
lethal relationship. In this study, we propose a new statistical machine
learning and network analysis screening framework for cancer to
determine new potential therapeutic targets and further screen
relevant targeted therapeutic agents or compounds according to the
SL mechanism of multidimensional biological data of cancer. The
results for lung cancer and renal cell carcinoma confirm that the
strategy proposed in this study can also be applied to targeted
therapeutic target identification and drug screening for other
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cancers. Our approach provides new theoretical and methodological
insights into the identification of CTTs and therapeutic drugs with
broad effects in different cancer types.

2 Methods and materials

In this study, we established a workflow to identify new therapeutic
targets (CTTs) based on multi-omics data to extract mechanism-
defined interaction and regulatory features between SL genes in
response to the challenges of the small number of beneficiary
populations and susceptibility to drug resistance currently faced in
targeted cancer therapy. Following the biological characteristics, such as
SL genes with functional compensatory features and co-expression
among them, we constructed machine learning models for predicting
correspondingmechanisms from themulti-omics features of known SL

pairs, respectively. To improve the accuracy of identified targets and
reduce false positives, we combined the results of both types of
predictions as identified SL genes. Finally, among these identified SL
genes, we identified those genes with more potential SL partners as
potential therapeutic targets for CTTs by network analysis and further
screened the corresponding potential therapeutic drugs. The specific
workflow of the article is shown in Figure 1.

2.1 Multi-omics data and characterization
of SL

Multi-omics characteristics including mRNA, CNV, mutation,
indel, methylation, histone, DNase and pathway were used to
characterize SL genes in cancer. Among them, gene expression and
mutations, as visual representations affecting gene function, are the

FIGURE 1
The workflow of CTTs identification and corresponding therapeutic drug screening. (A) Step 1: Data source. Cancer data is mainly from TCGA,
ENCODE, KEGG, Reactome, Biocarta database, and the SL pairs from the SynLethDB database. (B) Step 2: Identification of potential therapeutic targets.
The characteristic matrix is the data of each omic containing SL pairs. The random forest classifier model is constructed based on the characteristic
samples of the SL compensation mechanism and co-expression mechanism obtained from the rank sum test (Wilcoxon) and correlation test
(Pearson), respectively. (C) Step 3: Network-based identification of core therapeutic targets (CTTs). The WGCNA and network analysis are used to filter
hub modules and hub nodes. Through further recognition of super-enhancer and ncRNA regulation, we can verify the target and screen its targeted
therapeutic drugs.
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main characteristics currently used in the computational prediction of
SL interactions (Jerby-Arnon et al., 2014; Ryan et al., 2014; Dhanjal
et al., 2017; Horlbeck et al., 2018). Epigenetic factors and proteins also
have important regulatory roles in gene expression and its function,
where DNA methylation decreases gene activity (Holliday and Pugh,
1975; Moore et al., 2013) and DNase regulates gene expression by
affecting chromatin accessibility (Bernardi and Boyer, 1971; Zhang
et al., 2014). Therefore, we obtained the expression profile, mutation,
copy number variation and DNA methylation data of 182 colorectal
cancer (CRC) samples from TCGA (Tomczak et al., 2015) database.
Human hg19 reference genome 19444 genes were from UCSC (Casper
et al., 2018) database. Histone data and DNase data of CRC samples
were extracted from ENCODE (Davis et al., 2018) database. Paired SL
genes are often involved in biological processes with high relevance
(Ikui et al., 2012; Costa-Cabral et al., 2016; Wong et al., 2016), therefore
the functional pathways they are involved in were used as one of the
descriptive features of SL in this study. Pathway data were obtained
from KEGG (Kanehisa et al., 2017), Reactome (Fabregat et al., 2018),
and BIOCARTA (Nishimura, 2001) databases. Known 16916 SL
interactions were downloaded from SynLethDB (Guo et al., 2016)
database. For the multi-omics data of CRC, we matched each
sample of CRC patients according to the gene of the human
reference genome hg19. Then for the missing value, we
supplemented it according to the mean value of the gene in other
CRC samples, and for the mutation data, we supplemented the missing
value with 0. The classifier model characteristic is shown in
Supplementary Table S1.

2.2 Identification workflow of core
therapeutic targets (CTTs) in cancer

2.2.1 A machine learning-based framework for
identifying potential SL pairs

This study identifies CTTs based on SL mechanisms in cancer
cells. To identify CTTs that may play a therapeutic role across
multiple biological functions and different mechanisms, we
developed a two-step workflow. First, we screened currently
known SL interactions for their biological properties at multiple
omics levels to construct a model for identifying potential SL genes
in cancer. This is followed by further screening of potential SL genes
to identify CTTs.

A common feature is the compensatory relationship between SL
gene pairs. The simultaneous functional inactivation of SL paired
genes leads to cancer cell death, while the inactivation of one gene
allows the other gene to become essential for cell survival and thus
produce overexpression to compensate for the loss of function of the
inactivated gene product (Beroukhim et al., 2010; Barretina et al.,
2012). The Wilcoxon rank sum test was used to retain the
significantly compensated pairs (p-value<0.01) according to
DAISY in our study (Ryan et al., 2014).

Another common feature is the synergistic relationship between
SL gene pairs. Many studies providing experimental confirmation of
SL pairs suggest that SL pairs in cancer cells are more likely to be
involved in biological processes that are closely related to each other
and therefore both are usually co-expressed (Kelley and Ideker,
2005; Costanzo et al., 2010; Ryan et al., 2014). Therefore, we
calculated the Pearson correlation coefficient to retain the

significantly co-expressed pairs (p-value<0.05 and R > 0.5)
according to DAISY (Ryan et al., 2014). We then used the
known SL pairs screened by Wilcoxon and Pearson statistics as
positive samples, the randomly selected gene pairs from the hg19-
encoding gene pairs and removing known positive sample pairs were
used as the negative sample sets to construct the identification
models separately (positive:negative = 1:20).

Based on the experimentally confirmed SL pairs screened by the
above mechanism that exhibit classification features on multiple
omics, we constructed a recognition model using the randomForest
machine learning method (R package randomForest with default
parameters) and used the intersection of the recognition results
obtained from different positive sample sets as the potential SL pairs
identified in CRC (Supplementary Table S6).

2.2.2 Network-based identification of core
therapeutic targets (CTTs)

By integrating the consensus part of the predictions of the above
models with different SL mechanisms, the potential SL pairs were
obtained. A weighted gene co-expression correlation network is
constructed using normalized gene expression data and known
functional phenotypes. Genes that are intrinsically related are
grouped into different modules according to the topology of this
network, and the gene expression data in each module are clustered
and analyzed to investigate the relevance of each internal gene and
the different modules to processes in cell biology.

Consensus SL pairs from the results of potential target prediction
models for CRC were used to construct a network describing the
relationships between target genes using Cytoscape software. By
analyzing the relationship between these potential therapeutic
targets in the network, the top 1% of hub nodes in each module
were identified as functionally relevant candidate “core therapeutic
targets” (CTTs). By using these candidate CTTs, which are involved in
multiple SL processes, as therapeutic targets, the corresponding
inhibitor drugs can act on multiple disease-related pathways, thus
overcoming the low applicability of the existing targeted drug
population and the tendency to develop drug resistance.

2.3 Screening of potential targeted
therapeutic drugs

At present, there are only a few gene targets and targeted
therapeutic drugs for CRC in clinical practice, such as KRAS,
NRAS, dMMR, MSI-H, BRAF, HER2, NTRK, and Cetuximab,
Bevacizumab, Trastuzumab. The small number of these poses a
significant challenge to CRC treatment, both in terms of low
patient coverage and susceptibility to drug resistance.
Computational research in the identification of new
therapeutic targets for CRC based on SL mechanism and the
subsequent discovery of new potential therapeutic drugs is one of
the most promising drug discovery tools available, although it is
often plagued by high false positive rates and inadequate
therapeutic efficacy of the identified targets or drugs. To
address these issues, in this study we not only propose an
innovative approach to identifying CTTs with clear biological
mechanisms to identify drug targets that act in multiple
biological pathways. We also aim to broaden the drug
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population and reduce drug resistance by screening compounds
that inhibit targets at multiple levels, including target binding,
transcriptional regulation and post-transcriptional levels.

2.3.1 Target analyzing and screening at the
regulatory level

The complexity of the biological processes in which potential targets
are regulated at multiple levels not only reflects the complexity of the
biological processes in which they are involved but also opens up a wider
range of possibilities for the development of new drugs. This study
therefore furthers analyses and screens the CTTs candidate nodes
identified in the network analysis at the level of transcriptional
regulation and the level of post-transcriptional regulation. This was
done based on the assumption that a more valuable target for cancer
therapy should play a biological role at multiple levels of consideration.
To this end, in addition to considering the existence of targeting
relationships between targets and potential inhibitory molecules, we
also mapped super-enhancers from the dbSUPER (Khan and Zhang,
2016), SEA (Chen et al., 2020), and SEdb (Jiang et al., 2019) databases and
non-coding RNA regulatory data from the miRTarbase (Huang et al.,
2020), LncRNA2Target (Cheng et al., 2019) to the CTTs candidate node

correlation network constructed in this study, and ultimately identified
CTTs in CRC as new potential drug targets by analyzing the regulatory
impact of super-enhancers and non-coding RNA levels on CTTs
candidate nodes.

2.3.2 Durg-target interaction
Based on currently known target genes that are regulated at the

super-enhancer and non-coding RNA levels, literature, and database
searches were used to identify drugs that target the genes themselves
or target gene regulatory elements, respectively, to establish a drug-
target interaction network for CTTs, thus providing a viable
reference for drug design or achieving drug repositioning in CRC.

2.4 Validation of results

In this study, the accuracy of the classifier model was evaluated
by calculating the AUC values of the prediction model based on a
tenfold cross-validation approach, and further, GO ontology
analysis and KEGG pathway enrichment analysis of the
predicted target genes using DAVID (Dennis et al., 2003) to

FIGURE 2
SL genes identified by different methods. (A) SL pairs overlap with previous findings. (B) Single SL gene overlaps with previous findings. (C) The
previous five methods of SL pairs overlap with each other. (D) The previous five methods of SL genes overlap with each other. SynDB is the SL database
SynLethDB records 16916 SL pairs and 5157 genes. Livnat’s is the 2802 SL pairs predicted by Livnat. Srihari’s etc includes the 100 SL pairs predicted by
Kranthi, 98 SL pairs predicted by Wang, 843 SL pairs predicted by Srihari and 107 SL pairs predicted by Hao. A total of 3928 unique SL pairs and 3050
genes. Our_pre is the 7277 SL pairs and 3564 genes identified in this study.
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validate the function of the prediction results. Finally, we also
validated the prediction results by the available literature and
database content. The case studies of potential CRC
therapeutics obtained based on the predictions of this study also
provided an additional level of support for the accuracy of our
prediction results.

3 Results

3.1 Identification of synthetic lethal targets
in CRC

To identify clinical candidate CTTs for targeted therapy, we first
screened compensatory expression genes and co-expression propensity
genes with clearmechanisms of synthetic lethality based onmulti-omics
biomass characterization. We evaluated the performance of the two
important prediction submodules in the model through tenfold cross-
validation, with the gene expression compensation submodule
identifying 18685 predicted pairs with an AUC of 0.937 and the
gene co-regulation submodule identifying 194497 predicted pairs
with an AUC of 0.879. Ultimately, we combined the intersection of
the classification results of the two submodules and identified
7277 potential SL pairs (Supplementary Table S1).

Detecting SL pairs in humans is a challenging problem because of
the highly evolved, complex, and redundant signaling pathways within
human cells. The effects of loss of function caused by gene mutations
can often be complemented by parallel pathway signaling. Multiple
computational approaches can provide different perspectives on
potential SL pairs, such as the correlation of gene expression with
mutations, robustness in cancer networks, or co-expression of genes in
related biological processes. In our study, we overlapped the
7277 predicted SL pairs with the results from five previous methods
(Kranthi (Kranthi et al., 2013), Wang (Wang and Simon, 2013), Srihari
(Srihari et al., 2015), Hao (Ye et al., 2016) and Livnat (Jerby-Arnon et al.,
2014)) and with the SL pairs recorded in the SynLethDB database
(Figures 2A, B). This may suggest that overlapping predictions from
different methods may provide more reliable results. Interestingly, we
also found no overlap between Livnat’s predictions (Jerby-Arnon et al.,
2014) and any of the other fourmethods. The different characteristics of
the input data in thesemethodsmay produce bias in SL pairs prediction.
In the overlap comparison, our predictions overlap with 38 pairs of SL
pairs in SynLethDB, and a total of 32 pairs overlap with the predictions
of the previous five-in-one methods. Furthermore, we found little
overlap between the results of these five methods (Figures 2C, D).
There are some reasons could explain the phenomenon. First, the
complexity of the human genome itself is such that many different
genes are involved in a pathway thatmust function to fulfill its biological

FIGURE 3
GO Enrichment analysis of potential SL genes in CRC. (A) GO enrichment. (B) BP enrichment. (C) CC enrichment. (D) MF enrichment.
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function. At the same time cancer itself has a complex and highly
variable pattern of gene mutations. These factors combine to form
complex and variable combinations of synthetic lethal gene pairs, and
these large combinatorial spaces adversely affect the replication of
research results. Second, the low degree of overlap between different
studies may also be due to the differences in their starting points and
research methods. Such a view is also supported in the study of Hao
et al. (Ye et al., 2016).

3.2 Functional analysis of identified SL genes

The GO functional enrichment analysis of SL genes is closely
related to the mechanism and treatment of cancer (Figures 3A–D).
For example, as a major disease characterised by malignant abnormal
proliferation, the accurate regulation of the cell cycle (GO:0007049-cell
cycle, GO:0022402-cell cycle process) is of great importance for the

survival and development of organisms, and abnormalities of multiple
molecules in the cell cycle could be the cause of cancer (Leake, 1996),
not only that, it has been shown that the uptake of cancer
nanomedicines changes with the cell cycle stage, illustrating that by
developing a combination of cell cycle-specific therapies to achieve a
better prognosis for cancer patients should be a focus of cancer drug
research (Abouzeid and Torchilin, 2013). In addition, it has been shown
that zinc ions, as important cofactors, can efficiently bind to DNA by
folding proteins (Cho et al., 1994; Garufi et al., 2015) and that changes in
intracellular zinc levels can inactivate p53 function by inducing the
protein to adopt a mutant conformation and lose its DNA binding
capacity (Meplan et al., 2000; Garufi et al., 2015), which is one of the key
oncogenes whose inactivation is important for carcinogenesis. Both
zinc-binding (GO:0008270-zinc ion binding) and DNA-binding (GO:
0003677-DNA binding) functions are reflected in the functional
enrichment results (Supplementary Table S2). The above enrichment
analysis results indicate that the function of our predicted SL targets is

FIGURE 4
KEGG Enrichment analysis of potential SL genes in CRC.
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related to the occurrence and development of CRC and may be
potential therapeutic targets.

Significantly enriched pathways in CRC include colorectal cancer
(hsa05210), cell cycle (hsa04110), p53 signaling (hsa04115), cancer
(hsa05200), and other related pathways, the most important of which is
proteasome (hsa03050) (Figure 4). Selective protein degradation plays
an important regulatory role in a variety of organismal processes,
including the removal of potentially toxic proteins and misfolded
proteins to regulate cell cycle progression and gene expression
(Glickman and Ciechanover, 2002), and proteasome inhibitors have
been shown to have antitumor properties and have been used in clinical
settings (Manasanch and Orlowski, 2017), and results have shown that
CRC cells can evade proteotoxic stress responses by reducing
PSMD5 stimulation of 26S proteasome assembly (Levin et al., 2018).

3.3 Identification of potential therapeutic
targets for CRC

3.3.1 Identification of CTTs in CRC
Alterations in gene function in cancer are often manifested by

synergistic and interacting modules between multiple genes, which in

themselves can often provide biological mechanistic guidelines for
identifying potential therapeutic targets. We therefore performed a
further analysis of the previously identified results using WGCNA
(Langfelder and Horvath, 2008) (Figure 5). Functional and pathway
enrichment analysis was performed for genes in each module (with
p-value<0.01 and p-value<0.05 thresholds, respectively), and several
enriched functions and pathways such as RNA binding, cancer-related
pathways, and the NF-κB signaling pathway were found to be
significantly associated with the cancer-related mechanisms
(Supplementary Table S6).

The specific gene regulation and gene expression networks in
cancer are the most direct manifestation of its biological state and
provide a visual reference for identifying the causative
mechanisms and therapeutic approaches to cancer. We
therefore analyzed the networks formed by SL pairs in the
hope of identifying new centrality genes with numerous SL
pairs as promising targets for drug therapy. The classification
results were sorted by different module attributes into Cytoscape
software, and the top 1% of Hub genes with the highest degree in
each module were extracted separately to obtain 30 genes
(Supplementary Table S3), namely, PSMD10, PPP2R1B,
PSME3, KNL1, CCDC61, ADCY1, CSMD2, KANK3, FOS,

FIGURE 5
Weighted gene co-expression network analysis (WGCNA) and CTTs modules. (A) Hierarchical clustering tree of potential target gene modules for
CRC. (B)Correlation between genemodules of potential CRC targets. (C) The network of WGCNA output modules. (D) The top 1% of Hub genes with the
highest degree in each module, where the node color represents the module to which the gene is classified.
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NFKBIA, PSMA5, TP53, MYC, CDKN1A, MAPK3, TMEM255B,
MAL2, PSMC2, CUL9, MSANTD2, PSMA6, GMFB, PSMB6,
PIK3CA, HRAS, POLR2H, PSMB8, ASPM, POLQ and RHOU
(Figures 5C, D). Eleven of these genes have been experimentally
validated as known CRC-related SL pairs and included in the
SynLethDB (Guo et al., 2016) database, namely, PPP2R1B,
PSMA5, TP53, MYC, CDKN1A, MAPK3, PSMA6, PSMB6,
HRAS, POLR2H, POLQ. In addition, most of the remaining

genes were found to be strongly associated with CRC
carcinogenesis, metastasis, and prognosis. For example, the
trend of significantly high expression of MAL2 in rectal cancer
cells was found to be associated with poor patient prognosis (Li
et al., 2017), while the expression of the CSMD family was shown
to be a predictor of CRC (Zhang and Song, 2014), and KNL1 was
associated with reducing apoptosis and promoting proliferation
of CRC cells (Bai et al., 2019).

FIGURE 6
CTTs regulatory relationships for CRC. (A) CTTs regulatory network. (B) Subgraph of CTTs regulatory network. The regulatory relationships of
miRNAs, lncRNAs and super-enhancers for CTTs. The bright blue triangle, bright yellow round and bright purple square nodes and edges represent
miRNAs, lncRNAs and super-enhancers targeting important genes and their regulatory relationships on genes, respectively. The central node represents
CTTs in CRC, where the node color represents the module to which the gene is classified.

FIGURE 7
Drug-target interaction in CRC. (A) Drug-target interaction network. (B) Subgraph of drug-target interaction network. The green V-shaped nodes
represent drugs, and the grey dotted edges represent the regulatory effects of drugs. The bright blue, bright yellow and bright purple nodes and edges
represent miRNAs, lncRNAs and super-enhancers targeting Hub genes and their regulatory relationships with genes, respectively. The central node
represents the node of CTTs in CRC.
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3.3.2 Super-enhancer and ncRNA regulation
Aberrant regulatory relationships in cancer are often an

important factor in its development and progression. Recent
studies have shown that super-enhancers (Didych et al., 2015;
Thandapani, 2019) and non-coding RNAs (Anastasiadou et al.,
2018; Yan and Bu, 2021) often play important roles in cancer-
specific regulation. Based on data from dbSUPER (Khan and Zhang,
2016), SEA (Chen et al., 2020), and SEdb (Jiang et al., 2019), their
relationship with potential therapeutic targets was specifically
analyzed due to their important regulatory roles at the
transcriptional and post-transcriptional levels in the SL
mechanisms of cancer. The analysis of these hub genes related to
miRNAs or lncRNAs regulating CTTs was obtained from
miRTarbase (Huang et al., 2020) and LncRNA2Target (Cheng
et al., 2019) (Figures 6A, B). These novel regulatory relationships
not only provide new insights into the mechanisms of cancer
development but also offer new potential avenues for cancer
treatment (Supplementary Table S3).

3.3.3 Drug-target interaction network
Based on our identified CTTs and the regulatory relationships

at different regulatory levels, we have screened and identified
potential therapeutic drugs for CRC. These identified targets
and drugs have the natural advantage of reaching a wider
patient population due to their large number of SL partners in
a complex SL network. We used the drug target database and
literature data to find therapeutic drugs against potential target
genes themselves or gene regulatory elements and to generate
drug-target interaction maps (Figures 7A, B). For example,
Isolinderalactone targets hsa-miR-30c-5p (miRNA) which
regulates four CTT genes (TP53, MYC, POLQ and PPP2R1B)
and Corylin targets RAD51-AS1 (lncRNA) which regulates
eleven CTT genes (PSMD10, PSME3, FOS, NFKBIA, PSMA5,
TP53, MYC, PSMC2, CUL9, PSMA6 and PSMB6). Kwak et al.
confirmed that Isolinderalactone can induce ROS-mediated
apoptosis through the JNK/p38 MAPK signaling pathway,
thereby exerting an anticancer effect in CRC Ox-sensitive and

FIGURE 8
Landscape of somatic mutations of CTTs and non-CTTs SL genes of CRC. (A) (C) The distribution of variant classification, variant type, and SNV class
present of CTTs and non-CTTs SL genes of CRC. The mutation load of each sample (variant classification type), and the stacked bar graph show the top
ten mutated genes. (B) (D) Oncoplot and waterfall plot showing the somatic landscape of CTTs and non-CTTs SL genes mutated in CRC.
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OxR cells (Kwak et al., 2022). Yang et al. found that Corylin could
significantly reduce the viability of human CRC cells and
stimulate apoptosis in a dose-dependent manner (Yang et al.,
2021). By targeting these regulatory elements, these CTTs can be
regulated. Meantime, for the ncRNA elements, we can only use
one drug to target multiple targets enlarging the therapeutic
effect. In addition, the modulation of potential target genes by
a variety of drugs targeting other cancers or diseases was also
identified (Supplementary Table S3 and Supplementary Table
S6), which is also important for drug repositioning and guiding
clinical drug design for the treatment of CRC.

3.3.4 Mutation of CTTs in CRC
When a gene is mutated, its SL partner gene loses function

through mutation or inhibition, leading to synthetic lethality
and cancer cell death. We analyzed CTTs as therapeutic targets
and non-CTTs SL genes as somatic mutations in CRC (Figure 8).
For 30 CTTs, the variant classification could be divided into

seven types, among which missense mutations accounted for the
majority. The predominant SNV class was C>T. TP53, PIK3CA,
CSMD2, ASPM, POLQ, CUL9, ADCY1, MYC, PSMB8, and
PPP2R1B were identified as the most significantly mutated
genes (Figure 8A). For non-CTTs SL genes, the variant
classification can be divided into nine types, among which
missense mutations are also the majority. The predominant
SNV class was also C>T. Furthermore, the non-CTTs SL genes
in CRC, TTN, SYNE1, KRAS, DNAH5, ZFHX4, SACS, ATM,
NAV3, DOCK2 and AMER1 were identified as the most
significantly mutated genes (Figure 8C). According to the
mutations of 30 CTTs and non-CTTs SL genes in CRC, the
TMB of non-CTTs SL genes in some patients with CRC
contained a maximum of 1640 mutations, while in patients
with CTTs, only 22 mutations were included (Figures 8B, D).
Because it is impossible to design drugs one by one for diverse
mutation targets, the heterogeneity of cancer poses a huge
challenge to targeted therapy for different gene mutations.

FIGURE 9
Lung cancer CTTs recognition and corresponding therapeutic drugs screening. (A) The network of 824 SL pairs of lung cancer. (B) GO enrichment
analysis of the 57 CTTs genes. (C) KEGG enrichment analysis of the 57 CTTs genes. (D)The network of CTTs and targeted drugs. The blue nodes represent
CTTs in lung cancer, the green node is targeting CTTs drugs and the yellow node is other SL genes interacting with CTTs.
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The method proposed in this study to identify CTTs as
therapeutic targets overcomes this shortcoming to some
extent. For our predicted result 7277 SL pairs, targeting the
30 CTTs genes could have 4739 interactions result in synthetic
lethality and the CTTs have mutation in all CRC patients
(Figure 8B). Therefore, although there are different cancer
mutations in different patient populations, drugs targeting
these 30 CTTs have enormous potential to kill these different
mutated cancer cells based on the SL mechanism, thereby
achieving the goal of expanding the target treatment of
cancer beneficiaries.

In conclusion, CTTs and their partner SL genes cover most of
the mutation types in CRC and have a higher level of mutations,
which further indicates that the CTTs we found may have a wide
range of applicability in CRC.

3.4 CTTs and potential drugs identification in
other cancers

3.4.1 CTTs and potential drugs for lung cancer
For the 158 lung cancer samples (LUAD and LUSC) in TCGA,

the identification model was constructed using the same data
processing method (AUC = 0.96252). The potential 2901 lung
cancer SL pairs were predicted, of which 2119 SL pairs came
from Wilcoxon rank sum test workflow (p-value<0.05), and
1101 SL pairs came from Pearson correlation coefficient test
workflow (p-value<0.05). The intersection of the two workflows
resulted in 824 SL pairs (Figure 9A). Then 57 genes as CTTs were
obtained by statistical screening and network analysis (19 of which
were verified in SynLethDB) and 178 SL pairs. Functional and
pathway enrichment analyses of the 57 CTTs confirmed their

FIGURE 10
Kidney cancer CTTs recognition and corresponding therapeutic drugs screening. (A) The network of 341 SL pairs of kidney cancer. (B) GO
enrichment analysis of the 27 CTTs genes. (C) KEGG enrichment analysis of the 27 CTTs genes. (D) The network of CTTs and targeted drugs. The blue
nodes represent CTTs in kidney cancer, the green node is targeting CTTs drugs and the yellow node is other SL genes interacting with CTTs.
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closely related enrichment functions to cancer mechanisms and
therapeutic approaches (Figures 9B, C).

Combined with the known lung cancer SL genes recorded in
SynLethDB, including SL pairs recorded in the literature and SL
pairs confirmed by experiments, a total of 19 genes (33.3% of the
57 CTTs genes) were confirmed to be lung cancer-related SL
genes, which were DSG2, ADSL, MCM2, MCM4, MCM6, DSP,
PARP1, EGFR, KRAS, PIK3CA, MAPK1, UBC, MAPK3,
POLR2E, PSMC3, RELA, PSMD6, RBX1, PSMA2.

We also validated them with the listed drugs in Drugbank
(Wishart et al., 2018) and TTD (Wang et al., 2020) databases and
found that 179 drugs targeting core targets in lung cancer
(Figure 9D), were mapped as drug-target interactions network
and found that many drugs targeting genes such as EGFR, SRC,
PARP1, MAPK1, and FKBP1A, among which EGFR is the
epidermal growth factor receptor and high or abnormal
expression of EGFR has been confirmed in many solid tumors.
Most of the remaining genes are also related to signaling
pathways associated with tumor cell proliferation or apoptosis.
The data corresponding to cancer changes after cell line
administration was obtained from the GDSC (Yang et al.,
2013) database and the data of administration belonging to
lung cancer cell lines were screened for a total of 181 drugs, of
which a total of 13 overlap with our drugs mined through CTTs.
Gefitinib, Erlotinib, Lapatinib, Trametinib, Afatinib, and
Osimertinib are tyrosine kinase inhibitors, that have been used
in the treatment of non-small cell lung cancer and all of which
target EGFR (Supplementary Table S4 and Supplementary
Table S6).

3.4.2 CTTs and potential drugs for kidney cancer
Similarly, for the 584 kidney cancer samples (KICH, KIRP and

KIRC) in TCGA, we predicted the potential 7212 SL pairs for kidney
cancer (AUC = 0.8964497), with a total of 1118 SL pairs by
Wilcoxon rank sum test (p-value<0.05) and 5219 SL pairs by
Pearson correlation coefficient test (p-value<0.05). The
intersection of the two statistical methods yielded 341 SL pairs
(Figure 10A). 27 genes as CTTs were obtained by statistical
screening and network analysis (eight of them appeared in the
previous study results of SL gene pairs of renal cell carcinoma), and
functional and pathway enrichment analysis was performed on these
27 CTTs genes (Figures 10B, C).

These 27 CTTs including 8 genes CTNNA1, PSMB6, PSMD12,
SESN2, SLC22A2, UBE2J2, and NAE1 appeared in the SL pairs of
renal cell carcinoma in previous literature studies. Among the 341 SL
pairs, 5 SL pairs appeared in Ku, A. A. et al. (Ku et al., 2020), which
were NRAS and APLP2, NRAS and COL6A1, NRAS and MEF2C,
NRAS and MSH2, NRAS and NF1.

We took these 27 CTTs as the final research object to mine the
drug target database and search for potential drugs for the
treatment of renal cell carcinoma. Based on data from the
drug target databases Drugbank (Wishart et al., 2018),
ChEMBL (Mendez et al., 2019), PubChem (Kim et al., 2021),
DGIdb (Cotto et al., 2018), and GDSC (Yang et al., 2013) on
cancer changes corresponding to cell line administration, we
screened 195 potential drugs for the renal cell cancer
(Figure 10D).

A total of 10 drugs have been identified in the literature that
overlap with the CTTs targets we mined, i.e., Penandetil,
Bortezomib, Cisplatin, Oxaliplatin, Sorafenib, Dasatinib,
Tamoxifen, Leflunomide, Paclitaxel and Cyclophosphamide. In
addition, we have found that many drugs can target the gene
SLC22A2, which is involved in drug transport across the blood-
brain barrier and histamine uptake, among other pathways. Most
of the drugs that target this gene are used to treat hypertension,
which is involved in the pathogenesis of renal cell carcinoma.
These results all confirm at different levels the ability of our
approach to identify specific CTTs and potential therapeutic
drugs in different cancer types (Supplementary Table S5).

4 Discussion and conclusion

Existing targeted cancer therapies suffer from the challenges of
small populations of therapeutic targets and susceptibility to drug
resistance. Using cancers such as CRC as an example, this study
creates a general approach to identify potential therapeutic targets
and corresponding drugs by constructing a statistical framework
with machine learning models for multi-level cancer-specific
characterization, expression network analysis and regulatory level
analysis prediction. The main advantages of our proposed strategy
over previous studies are as follows.

4.1 Multidimensional cancer targeting
characteristic data description method
based on multi-omics data

For the biological characteristics exhibited by cancer
development, an integrated and comprehensive characteristic
extraction and representation method based on multi-omics
biology big data was established at different levels such as gene
expression, epigenetic, genomic variation and different perspectives
such as expression regulation and post-transcriptional regulation.
The essential characteristics of the synthetic lethal mechanism of
cancer were further revealed.

4.2 Established a model for identifying core
therapeutic targets and drugs

In response to the problems that the previously identified cancer
therapeutic targets apply to a small population and are prone to drug
resistance, this study constructs a statistical and machine learning
model based on the synthetic lethal mechanism of cancer cells,
which can describe and discover the core therapeutic targets of
cancer at multiple levels. The model can identify novel targets that
play a central role in multiple cancer-related disease pathways at the
level of gene expression, genetic and genomic variation, and screen
for potential therapeutic agents in different dimensions such as gene
transcriptional regulation and post-transcriptional regulation, thus
greatly expanding the existing theoretical and technical approaches
for target identification and drug screening in targeted cancer
therapy.
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4.3 Potential application of our method and
results to multiple cancer types

This study validated our method for identifying CTTs and
discovering corresponding targeted therapeutic agents in colorectal
cancer, lung cancer and kidney cancer, respectively, from multiple
perspectives, and these results from the literature of other studies,
databases and wet experiments suggest that our target and drug
identification model is quite generalizable. Nature of cancers
identified by CTTs model Biological characteristics are widely present
in different types of cancer and have great potential for application and
reference value for therapeutic target discovery in pan-cancer types.

Although we have demonstrated the efficacy of the potential
therapeutic targets and corresponding drugs obtained in this study
in three types of cancer, experimental validation in more types of
cancer is still needed. At the same time, the results of this study may
offer new hope for cancers that currently have no good treatment
options, such as pancreatic cancer, and this is the goal of our further
work. In addition, CTTs are promising therapeutic targets because
of their ability to kill cancer cells at multiple levels, but they may also
cause more complex side effects, which is an issue that needs
attention in clinical practice.
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