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Despite improvements in treatment, lung cancer is still a major health problem
worldwide. Among lung cancer subtypes, the most frequent is represented by
adenocarcinoma (belonging to the Non-Small Cell Lung Cancer class) although
themost challenging and harder to treat is represented by Small Cell Lung Cancer,
that occurs at lower frequency but has the worst prognosis. For these reasons, the
standard of care for these patients is represented by a combination of surgery,
radiation therapy and chemotherapy. In this view, searching for novel biomarkers
that might help both in diagnosis and therapy is mandatory. In the last 30 years it
was demonstrated that different families of ion channels are overexpressed in both
lung cancer cell lines and primary tumours. The altered ion channel profile may be
advantageous for diagnostic and therapeutic purposes since most of them are
localised on the plasma membrane thus their detection is quite easy, as well as
their block with specific drugs and antibodies. This review focuses on ion channels
(Potassium, Sodium, Calcium, Chloride, Anion and Nicotinic Acetylcholine
receptors) in lung cancer (both Non-Small Cell Lung Cancer and Small Cell
Lung Cancer) and recapitulate the up-to-date knowledge about their role and
clinical relevance for a potential use in the clinical setting, for lung cancer
diagnosis and therapy.
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1 Lung cancer epidemiology

According to the most recent estimates, lung cancer (LC) is still the most lethal cancer
worldwide, responsible of 1.8 million deaths, and the second most frequent in both sexes,
with 2.2 million new cases diagnosed in 2020 (Source: Globocan, https://gco.iarc.fr accessed
on 10 August 2023). LC is more frequent in high-income countries, mainly due to smoking
habits that represent the main risk factor for this malignancy (McIntyre and Ganti, 2017;
Sung et al., 2021). Other common risk factors are the exposure to some chemicals such as
asbestos (Markowitz, 2022), mustard gas (Ghanei and Harandi, 2010), radon (Lorenzo-
González et al., 2019), arsenic (Soza-Ried et al., 2019), chromium (Kouokam et al., 2022),
nickel (Shen and Zhang, 1994), uranium (Zhang et al., 2022), vinyl chloride (Girardi et al.,
2022) and high dose ionizing radiations (Yan et al., 2022).
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2 Histopathology

LC is generally divided into four major histological types
(adenocarcinoma, squamous cell carcinoma, large cell carcinoma
and small cell carcinoma) although combinations may also be
present. Among the four histological types, the most represented
is adenocarcinoma, accounting for 90%–95% of the LCs and the first
three histotypes are collectively known as “Non-Small Cell Lung
Carcinoma” (NSCLC).

2.1 Non-small cell lung carcinoma (NSCLC)

Adenocarcinoma is the most frequent LC type in women and
non-smokers, accounting for 40% of LC (Travis et al., 2011; Ricotti
et al., 2021). Unlike squamous cell carcinoma, adenocarcinomas are
usually smaller and peripherical in location. Positivity for thyroid
transcription factor-1 (TTF-1) is extremely frequent as well as
mucin content that is detected in roughly 80% adenocarcinomas.
The growing rate is lower compared to squamous cell carcinomas,
although adenocarcinomas metastasize earlier and extensively.

Squamous cell carcinomas account for 21% of LC (AIOM, 2019;
Ricotti et al., 2021), are more frequent in men and are highly related
to smoking habits. From the histological point of view, such
histotype is characterized by keratinization.

The main clinical and molecular features of NSCLC are reported
in Table 1.

2.2 Small cell lung carcinoma (SCLC)

This tumour type accounts for approximately 15% of all lung
cancers (Travis et al., 2011; Ettinger et al., 2022) and it is a highly
malignant neoplasia characterised by peculiar small round or oval
cells with scarce cytoplasm, little or no nucleoli and “salt and
pepper” chromatin pattern (Nicholson et al., 2002). Mitotic
figures are a frequent finding and necrotic areas are also quite
common and extensive. For SCLC, the diagnosis is determined by
both light and electron microscopy (to detect neuroendocrine
granules) complemented by immunohistochemistry for
neuroendocrine markers (chromogranin and synaptophysin)
(Righi et al., 2022). The presence of neuroendocrine markers
highlights the neuroendocrine origin of SCLC. The main clinical
and molecular features of SCLC are reported in Table 1.

SCLC are the most aggressive LC, extensively metastasize, are
virtually incurable by surgery and show a close relationship to
smoking.

3 LC clinical features and treatment

LCs are invasive and silent lesions and represent one of the most
insidious and aggressive forms of cancer. LC arises more frequently
in people older than 50 years and the main clinical symptoms
comprise cough (75%), thoracic pain (40%), weight loss (40%)
and dyspnoea (20%).

NSCLC have generally a better prognosis than SCLC. The most
important prognostic factor for NSCLC patients is represented by
tumour stage and patients are treated according to their stage
(Naruke et al., 1997; Schabath and Cote, 2019): surgery is the
gold standard for stage I and II patients and for some stage III
tumours; stage IV patients are treated with chemotherapy, palliative
radiation or supportive therapy.

SCLC are generally diffused also at early stages therefore surgery
is not a viable choice for treatment and systemic therapies (such as
chemotherapy) are used (Waqar and Morgensztern, 2017).

In addition, in the last decade novel therapeutic targeted agents
have been developed thanks to the knowledge of the genetic and
molecular alterations carried by LC cells (Table 2).

A well-known and frequent side-effect of LC treatment is
represented by cardiotoxicity (Pérez-Callejo et al., 2017) and also
new strategies such as immune checkpoint or tyrosine kinase
inhibitors are associated to cardiac toxic effects, ranging from
asymptomatic QT prolongation to acute coronary syndromes,
myocardial infarction, reduction in left ventricular ejection
fraction, hypertension, symptomatic congestive heart failure and
sudden death (Heinzerling et al., 2016). In order to prevent the
cardiotoxicity induced by anticancer treatment different
adjustments could be applied in the early stages (Cardinale et al.,
2016; Pérez-Callejo et al., 2017): healthy lifestyle, modification of
anticancer treatment schedules, use of cardioprotective drugs,
control of cardiovascular risk factors, periodic evaluation of
cardiac function, use of biomarkers in patients with high
cardiovascular risk or subjected to highly cardiotoxic anticancer
treatment (Pérez-Callejo et al., 2017).

Due to the pivotal role played by certain ion channels (ICs) in
heart function, their potential relevance in LC treatment-induced
cardiotoxicity has been evaluated (Uchikawa et al., 2022) also

TABLE 1 Histological, clinical and molecular features of NSCLC and SCLC. PTH-rp, Parathormone related peptide; ACTH, Adrenocorticotropic hormone; ADH,
antidiuretic hormone; GRP, Gastrin releasing peptide.

Histological/Molecular/Clinical
feature

NSCLC SCLC

Histology Abundant cytoplasm; pleomorphic nuclei; prominent
nucleoli; gland-like or squamous architecture

Scarce cytoplasm; hyperchromatic nuclei; absent nucleoli;
diffused cell layers

Neuroendocrine markers No Yes

Epithelial markers Yes Yes

Mucin Yes (adenocarcinoma) No

Peptide hormone production Yes (PTH-rp in squamous carcinoma) Yes (ACTH, ADH, GRP, Calcitonin)
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TABLE 2 Genetic alterations in NSCLC and corresponding targeted therapy agents.

Gene Alteration Frequency in NSCLC Targeted therapy

KRAS G12C point mutation 30% Sotorasib Adagrasib

G12V point mutation

G12D point mutation

EGFR Exon 19 deletion 15% (Western populations) 35–50% (Asian
populations)

Gefitinib

L858R point mutation Erlotinib

L861Q point mutation Afatinib

G719X point mutation Dacomitinib

T790M point mutation Osimertinib

MET Mutations 2.5–3% Capmatinib

Amplifications Tepotinib

Translocations Crizotinib

Cabozantinib

ALK EML4-ALK 3–5% Crizotinib

Ceritinib

Alectinib

KIF5B-ALK Brigantinib

KLC1-ALK Lorlatinib

ROS1 CD74-ROS1 0.5–2% Crizotinib

Ceritinib

SDC4-ROS1 Brigatinib

SLC34A2-ROS1 Lorlatinib

EZR-ROS1 Entrectinib

Cabozantinib

RET RET rearrangements 1–2% Vandetinibv

Cabozantinib

Lenvatinib

BLU-667

BRAF V600E 2.6% Dabrafenib + Tramafenib

V469A

D594G

G466A

HER2 Point mutations 1.8% Trastuzumab Afatinib

Amplifications Ado-trastuzumab Emtansine

LKB1 Mutations 8% Loss of LKB1 expression is associated with immune check point inhibitor
resistance

Homozygous deletion 30%

KEAP1 Point mutation 15% Clabetasol propionate

SW 157765

NFE2L2 Point mutation 2% Clabetasol propionate

SW 157765
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because of the modulation exerted by several cytotoxic agents on
different ICs (Table 3). For example, crizotinib that has been
approved for the NSCLC treatment, inhibits Kv11.1 the ion
channel responsible for the delayed-rectifier potassium current in
the heart. Such inhibition causes the prolongation of the QT interval
in the electrocardiogram, leading to potentially fatal polymorphic
ventricular tachycardia, the so-called torsades de pointes (Yap and
Camm, 2003; Sanguinetti and Tristani-Firouzi, 2006; Shopp et al.,
2014; Uchikawa et al., 2022). Interestingly, liposomes administration
ameliorates drug-induced effects on Kv11.1 and if they were given

prior to crizotinib the effects on the QT interval were decreased
(Shopp et al., 2014).

4 LC genetics

In the last years, several genetic alterations have been described
to occur in LC pathogenesis and some of them have been exploited
as novel targets for therapy especially in NSCLC (Table 2). Among
them, KRAS mutations have been shown to occur primarily in the

TABLE 3 Drugs commonly used for LC treatment affecting ICs.

Drug (LC treatment) Ion channel affected

cisplatin Kv1.1 Leanza et al. (2014)

Kv1.3 Leanza et al. (2014)

Kv1.5 Han et al. (2007)

Kv10.1 Hui et al. (2015)

Kv11.1 Zhang et al. (2012), Pillozzi et al. (2017)

Kir2.1 Liu et al. (2015), Rosa et al. (2018)

KCa1.1 Samuel et al. (2016)

STIM1 Gualdani et al. (2019)

TRPC1 Gualdani et al. (2019)

Chloride channels Zhang et al. (2018), Okada et al. (2019), Han et al. (2022)

paclitaxel Kv11.1 Chen et al. (2005)

etoposide Kv10.1 Agarwal et al. (2010)

Kir2.1 Rosa et al. (2018)

crizotinib Kv11.1 Shopp et al. (2014)

FIGURE 1
Classification of Potassium, Sodium, Calcium and Chloride channels. Created with BioRender.com.
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adenocarcinoma histotype at higher frequency in smokers with
respect to non-smokers (30% vs. 5%) (Judd et al., 2021). As in other
tumours, KRASmutations correlate with worse outcome due to the
acquired resistance to epidermal growth factor receptor (EGFR)
inhibitors (Cascetta et al., 2022). Moreover, mutations and
amplifications of the EGFR gene are more frequently observed
in women, nonsmokers, and people of Asian origin bearing an
adenocarcinoma (Herbst et al., 2008). Another gene frequently
amplified or mutated in LC is c-MET and also in this case targeted
therapies have been developed (Herbst et al., 2008). As concerning
tumour suppressor genes, the most important (i.e., Tp53, RB1 and
p16) are inactivated or mutated with similar frequencies in
adenocarcinoma and squamous cell carcinoma (roughly 50%,
15% and 65%) (Herbst et al., 2008). Moreover, tumour
suppressor genes are also frequently deleted, especially in
squamous cell carcinoma and the most frequently involved
chromosomes are 3p, 9p, and 17p (Herbst et al., 2008). EGFR is
overexpressed in NSCLC and similarly, HER-2/NEU is highly
expressed in a small percentage of cases and gene amplification
has also been detected (Testa et al., 2018).

SCLC shows a quite high mutation rate related to tobacco
carcinogens (Peifer et al., 2012). Several abnormalities have been
detected in SCLC, although none of them is specific for this tumour:
frequent inactivation of TP53, RB1 and PTEN, 3p deletion in the
region where the tumour suppressor gene FHIT is located, copy
number gain in 7p 22.3, MYC amplification (involving several genes
of the MYC family) (Voortman et al., 2010; George et al., 2015), low
frequency of activating mutations in KRAS, EGFR and PI3KCA
(Testa et al., 2018). Overall, a list of potential driver genes in SCLC
has been identified: TP53, RB1, PTEN, SLIT2, EP300, CREBBP,
MLL, EPHA7 and COBL (Peifer et al., 2012).

5 Ion channels in human cancer

It has been shown more than 30 years ago that cancer cells have
a more depolarized membrane potential compared to healthy cells
(Binggeli andWeinstein, 1986) and mounting evidences pointed out
that ion channels and transporters might represent novel potential
biomarkers in human cancers of different histogenesis, since their
expression is frequently dysregulated and association with clinico-
pathological features and outcome have been shown.

Several studies carried out in different solid tumours
demonstrated that ICs are frequently mis-expressed and play
important roles in the regulation of cancer cell behaviour. ICs
regulate several cellular processes, and some of them represent
hallmarks of cancer (Hanahan and Weinberg, 2000; Hanahan
and Weinberg, 2011). The contribute of ICs to cancer
development is complex and variegated as the ICs themselves
(Figure 1) and the interplay between different members has been
described. In fact, the occurrence and functional relevance of ICs
within macromolecular complexes occurs in normal and
pathological conditions (Heijman and Dobrev, 2018; Ponce-
Balbuena et al., 2018; Eichel et al., 2019). It has been shown that
in cancer cells ICs interact with different proteins with respect to
normal cells (Becchetti et al., 2022). Examples for that are the
Kv11.1/β1 integrin complex, selectively expressed in cancer cells
(Becchetti et al., 2017), Kv10.1/Orai1/SPCA2 (Badaoui et al., 2018;
Peretti et al., 2019), Kv10.1/Calmodulin (Marques-Carvalho et al.,
2016), Orai1/TRPC1/SK3 (Potier-Cartereau et al., 2022).

In this context, after proper validation, ICs could represent novel
cancer biomarkers (Lastraioli et al., 2015; Anderson et al., 2019).
Moreover, since they are located on the cell membranes ICs
represent potential targets to be exploited for diagnostic and
therapeutic purposes (Arcangeli et al., 2009).

5.1 Ion channels in LC

A transcriptomic analysis was carried out to compare the
expression of ion channel encoding genes in normal lung tissue
and LC (Ko et al., 2014a). Overall, 37 differentially expressed genes
were identified: ANO1, CACNA1C, CACNA1D, CACNA2D2,
CACNB3, CLCC1, CLCN3, CLCN7, CLIC3, CLIC4, CLIC5,
CLIC6, KCNAB1, KCNAB2, KCNJ2, KCNJ8, KCNE4, KCNK1,
KCNK3, KCNK5, KCNQ3, KCNT2, MCOLN1, MCOLN2,
MCOLN3, PKD1, PKD2, SCN4B, SCN7A, SCNN1B, SCNN1G,
TPCN1, TRPC1, TRPC6, TRPM2, TRPV2, and VDAC1. It should
be pointed out that, although included by Ko and others among the
IC encoding genes, some ofthem (namely, CLCC1, CLCN3, CLCN7,
CLIC3, CLIC4, CLIC5, and CLIC6) are not proper ion channel genes.
In order to investigate the prognostic relevance of the above-
mentioned genes, a risk score, based on the expression of the
differentially expressed genes, was calculated for each patient to
predict overall survival and recurrence-free survival in NSCLC.
Overall, 31 genes were differentially expressed between
adenocarcinoma and squamous cell carcinoma samples (Ko et al.,
2014a).

In both NSCLC and SCLC several ICs have been proven to exert
a biological role and, in some cases, also to have clinical relevance

FIGURE 2
Ion channels shown to be expressed in lung cancer. Created with
BioRender.com.

Frontiers in Pharmacology frontiersin.org05

Capitani et al. 10.3389/fphar.2023.1283623

http://BioRender.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1283623


TABLE 4 Ion channels expressed in NSCLC. + = expressed, ++ = overexpressed. EMT, epithelial-mesenchymal transition; TNM, Tumour Node Metastasis.

Channel type Gene
name

Channel
name

Expression (cell lines) Function (cell lines) Expression
(primary
tumours)

Clinical correlations

POTASSIUM KCNN4 KCa3.1 + Bulk et al. (2015), Bulk
et al. (2017), Bulk et al.
(2022); Xu et al. (2021)

Increased expression in more
aggressive cells Bulk et al.
(2015)

Regulation of ICAM-1
dependent cell-cell adhesion
between endothelial and cancer
cells Bulk et al. (2017)

Partial erlotinib resistance can
be overcome by channel
blockade Glaser et al. (2021)

Cell proliferation, migration,
invasiveness and tumorigenicity
Xu et al. (2021)

Regulation of the mitochondria
inner membrane potential Bulk
et al. (2022)

KCNJ2 Kir2.1 + Sakai et al. (2002) Cell growth and drug resistance
Liu et al. (2015)

KCNJ4 Kir2.3 ++ Wu and Yu (2019) ++ Wu and Yu
(2019)

Poor prognosis (Wu and Yu,
2019)

KCNJ14 Kir2.4 ++ Alasiri (2023)

KCNJ3 Kir3.1 + Plummer et al. (2005) ++ Takanami et al.
(2004)

Association with lymph node
metastasis, stage, negative
prognostic factor for overall
survival (Takanami et al., 2004)

KCNJ6 Kir3.2 + Plummer et al. (2005)

KCNJ9 Kir3.3 + Plummer et al. (2005)

KCNJ5 Kir3.4 + Plummer et al. (2005)

KCNA3 Kv1.3 + Jang et al. (2011a) Cell proliferation Jang et al.
(2011a)

+ Angi et al. (2023) Decrease with tumour stage
progression, associates with
patient prognosis (Angi et al.,
2023)

KCNC1 Kv3.1 + Song et al. (2018) Cell migration and invasiveness
Song et al. (2018)

KCNC4 Kv3.4 + Song et al. (2018) Cell migration and invasiveness
Song et al. (2018)

KCND2 Kv4.2 ++ Lu et al. (2021b) Poor prognosis (Lu et al.,
2021b)

KCNF1 Kv5.1 + Chen et al. (2023) Cell proliferation Chen et al.
(2023)

KCNQ1 Kv7.1 + Girault et al. (2014),
Chang et al. (2022)

Cell proliferation and migration
Girault et al. (2014)

++Girault et al.
(2014), Chang et al.
(2022)

Potential target for therapeutic
intervention (Girault et al.,
2014)

Independent Risk Factor
(Chang et al., 2022)

KCNS3 Kv9.3 + Lee et al. (2015) Cell proliferation Lee et al.
(2015)

Cell cycle Song et al. (2018)

KCNH1 Kv10.1 + Hemmerlein et al. (2006),
Restrepo-Angulo et al.

Upregulation during EMT
Restrepo-Angulo et al. (2011)

(Continued on following page)
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TABLE 4 (Continued) Ion channels expressed in NSCLC. + = expressed, ++ = overexpressed. EMT, epithelial-mesenchymal transition; TNM, Tumour Node
Metastasis.

Channel type Gene
name

Channel
name

Expression (cell lines) Function (cell lines) Expression
(primary
tumours)

Clinical correlations

(2011), Acuña-Macías et al.
(2015)

Cell proliferation
Acuña-Macías et al. (2015)

KCNH2 Kv11.1 + Glassmeier et al. (2012) Cell proliferation Glassmeier
et al. (2012)

KCNK2 K2P2.1 ++ Williams et al.
(2013)

KCNK3 K2P3.1 − Lin et al. (2022) Negative regulator of cell
proliferation Lin et al. (2022)

- Lin et al. (2022) Decreased expression
correlated with poor prognosis
(Lin et al., 2022)

KCNK5 K2P5.1 ++ Williams et al.
(2013)

KCNK12 K2P12.1 ++ Williams et al.
(2013)

KCNAB2 HKvbeta2 − Lyu et al. (2022) − Lyu et al. (2022) Decreased and associated with
poor prognosis, reduced
immune infiltration (Lyu et al.,
2022)

SODIUM SCN9A Nav1.7 ++ Campbell et al. (2013) Cell invasiveness Campbell
et al. (2013)

++ Campbell et al.
(2013)

Potential target for therapeutic
intervention and/or as a
diagnostic or prognostic
marker (Campbell et al., 2013)

CALCIUM TRPC1 TRPC1 + Gualdani et al. (2019) Cisplatin toxicity Gualdani et al.
(2019)

+ Jiang et al. (2011),
Jiang et al. (2013)

Differentiation (Jiang et al.,
2011)

TRPC3 TRPC3 + Jiang et al. (2011) Differentiation (Jiang et al.,
2011)

TRPC4 TRPC4 + Jiang et al. (2011) Differentiation (Jiang et al.,
2011)

SNPs Zhang et al.
(2016)

Increased risk (Zhang et al.,
2016)

TRPC6 TRPC6 + Yang et al. (2017) Cell proliferation Yang et al.
(2017)

+ Jiang et al. (2011) Differentiation (Jiang et al.,
2011)

TRPC7 TRPC7 SNPs Zhang et al.
(2016)

Increased risk (Zhang et al.,
2016)

TRPM2 TRPM2 + Almasi et al. (2019) Cell proliferation, apoptosis,
cell invasiveness Almasi et al.
(2019)

MCOLN3 TRPML3 + Kim et al. (2022) Drug resistance Kim et al.
(2022)

TRPM5 TRPM5 + Huang et al. (2017) Migration Huang et al. (2017)

TRPM7 TRPM7 + Chen et al. (2014) Migration Chen et al. (2014)

TRPM8 TRPM8 + Du et al. (2014) Migration Du et al. (2014)

TRPV3 TRPV3 ++ Li et al. (2016) Tumour progression,
companion drug target Li et al.
(2016)

CACNA1B Cav2.2 + Zhou et al. (2017) TNM, progression Zhou et al.
(2017)

ORAI 3 ORAI 3 + Ay et al. (2013) Cell proliferation Ay et al.
(2013)

++ Ay et al. (2013) High grade Ay et al. (2013)

(Continued on following page)
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TABLE 4 (Continued) Ion channels expressed in NSCLC. + = expressed, ++ = overexpressed. EMT, epithelial-mesenchymal transition; TNM, Tumour Node
Metastasis.

Channel type Gene
name

Channel
name

Expression (cell lines) Function (cell lines) Expression
(primary
tumours)

Clinical correlations

Chemoresistance induction in
CSC Daya et al. (2021)

STIM1 STIM1 + Gualdani et al. (2019) Cisplatin toxicity Gualdani et al.
(2019)

CHLORIDE CLCN3 ClC-3 + Chen et al. (2019) Drug resistance Chen et al.
(2019)

CLIC1 CLIC1 + Lee et al. (2019) Cell survival

LRRC8 VRAC + (He et al., 2010) Carboplatin-induced apoptosis
He et al. (2010)

ANIONS ANO1 ANO1 + Jia et al. (2015), Seo et al.
(2021)

Cell proliferation and
invasiveness Jia et al. (2015)

++ Jia et al. (2015) Potential target for therapeutic
intervention Jia et al. (2015)

Potential target for therapeutic
intervention Seo et al. (2021),
Jeong et al. (2022)

VDAC1 VDAC1 + Zhang et al. (2020) Potential target for therapeutic
intervention Zhang et al. (2020)

+ Grills et al. (2011),
Ko et al. (2014b)

Negative prognostic factor
Grills et al. (2011) also included
in a specific signature Ko et al.
(2014b)

TRANSPORTERS CHRNA5 α5-nAChR + Ma et al. (2014) Potential target for therapeutic
intervention Ma et al. (2014)

+ Falvella et al.
(2009)

p.Asp398Asn polymorphism in
the CHRNA5 gene is associated
with LC risk Falvella et al.
(2010)

CHRNA7 α7-nAChR + Ma et al. (2014) Cell proliferation, migration
and invasiveness Ma et al.
(2014)

++ Ma et al. (2019) Negative prognostic factor Ma
et al. (2019)

TABLE 5 Ion channels expressed in SCLC. + = expressed, ++ = overexpressed.

Channel
type

Gene
name

Channel
name

Expression
(cell lines)

Function (cell lines) Expression
(primary tumors)

Clinical correlations

POTASSIUM KCNJ2 Kir2.1 + Liu et al. (2015) Cell proliferation and MDR
modulation Liu et al. (2015)

++ Liu et al. (2015) Correlation with stage and response to
chemotherapy, prognostic factor Liu

et al. (2015)

KCNJ3 Kir3.1 + Plummer et al.
(2005)

KCNJ6 Kir3.2 + Plummer et al.
(2005)

KCNJ9 Kir3.3 + Plummer et al.
(2005)

KCNJ5 Kir3.4 + Plummer et al.
(2005)

KCNH2 Kv11.1 + Glassmeier et al.
(2012)

Cell proliferation
Glassmeier et al. (2012)

KCNMA1 gBK ++ Hoa et al. (2014) Late-stage marker Hoa et al. (2014)

CALCIUM TRPA1 TRPA1 + Schaefer et al.
(2013)

Cell survival Schaefer et al.
(2013)

CACNA1A P-type + Barry et al. (1995)

Frontiers in Pharmacology frontiersin.org08

Capitani et al. 10.3389/fphar.2023.1283623

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1283623


(Figure 2; Tables 4, 5) [see also the review by Bulk and others (Bulk
et al., 2021)].

5.1.1 Ion channels in lung carcinogenesis
Lu and others performed an in silico analysis showing that six

ion channel genes (GJB2, CACNA1D, KCNQ1, SCNN1B, SCNN1G,
and TRPV6) were differentially expressed in lung tumorigenesis (Lu
A. et al., 2021). Among the six genes, lower expression of SCNN1B
(through the hypermethylation of the promoter region) was
associated with shorter overall survival. Also, the inactivation of
FXYD3, an IC-related protein, was proven long ago to play a role in
LC progression (Okudela et al., 2009). Among TRP channels, it was
demonstrated that TRPM7 mRNA and protein levels are regulated
by EGF, an activator of migration in LC (Gao et al., 2011). In general,
ICs modulate different processes within the LC cell (proliferation,
migration, invasiveness, drug resistance) thus their expression
appears to be relevant in all the phases of LC carcinogenesis
(Tables 4, 5). A scheme showing the main ICs involved in the
different cell processes is reported in Figure 3.

In some cases, ICs are also regulated by LC risk factors. For
example, nicotinic acetylcholine receptors are activated by
compounds present in tobacco, such as nicotine and 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (Grando, 2014)
(see also paragraph 5.1.6). Similarly, miners are exposed to radon
that represents a known risk factor for LC and it was demonstrated

through a genome wide association study (GWAS) that six markers
within the CHRNA5 and CHRNB4 genes, encoding the nicotinic
cholinergic receptor alpha 5 and beta 4 subunits respectively, are
associated with higher LC risk (Rosenberger et al., 2018). Arsenic,
another well-known LC risk factor, modulates several potassium
channels, namely, KCNA5 (positively associated with arsenic levels),
CACNA1, KCNH2, KCNQ1, and KCNE1 (downregulated by
arsenic) (Mo et al., 2011). Ionizing radiations are also an
example of a LC risk factor that is associated with ICs. In
particular, it was demonstrated that TRPM2 and
TRPV1 channels are involved in the responses to γ- and UVB-
irradiation DNA damage (Masumoto et al., 2013).

5.1.2 Potassium channels in LC
Recently, an in silico study addressing the clinical relevance of

potassium channels in LC was published (Ko et al., 2019). The
Authors identified 10 deregulated genes (5 up- and
5 downregulated) comparing LC and healthy lung tissue. A risk
scoring was defined taking into account this 10 gene signature in
order to predict clinical outcome independently from standard
clinical prognostic factors, that might therefore be used along
with conventional factors.

Potassium channels are a multi-gene family composed of four
different subfamilies: voltage-gated potassium channels (VGKCs),
inward rectifiers (IRK), two-pore domains (K2P) and calcium-

FIGURE 3
Ion channels involved in lung cancer progression. Created with BioRender.com.
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activated channels (KCa) (Figure 1). In LC, several members of each
subfamily have been detected and their role was investigated.

Among VGKC, different members (Kv1.3, Kv3.1, Kv3.4, Kv4.2,
Kv5.1, Kv7.1, Kv9.3, Kv10.1, and Kv11.1) are involved in LC cell
proliferation, migration and invasion (Jang et al., 2011a; Restrepo-
Angulo et al., 2011; Glassmeier et al., 2012; Girault et al., 2014;
Acuña-Macías et al., 2015; Lee et al., 2015; Chen et al., 2023) and
some of them (Kv1.3, Kv4.2, and Kv7.1) have clinical relevance in
NSCLC (Girault et al., 2014; Lu X. et al., 2021; Chang et al., 2022;
Angi et al., 2023) (Table 4).

Kv11.1 channels are expressed in SCLC cell lines and they were
shown to regulate cell proliferation (Glassmeier et al., 2012). Glioma
Big PotassiumChannels (gBK) are expressed in advanced SCLC thus
representing a late-stage marker for this condition (Hoa et al., 2014)
(Table 5).

Members of the IRK family were also shown to be involved in
LC. In particular, Kir2.1, Kir2.4, Kir3.2, Kir3.3, and Kir3.4 are
expressed in NSCLC (Sakai et al., 2002; Plummer et al., 2005;
Wu and Yu, 2019) and SCLC (Plummer et al., 2005; Liu et al.,
2015) cell lines (Tables 4, 5). Other members of the same family
(Kir2.3 and Kir2.4) are expressed in primary LC (Takanami et al.,
2004; Wu and Yu, 2019; Alasiri, 2023) and are associated with poor
prognosis (Takanami et al., 2004; Wu and Yu, 2019) and lymph
node involvement (Takanami et al., 2004) (Tables 4, 5).
Interestingly, Kir2.1 regulates cell proliferation and multidrug
resistance (MDR) in both NSCLC and SCLC cells (Liu et al.,
2015; Wu and Yu, 2019) and also represents a prognostic factor,

being overexpressed in primary SCLC and correlating with stage and
response to chemotherapy (Liu et al., 2015) (Tables 4, 5).

The K2P subfamily is also involved in LC pathogenesis and it was
shown that K2P3.1 is downregulated in NSCLC cells (where it
negatively regulates cell proliferation) and in primary tumours
where it is associated with poor prognosis (Lin et al., 2022). On
the other hand, K2P2.1, K2P5.1, and K2P12.1 are over-expressed in
primary NSCLC (Williams et al., 2013) (Table 4).

The only member of the Calcium activated subfamily that has
been shown to be expressed in NSCLC is KCa3.1 (Bulk et al., 2015;
2017; 2022; Xu et al., 2021) (Table 4). In particular, increased
expression of the channel was detected in more aggressive cells
(Bulk et al., 2015) where it also regulates ICAM-1 dependent cell-cell
adhesion between endothelial and cancer cells (Bulk et al., 2017).
Moreover, KCa3.1 regulates cell proliferation, migration,
invasiveness and tumorigenicity (Xu et al., 2021) and the
mitochondria inner membrane potential (Bulk et al., 2022)
(Table 4). Interestingly, it was shown that blocking the channel
results in partial overcome of erlotinib resistance (Glaser et al., 2021)
(Table 4).

5.1.3 Sodium channels in LC
Voltage Gated Sodium Channels of the Voltage-gated subfamily

(Figure 1) have been shown to be expressed in NSCLC cells, where
they possibly regulate tumour cell invasiveness, as in other tumour
types (Onganer and Djamgoz, 2005; Fraser et al., 2014; Nelson et al.,
2014; Djamgoz et al., 2019; Haworth and Brackenbury, 2019).

FIGURE 4
Cartoon summarizing the role and relevance of ion channels in lung cancer and their possible exploitation for clinical purposes. Created with
BioRender.com.
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Interestingly, the Nav blocker tetrodotoxin reduces the invasiveness
of NSCLC cell lines (Roger et al., 2007; Campbell et al., 2013). In
addition, the role of Nav1.7 channel, encoded by SCN9A gene, was
investigated (Campbell et al., 2013). The Authors showed an EGFR-
mediated transcriptional regulation of the channel expression,
responsible of the invasive behaviour of NSCLC cells. The
administration of the EGFR blocker gefitinib also affects
Nav1.7 at the mRNA and protein level, as well as the sodium
current (Campbell et al., 2013). Moreover, the
immunohistochemical evaluation of primary samples suggested
that Nav1.7 expression could have clinical relevance in NSCLC.

5.1.4 Calcium channels in LC
The expression of both voltage-gated and ligand-gated calcium

channels (Figure 1) has been described in LC (Tables 4, 5). The most
represented are TRP (Transient Receptor Potential) channels. In
particular, TRPC1, TRPC6 TRPM2, TRPML3, TRPM5, TRPM7,
and TRPM8 were found to be expressed in NSCLC cells (Chen et al.,
2014; Du et al., 2014; Huang et al., 2017; Yang et al., 2017; Almasi
et al., 2019; Gualdani et al., 2019; Kim et al., 2022). TRPC1 mediates
cisplatin toxicity (Gualdani et al., 2019), TRPC6 and TRPM2 are
involved in cell proliferation (Yang et al., 2017; Almasi et al., 2019),
TRPM5, TRPM7 and TRPM8 modulate cell migration (Chen et al.,
2014; Du et al., 2014; Huang et al., 2017) and TRPML3 is involved in
MDR (Kim et al., 2022).

Members of the TRP family are also expressed in primary
NSCLC: TRPC3 and TRPC6 (associated with differentiation)
(Jiang et al., 2011), TRPC4 and TRPC7 (whose single nucleotide
polymorphisms, SNPs) are associated with increased risk of LC)
(Zhang et al., 2016). TRPV3 are overexpressed in primary NSCLC
and have been proposed as drug companion (Li et al., 2016). In
SCLC TRPA1 plays a pivotal role in cell survival (Schaefer et al.,
2013) (Table 5).

The only member of the voltage-gated subfamily that has been
detected in NSCLC is Cav2.2, overexpressed in primary tumours
and associated with TNM stage and tumour progression (Zhou et al.,
2017). In SCLC cell lines P-type calcium channels have been
detected (Barry et al., 1995) (Table 5).

Two members of the Store-Operated subfamily of ligand-gated
channels (ORAI 3 and STIM1) were also found to be expressed in
NSCLC cells regulating cell proliferation (ORAI 3) (Ay et al., 2013)
and cisplatin toxicity (STIM1) (Gualdani et al., 2019) (Table 4).
Moreover, ORAI3 is involved in the chemoresistance induction of
Cancer Stem Cells (CSC) (Daya et al., 2021) and is associated with
high grade primary lesions (Ay et al., 2013).

5.1.5 Chloride and anion channels in LC
Among Chloride channels (Figure 1), three members have been

shown to be expressed in NSCLC cells: the Chloride Voltage-gated
channel 3 (ClC-3), functioning as a Chloride-Hydrogen antiporter
(associated to MDR) (Chen et al., 2019), CLIC1 (that mediates cell
survival) (Lee et al., 2019) and VRAC (involved in Carboplatin-
induced apoptosis) (He et al., 2010) (Table 4).

The voltage-gated calcium-activated anion channel Anoctamin-
1 (ANO1) is expressed in both NSCLC cell lines and primary
tumours, mediating cell proliferation and invasiveness (Jia et al.,
2015) and representing a potential therapeutic target (Jia et al., 2015;
Seo et al., 2021; Jeong et al., 2022).

The voltage-dependent anion channel type 1 (VDAC1) was
found to be expressed in NSCLC cells and was proposed as a
therapeutic target (Zhang et al., 2020). Accordingly, a meta-
analysis of surgically resected NSCLC led to identify VDAC1 as
one of the most relevant genes. In particular, the channel was
associated with poor overall survival and was an independent
prognostic factor (Grills et al., 2011). Moreover,
VDAC1 expression levels were upregulated in tumours compared
with normal tissue including lung (Ko et al., 2014b).
44 VDAC1 interacting genes were identified and included (along
with VDAC1) into a gene signature that turned out to be a
prognostic biomarker to predict recurrence-free survival (Ko
et al., 2014b).

5.1.6 Nicotinic acetylcholine receptors in LC
The nicotinic acetylcholine receptors (nAChRs) are the most

studied channel type in LC (Table 4) (Falvella et al., 2009) and their
relevance in LC carcinogenesis was hypothesized long ago, since
they are activated by compounds present in tobacco, such as nicotine
and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (Grando,
2014). nAChRs are a heterogeneous IC family comprising α and
β subunits expressed in neurons, bronchial cells and keratinocytes
(Egleton et al., 2008).

GWAS showed that the 15q25 nAChR gene cluster CHRNA5-
A3-B4 is associated with nicotine dependence and LC (Amos et al.,
2008). Moreover, the expression of the CHRNA5 gene encoding α5-
nAchR was found to be increased in LC tissue and the p.Asp398Asn
polymorphism was associated with LC risk (Falvella et al., 2010).
Interestingly, the expression of α5-nAchR correlates with the
hypoxia inducible factor (HIF) 1α in NSCLC (Ma et al., 2014)
and since a α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-
induced tumor cell proliferation, α5-nAChR might represent a
potential anticancer target in LC (Ma et al., 2014). The activation
of nAChR by nicotine increases the migration and invasiveness of
A549 LC cells (Sun and Ma, 2015) while silencing reverses the
process (Zhang et al., 2017). The α7-nAChR subunit is upregulated
in NSCLC tissue samples (Ma et al., 2019) and an in silico analysis
indicated that this correlates with poor outcome.

5.2 Ion channels as therapeutic targets

As previously stated, LC treatment nowadays can benefit from
molecular targeting (including the application of small molecule
tyrosine kinase inhibitors and monoclonal antibodies) that is
generally well tolerated by patients (Bittner et al., 2014). Since
ICs have been proven to play major roles in LC pathogenesis and
progression their relevance as potential therapeutic targets was also
evaluated. Several drugs acting as IC blocker exist and some of them
have also been tested in clinical trials for other malignancies. For
example, the opioid U50488H was shown to promote
chemosensitivity, to inhibit proliferation and growth of NSCLC
(Kuzumaki et al., 2012) and to block Kir3.1–4 channels (Plummer
et al., 2005; D’Amico et al., 2013). Senicapoc, an inhibitor of
KCa3.1 channels, was used in a phase III clinical trial for sickle
cell anemia (Ataga et al., 2011), and it was also shown to reduce
tumor growth in mice xenografted with A549 NSCLC cells (Bulk
et al., 2015). The same occurs for another potassium channel blocker
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(dendrotoxin-κ) acting on Kv11.1 (Jang et al., 2011b). Margatoxin,
an inhibitor of Kv1.3 potassium channel, exerts an antiproliferative
effect on A549 cells (Jang et al., 2011a). The TRPV6 inhibitor SOR-
C13 was used in a phase I clinical trial for the treatment of advanced
solid tumors (Fu et al., 2017). IC inhibitors have also been used in
combination therapy with chemotherapeutic agents as the
Cav3.1 channel blocker in A549 cells (Byun et al., 2016). This
aspect is particularly relevant since a combined therapy might
overcome the resistance of tyrosine kinase inhibitors as gefitinib
(Jeon et al., 2012), or reduce chemotherapy side effects. On the other
hand, a general problem to be faced when using K+ channel blockers
is represented by their relevance and role in excitable cells (Arcangeli
and Becchetti, 2010). An example is represented by Kv11.1 that plays
a pivotal role in the repolarization phase following the action
potential in cardiomyocytes (Sanguinetti and Tristani-Firouzi,
2006). For this reason, blocking Kv11.1 causes the prolongation
of the QT interval thus leading to ventricular arrhythmia and
fibrillation with the generation of torsade de pointes (Witchel and
Hancox, 2000). The main Kv11.1 blockers belong to class III
antiarrhythmic drugs, nevertheless the channel is also blocked by
other types of compounds, such as antibiotics (erythromycin),
antihistaminics (terfenadine), antipsychotics (sertindole) and
prokinetics (cisapride). Importantly, not all Kv11.1 blockers are
arrhythmogenic (Wallis, 2010), examples are represented by
Verapamil and sertindole (D’Amico et al., 2013). In order to
overcome the cardiotoxicity induced by IC blockers different
strategies can be applied (D’Amico et al., 2013): i) using non
torsadogenic blockers; ii) using state-specific blockers such as
R-roscovitine (Ganapathi et al., 2009); iii) using tumour-specific
drugs such as CD 160130 (Gasparoli et al., 2015); iv) using
monoclonal antibodies (Iorio et al., 2019) and v) using bispecific
antibodies directed against tumour-specific macromolecular
complexes such as the Kv11.1/β1 integrin complex (Duranti
et al., 2021a; 2021b; Iorio et al., 2022; Lottini et al., 2023).

6 Concluding remarks

Lung cancer is an important health issue worldwide due to the
high incidence and mortality, especially for SCLC, thus, searching
for novel biomarkers and targets for LC is mandatory.

It is now known that ICs control several cancer hallmarks and
could therefore serve as molecular markers in cancer. Moreover,
blocking the activity of ICs impairs tumour growth, paving the road
to the pharmaceutical exploitation of ICs. Due to their peculiar

localization, ICs can be also easily detected and blocked by either
drugs or antibodies. In the context of LC, the relevance of ICs is
multiple (see the cartoon depicted in Figure 4) since some of them
are activated by known risk factors andmight be the molecular cause
of cardiotoxicity induced by therapeutic agents commonly used in
LC; on the other hand, ICs modulate key cell processes and
contribute to LC progression. Finally, ICs might be exploited for
diagnostic and prognostic purposes, as well as being used as novel
therapeutic targets.
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