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Autism spectrum disorder (ASD) may affect family and social life profoundly.
Although there is no selective pharmacotherapy for ASD, the Food and Drug
Administration (FDA) has recommended risperidone/aripiprazole to treat the
associated symptoms of ASD, such as agitation/irritability. Strong associations
of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and
DRD2, with risperidone-induced hyperprolactinemia have been found in children
with ASD, but such strong genetic associations have not been found directly for
aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug–drug
interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect
the safety or effectiveness of risperidone/aripiprazole, which should be assessed
in future clinical studies in children with ASD. Reimbursement, knowledge, and
education of healthcare professionals are the key obstacles preventing the
successful implementation of ASD pharmacogenomics into routine clinical
practice. The preparation of national and international PGx-based dosing
guidelines for risperidone/aripiprazole based on robust evidence may advance
precision medicine for ASD.
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1 Introduction

Autism spectrum disorder (ASD) can be categorized as
“syndromic ASD,” which is associated with morphological signs
or symptoms, e.g., restricted, repetitive, and stereotyped patterns of
behavior, etc., or as “non-syndromic ASD,” alternatively termed
idiopathic ASD, which has no associated signs or symptoms
(Genovese and Butler, 2020; Aishworiya et al., 2022). The core
clinical features of ASD are difficulties in social communication,
restricted or fixated interests, and language delays or speech
difficulties (Sauer et al., 2021). ASD may affect family and social
life profoundly; therefore, it is important to screen all infants and
toddlers to identify early signs of ASD at 9 months, 18 months, and
again at 24 or 30 months of age, as recommended by the American
Academy of Pediatrics (AAP). Well-established and validated rating
or assessment scales should be applied for the diagnosis of ASD,
such as the scales of the Autism Diagnostic Interview-Revised (ADI-
R) and the AutismDiagnostic Observation Schedule, Second Edition
(ADOS-2). Along with the consideration of the history and clinical
presentation of the child, these scales should be applied by trained
specialists for the evaluation of ASD (Genovese and Butler, 2020;
Aishworiya et al., 2022; Biswas et al., 2022b).

Another well-known 20-point assessment scale is the Modified
Checklist for Autism in Toddlers-Revised (M-CHAT-R), developed by
the American Association for Child and Adolescent Psychiatry
(AACAP). The AACAP recommends checking the risk of ASD
through surveillance using this assessment scale for children at the
age of 18 and 24 months or when such assessment becomes necessary
(Subramanyam et al., 2019). The child is predicted to be at low risk,
medium risk, or high risk of ASD if the assessment total score is 0–2,
3–7, or 8–20, respectively. Early screening of symptomatic biomarkers,
including developmental, behavioral, cognitive, and body movement/
motor developmental-related markers, as described by Subramanyam
et al. (2019), may help detect significant ASD symptoms. A thorough
diagnostic evaluation is warranted if early detection of ASD symptoms
is confirmed (Subramanyam et al., 2019). Recently, Magellan Health
adopted clinical practice guidelines for the assessment and treatment of
children with ASD that extensively discuss the epidemiology, diagnosis,
comorbidity, assessment, pharmacotherapy, and educational and
behavioral interventions (Ghani et al., 2020).

Genetic factors governing the predisposition of ASD are under
investigation and continue to be firmly established. Some copy
number variations (CNVs) may have been associated with the
increased risk of developing ASD (Bernier et al., 2016; Zarrei
et al., 2019; Bauleo et al., 2021; Costa et al., 2022). A recent
whole-exome sequencing study identified one de novo causative
variant (c.2951G>A) in the FGD6 gene (OMIM ID: 613520) in Thai
ASD patients (Thongnak et al., 2018).

As reviewed by the WHO in 2012, the estimated prevalence of
ASD was ~1% globally, although the prevalence rate has been
slightly higher (~1·5%–2%) in recent years, as revealed by Lord
et al. (2018), DeVane et al. (2019), Turner (2020), and Biswas et al.
(2022b). In most developed countries, the distribution of ASD
patients shows similar patterns; however, it is comparatively less
prevalent in low- and lower-middle-income countries (Biswas et al.,
2022b). The increase in the prevalence rate in Western countries
over the past several decades has been partly due to changes in
diagnostic methods and the inclusion criteria of ASD.

Approximately 1 out of 59 children was diagnosed with ASD in
the United States of America, and 205,200 children in Australia were
diagnosed with ASD in 2018, which represents a ~25% increase in
the prevalence rate than that reported in 2015 (Lord et al., 2018;
Hyman et al., 2020; Turner, 2020).

However, studies collecting epidemiological data relevant to
ASD from low- and lower-middle-income countries are very
limited (Hyman et al., 2020). The prevalence rate of ASD in
many of these countries is still unknown (Elsabbagh et al., 2012).

There may be some comorbidities or clinical features associated
with ASD, including electroencephalogram (EEG) abnormalities with
or without epilepsy, intellectual disability (ID), and abnormal findings
onmagnetic resonance imaging (MRI). Approximately 10% of children
with ASD have microcephaly, 28% have attention-deficit/hyperactivity
disorder (ADHD), 20% have anxiety disorders, 13% have insomnia
disorders, 11% have depressive disorders, 9% have
obsessive–compulsive disorder, 5% have bipolar disorders, and 4%
have schizophrenia spectrum disorders, as described in some studies.
Head enlargement is also common in children with ASD, along with
higher brain volumes, especially in the frontal lobes (Genovese and
Butler, 2020; Turner, 2020).

Pharmacogenomics (PGx) aims to optimize the overall safety
and effectiveness of many clinically recommended conventional
medications, considering the genetic variants of drug-
metabolizing enzymes, such as cytochrome P450 (CYP) enzymes,
or transporter biomolecules affecting the pharmacokinetic or
pharmacodynamic properties of the drugs, as evidenced in
various studies (Roden et al., 2006; Somogy, 2008; Whirl-Carrillo
et al., 2012; Ahmed et al., 2016; Collins et al., 2016; Zhou et al., 2017;
Chidambaran and Sadhasivam, 2018; Biswas et al., 2023). It is now
well recognized that a ‘one-size-fits-all’ approach will not be effective
for many clinically important medications for certain groups of
patients carrying either CYP or transporter genetic variants. Instead,
a more personalized treatment approach, called precision medicine,
achieved through considerations of PGx, is now clinically feasible
and operational in many parts of the world (Collins and Varmus,
2015; Relling, 2015; Relling and Evans, 2015; Weinshilboum and
Wang, 2017; Blagec et al., 2018; Biswas et al., 2021a; Biswas, 2021;
Gong et al., 2021; Sukasem et al., 2023). This narrative review aims to
address the therapeutic guidelines, pharmacokinetic/
pharmacodynamic properties of ASD medications, current
evidence of PGx for ASD medications, and non-genetic factors
affecting the safety or effectiveness of ASD medications.

2 Therapeutic guidelines for ASD

ASD, with its complex biological traits, can be difficult to
diagnose, especially at the initial stage. Therefore, clinical
treatments aimed at compensating for the symptoms associated
with ASD are not straightforward. Currently, there are no robust
guidelines to follow for ameliorating the symptoms of ASD.
However, psychostimulants, atypical antipsychotics,
antidepressants, and alpha-2 adrenergic receptor agonists are
commonly used to treat core clinical symptoms or manage the
symptoms of comorbid conditions in children and adolescents with
ASD, as reported by Sharma et al. (2018). The United States Food
and Drug Administration (FDA) has approved two drugs,
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risperidone and aripiprazole, not for the treatment of ASD directly
but for alleviating the irritability or agitation symptoms associated
with ASD in children and adolescents aged 5–16 years. Risperidone
was approved in 2006 by the FDA at a typical dose of 1–3 mg/day. In
2009, aripiprazole was ratified by the FDA at a typical dose of up to
15 mg/day (Riesgo, R., Gottfried, C., & Becker, 2013; Lord et al.,
2018; DeVane et al., 2019; Hongkaew et al., 2021b; Biswas
et al., 2022b).

3 Clinical problems in ASD treatment

There is no selective therapy for treating the core symptoms of
ASD; however, co-occurring health problems commonly reported in
ASD, such as attention-deficit/hyperactivity disorder, irritability,
agitation, epilepsy, sleep disorders, anxiety, and depression, are
usually treated with supportive treatments (Howes et al., 2018;
Biswas et al., 2022b). For example, risperidone/aripiprazole is
commonly used as a first-line therapy to treat irritability or
agitation associated with ASD. However, several adverse effects, e.g.,
weight gain, increased prolactin level in the blood (hyperprolactinemia),
hyperuricemia, leptin disturbance, insulin resistance, and
extrapyramidal effects, are commonly reported with the use of
risperidone/aripiprazole in children with ASD (Germann et al., 2012;
Vanwong et al., 2016c; 2020; Shafiq and Pringsheim, 2018; Aishworiya
et al., 2022; Biswas et al., 2022b). Patients might also be at risk of the
therapeutic ineffectiveness of the drug. For example, risperidone can be
metabolized by the CYP2D6 enzyme, and some phenotypes are
potentially being considered CYP2D6 ultra-rapid metabolizers due
to the rapid clearance of this drug from the body, as described by
Biswas et al. (2022b).

4 Psychopharmacological treatments
for ASD

Although the core treatment of ASD is largely dependent on
effective behavioral interventions, several potential supportive
treatments targeting the underlying neurological disorders of
ASD have been the mainstay of ASD management over the last
few years (Aishworiya et al., 2022). It has been reported that
approximately two-thirds of adolescent ASD patients have been
treated with psychotropic medications, especially those diagnosed
with neuropsychological problems. Approximately 70% of ASD
patients have been found to have several other problems, such as
ADHD, irritability, aggression, and mood and anxiety issues,
warranting the use of psychotropic medications in these patients
(Simonoff et al., 2008; Levy et al., 2010; Feroe et al., 2021; Aishworiya
et al., 2022). The following medications are frequently prescribed to
ASD children (Aishworiya et al., 2022).

Risperidone: This drug was approved by the FDA in 2006 for
children with ASD. It can be prescribed for children older than
5 years of age to reduce the irritability associated with ASD (Riesgo,
R., Gottfried, C., & Becker, 2013; Lord et al., 2018; DeVane et al.,
2019; Hongkaew et al., 2021b; Biswas et al., 2022b).

Aripiprazole: The FDA approved aripiprazole in 2009 for ASD
children who were 6–17 years of age for reducing irritability (Owen
et al., 2009; Riesgo, R., Gottfried, C., & Becker, 2013; Lord et al., 2018;
DeVane et al., 2019; Hongkaew et al., 2021b; Aishworiya et al., 2022;
Biswas et al., 2022b).

Serotonin reuptake inhibitors, anti-anxiety medications, or
stimulants: Although the FDA has not recommended the use of
selective serotonin reuptake inhibitors (SSRIs, e.g., sertraline,
citalopram, fluoxetine, and venlafaxine), tricyclic antidepressants

FIGURE 1
Metabolic pathway of risperidone. This figure is adapted from Biswas et al., (Biswas et al., 2022b).
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(TCAs, e.g., amitriptyline and nortriptyline), or stimulants (e.g.,
amphetamine and methylphenidate) for ASD, some studies have
suggested using these medications for certain clinical benefits
(Aishworiya et al., 2022). For example, SSRIs may stimulate
neurogenesis and produce a neuroprotection effect in ASD
children; therefore, some clinicians prefer to use these
medications, especially to treat anxiety, mood issues, and
irritability associated with ASD (Aishworiya et al., 2022).

Anticonvulsants: Almost one-third of people with ASD have
seizures or seizure disorders (Hirota et al., 2014; Besag and Vasey,
2021). Antiepileptic drugs, e.g., carbamazepine and lamotrigine, are
commonly prescribed for ASD alongside seizures or seizure disorders.
Clinical effectiveness remains controversial (Hirota et al., 2014).

5 Risperidone

5.1 Pharmacokinetics of risperidone

The metabolic pathway of risperidone (a pro-drug) was
extensively discussed in our previous review (Biswas et al.,
2022b). In short, it is preferentially metabolized by CYP2D6 to a
greater extent, whereas CYP3A4/5 enzymes might play a minor role
in producing 9-hydroxyrisperidone, known as paliperidone, which
is a pharmacologically active moiety (Fang et al., 1999; Berecz et al.,
2004; Corena-McLeod, 2015; Puangpetch et al., 2016; Biswas et al.,
2022b) (Figure 1).

Risperidone may also act as a substrate and an inhibitor of
P-glycoprotein (P-gp), as reported in recent in vitro studies
(Puangpetch et al., 2016; Soria-Chacartegui et al., 2021).
Furthermore, UGT1A1 may also be potentially involved in the
metabolic pathway of risperidone since an association between
UGT1A1 genetic polymorphisms and risperidone-induced
hyperprolactinemia has been established in a clinical study in
Thailand (Hongkaew et al., 2018).

5.2 Pharmacodynamics of risperidone

Risperidone primarily antagonizes the serotonergic (5-
HT2A) and dopaminergic (D2) receptors in the brain,
although the exact mechanism is not yet fully understood.
Risperidone binds ~10–20-fold more preferentially to 5-HT2A

receptors than to D2 receptors, and it is considered a potent 5-
HT2A receptor antagonist (Leysen et al., 1988; Fenton and Scott,
2005; Canitano and Scandurra, 2008; Kemp et al., 2009;
Germann et al., 2012; Corena-McLeod, 2015; Puangpetch
et al., 2016; Chopko and Lindsley, 2018; Biswas et al., 2022b).
The mechanism by which risperidone reduces associated
symptoms of ASD was discussed in detail in our previous
review (Biswas et al., 2022b), as shown in Figure 2. Other
pharmacodynamic targets, such as brain-derived neurotrophic
factor (BDNF) and leptin (LEP), may also be involved in
risperidone-induced insulin resistance (Figure 2).

FIGURE 2
Pharmacodynamics of risperidone. This figure is adapted from Biswas et al., (Biswas et al., 2022b).
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5.3 Association of BDNF and leptin genetic
variants with insulin resistance

The BDNF gene (OMIM ID: 113505) encoding brain-derived
neurotrophic factor (BDNF) and the LEP gene (OMIM ID: 164160)
encoding leptin (LEP) were found to have a significant association
with insulin resistance in ASD patients taking risperidone,
suggesting a genetic biomarker for predicting insulin resistance in
ASD patients. This association must be replicated in future studies
(Sukasem et al., 2018). BDNF has been reported to influence
glucose–insulin homeostasis (Tsuchida et al., 2001). Previous
studies have reported that decreased BDNF concentrations are
found in type 2 diabetes patients (Nakagawa et al., 2000; Krabbe
et al., 2007). Interestingly, administration of risperidone has been
associated with decreased BDNF levels in the rat brain (Angelucci
et al., 2000). The reduction in brain BDNF after being treated with
risperidone, along with BDNF gene polymorphisms, might be a part
of the mechanism causing risperidone-induced type 2 diabetes in
people with autism spectrum disorder.

The LEP hormone is a regulator of glucose homeostasis and
insulin resistance (Park and Ahima, 2015). Risperidone could reduce
both leptin-induced signal transducer and activator of transcription
3 (STAT3) phosphorylation and insulin-mediated protein kinase B
activation, which could result in LEP and insulin resistance (Piao
et al., 2014). Genetic polymorphisms in LEPmay affect the safety of
risperidone. Although not widely assessed clinically, one study
established an association between a SNP of LEP (rs7799039)
and an increased risk of weight gain in ASD patients taking
risperidone (Dos Santos-Júnior et al., 2016; Biswas et al., 2022b).
Since the associations have not yet been assessed and replicated in
other studies, further studies are needed to confirm the associations

of BDNF or LEP genetic variants with insulin resistance/weight gain
in ASD patients treated with risperidone.

5.4 Association of INSIG2 and SREBF2
genetic variants with dyslipidemia

Sterol regulatory element binding transcription factor 2 (SREBF2)
gene (OMIM ID: 600481) and insulin-induced gene2 (INSIG2)
(OMIM ID: 608660) polymorphisms were found to be associated
with dyslipidemia in patients treated with risperidone (Vanwong
et al., 2021). The SREBF2 and INSIG2 genes are involved in the
regulation of lipid biosynthesis (DeBose-Boyd and Ye, 2018).
Risperidone stimulates both lipogenesis and cholesterogenesis
through INSIG2 inhibition and the activation of
SREBP2 expression (Cai et al., 2015). SREBF2 and INSIG2 might
be candidate genes for dyslipidemia in people with autism spectrum
disorder treated with risperidone. However, it is necessary to
replicate such associations in future studies.

5.5 Clinical outcomes: response and adverse
drug reactions of risperidone

The clinical responses and adverse effects of risperidone
largely depend on the functional activity of the
CYP2D6 enzyme, since risperidone is mainly metabolized by
CYP2D6. Some of the less-serious adverse effects of risperidone
that are commonly reported are insomnia, anxiety, decreased
libido, sedation, dystonia, blurred vision, tachycardia,
hypotension/hypertension, and musculoskeletal pain (Soria-

FIGURE 3
Metabolic pathway of aripiprazole.
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Chacartegui et al., 2021; Biswas et al., 2022b). However, the more
serious adverse effects of risperidone are weight gain, insulin
resistance, hyperprolactinemia, and extrapyramidal effects.
These adverse effects may be governed by genetic variants
modifying the pharmacokinetic or pharmacodynamic
properties of risperidone (Biswas et al., 2022b).

6 Aripiprazole

Aripiprazole, like risperidone, is an atypical antipsychotic
mainly used to treat schizophrenia and bipolar disorder;
however, it can be used for the management of major depressive
disorder and irritability associated with ASD (Dean and
Kane, 2012).

6.1 Pharmacokinetics of aripiprazole

Aripiprazole is extensively metabolized in the liver,
predominantly by the CYP2D6 and CYP3A4 metabolic enzymes,
and converted to dehydroaripiprazole (major metabolite) (Figure 3).
The pharmacological activity of aripiprazole is primarily mediated
through the parent drug; however, dehydroaripiprazole plays a very
minor role in its activity. Aripiprazole takes ~75 h to be eliminated
from the body in a normal individual; however, for individuals with
poor CYP2D6 activity, i.e., poor metabolizers, it takes ~146 h to be
eliminated (Dean and Kane, 2012). It has been reported that in poor
metabolizers, the mean aripiprazole exposure may be increased 1.5-
fold compared to normal metabolizers (Dean and Kane, 2012; Jukic
et al., 2019).

6.2 Pharmacodynamics of aripiprazole

Unlike risperidone, aripiprazole acts as a partial agonist of the
dopamine receptor (D2) and has a high affinity for binding like
dopamine. However, due to the low intrinsic activity of aripiprazole,
it causes very low activation of the D2 receptor compared with
dopamine, which favors its use against psychiatric problems.
Aripiprazole may reduce the activity of dopamine neurons
profoundly in the brain’s mesolimbic system due to its high
affinity for the D2 receptor and its partial agonist activity. Since
overactivity of dopamine causes psychosis and other psychiatric
problems, the reduction of dopamine in this region is clinically
beneficial in these patients (Potkin et al., 2003; Swainston Harrison
and Perry, 2004; Dean and Kane, 2012). In addition, aripiprazole
exhibits a strong binding affinity for both 5-HT1A and 5-HT2A
receptors. When it binds to the 5-HT1A receptor, aripiprazole acts
as a partial agonist, whereas it functions as an antagonist at the 5-
HT2A receptor. This mechanism of action could potentially explain
the anxiolytic and anti-depressive effects of aripiprazole, as well as its
ability to improve cognitive functioning and negative symptoms
(Hoyer et al., 2002; Gründer et al., 2006; Dean and Kane, 2012;
Muneer, 2016), Figure 4.

6.3 Clinical outcomes: response and adverse
drug reactions of aripiprazole

Due to the 5-HT2A antagonistic and D2 agonist activity of
aripiprazole, it is primarily indicated in schizophrenia and is also
used to treat irritability associated with ASD. Some of the common
adverse effects of aripiprazole are suicidal tendencies, neuroleptic

FIGURE 4
Pharmacodynamics of aripiprazole.
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malignant syndrome, hyperglycemia, orthostatic hypotension,
leukopenia, neutropenia, agranulocytosis, seizures/convulsions,
sedation, and extrapyramidal disorders. (Dean and Kane, 2012).

7 Pharmacogenomics in ASD

7.1 Pharmacogenomics of risperidone

7.1.1 Association of CYP2D6 genetic variants with
risperidone-induced hyperprolactinemia

Since CYP2D6 is the major CYP enzyme involved in
risperidone metabolism, the safety or efficacy of risperidone
may be affected by CYP2D6 (OMIM ID: 124030) genetic
variants encoding the CYP2D6 enzyme (Puangpetch et al.,
2016; de Leon, 2020; Lu et al., 2021; Soria-Chacartegui et al.,
2021; Biswas et al., 2022b). Patients who are considered to be
CYP2D6 poor metabolizers (PMs) or CYP2D6 intermediate
metabolizers (IMs) carrying defective CYP2D6 alleles might
develop higher plasma concentrations of the risperidone/9-
hydroxyrisperidone ratio compared to patients considered
normal CYP2D6 metabolizers (NMs) or ultra-rapid
metabolizers (UMs) (Puangpetch et al., 2016; Soria-Chacartegui
et al., 2021). As a consequence, ASD children who are
CYP2D6 PMs or IMs might be at higher risk of developing
hyperprolactinemia when treated with risperidone (Puangpetch
et al., 2016; de Leon, 2020; Soria-Chacartegui et al., 2021; Biswas
et al., 2022b). In contrast, patients considered CYP2D6 UMs might
be at risk of therapeutic ineffectiveness/failure of risperidone

therapy due to a possible reduction of risperidone/9-
hydroxyrisperidone plasma concentrations in these phenotypes
(Soria-Chacartegui et al., 2021; Biswas et al., 2022b).

7.1.2 Association of UGT1A1 genetic variants with
risperidone-induced hyperprolactinemia

Although the exact metabolic role of UGT1A1 in risperidone
metabolism has not yet been elucidated, a recent study found a
significant association of hyperprolactinemia with UGT1A1 (OMIM
ID: 191740) genetic polymorphisms in 84 Thai patients with ASD
(Hongkaew et al., 2018). Therefore, it is suggested to replicate these
findings in other clinical studies of ethnically diverse ASD patients.

7.1.3 Association of DRD2 genetic variants with
risperidone-induced hyperprolactinemia

Since dopamine–D2-receptor (DRD2) is a pharmacodynamic
target of risperidone, the DRD2 (OMIM ID: 126450) gene encoding
this receptor may be associated with risperidone-induced safety or
efficacy issues for the patients taking this drug. Lately, a significant
association between DRD2 genetic polymorphisms and
hyperprolactinemia has been established in children with ASD
(Sukasem et al., 2016; Hongkaew et al., 2021a; Soria-Chacartegui
et al., 2021).

7.1.4 Association of LEP genetic variants with
risperidone-induced weight gain

Genetic polymorphisms in LEPmay affect the safety of risperidone.
It has been found that ASD patients taking risperidone and harboring
the rs7799039 SNP of LEP (GG genotype) have an increased risk of

TABLE 1 Clinical annotations and gene polymorphisms of drugs potentially used in ASD.

Level Variant Gene Drug Phenotype
category

Phenotype

Level 1A CYP2D6*1, CYP2D6*1xN, CYP2D6*3, CYP2D6*4, CYP2D6*5,
CYP2D6*6, CYP2D6*10, CYP2D6*14

CYP2D6 Risperidone Metabolism/PK Psychotic disorders and
schizophrenia

Level 1A CYP2D6*1, CYP2D6*4, CYP2D6*5, CYP2D6*6, CYP2D6*10,
CYP2D6*41

CYP2D6 Aripiprazole Metabolism/PK Psychotic disorders, schizoaffective
disorder, and schizophrenia

Level 1A CYP2D6*1, CYP2D6*1xN, CYP2D6*2, CYP2D6*2xN, CYP2D6*3,
CYP2D6*4, CYP2D6*5, CYP2D6*, CYP2D6*10, CYP2D6*14,
CYP2D6*41

CYP2D6 Paroxetine Metabolism/PK -

Level 1A CYP2D6*1, CYP2D6*4, CYP2D6*5, CYP2D6*6, CYP2D6*10,
CYP2D6*14

CYP2D6 Fluvoxamine Metabolism/PK Depressive disorder

Level 3 rs35599367 CYP3A4 Risperidone Metabolism/PK Bipolar disorder, depression, and
substance-related disorders

Level 3 rs887829, rs1976391, rs10929302 UGT1A1 Risperidone Toxicity Autism spectrum disorder

Level 3 rs1045642 ABCB1 Risperidone Toxicity Schizophrenia

Level 3 rs1128503 ABCB1 Risperidone Efficacy Autistic disorder

Level 3 CYP2D6*1, CYP2D6*4 CYP2D6 Citalopram Dosage -

Level 3 rs1065852 CYP2D6 Escitalopram Efficacy Depressive disorder (major)

Level 3

Level 3 CYP2D6*1, CYP2D6*4 CYP2D6 Sertraline Dosage Depression

Level 3 rs2032582 ABCB1 Fluoxetine Efficacy Depressive disorder

PK, pharmacokinetics.
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weight gain compared to AA/AG genotypes (Dos Santos-Júnior et al.,
2016; Biswas et al., 2022b).

Some other genetic variants, e.g., ABCB1, HTR2C (OMIM ID:
312861), CYP3A4/5 (OMIM ID: 124010/605325), and CNR1
(OMIM ID: 114610), may also affect the safety or effectiveness of
risperidone, as reviewed by our group (Biswas et al., 2022b). These
pharmacogenomic associations should be replicated in ASD cohorts
in future investigations.

7.1.5 Pharmacogenomics of aripiprazole
Since aripiprazole is preferentially metabolized by CYP2D6, the

safety or effectiveness of this drug might be affected by CYP2D6 genetic
variability. Recent studies have found an association between CYP2D6
genetic polymorphisms and hyperprolactinemia, especially in female
pediatric populations who are poor CYP2D6 metabolizers (Grădinaru
et al., 2019; Koller et al., 2020). Hyperprolactinemia may significantly
affect the growth and development of pediatric populations (Grădinaru
et al., 2019), and therefore, these patients need additional monitoring,
especially when diagnosed with ASD. Recent case reports found an
association between CYP2D6 activity and atrial fibrillation or abnormal
heart electrophysiology (D’Urso et al., 2018; Mazer-Amirshahi et al.,
2019), suggesting that CYP2D6 genetic variants affecting this enzyme
activity should be considered in future studies.

7.1.6 Pharmacogenomics of carbamazepine
Since epilepsy appears to be prevalent in ASD patients,

antiepileptic drugs, e.g., carbamazepine, might be commonly
prescribed to children with ASD. The pharmacogenomic
response of carbamazepine in ASD patients has not been
assessed yet; however, an association of HLA-B (OMIM ID:
142830) pharmacogenomics with carbamazepine-induced SJS/
TEN has already been well established (Kloypan et al., 2021;

Biswas et al., 2022a) and needs further consideration in
ASD patients.

7.1.7 Pharmacogenomics of SSRIs and
methylphenidate

Although there is strong evidence for the pharmacogenomic effects
of SSRIs, e.g., sertraline, citalopram, and escitalopram, due to CYP2C19
(OMIM ID: 124020) and CYP2D6 genetic variability (Hicks et al.,
2015), these effects have not been quantified in children with ASD.
Future studies should consider these genetic variants in ASD. A recent
meta-analysis found statistically significant associations between
ADRA2A (OMIM ID: 104210), COMT (OMIM ID: 116790), and
SLC6A2 (OMIM ID: 163970) genetic variants and the effectiveness
of methylphenidate; however, these associations were not pooled from
ASD patients (Myer et al., 2018). These genetic variants should be
assessed in ASD patients taking methylphenidate.

Clinical annotations of drugs potentially used in ASD with a
PharmGKB evidence level are shown in Table 1.

8 Pharmacogenomics interventions
in ASD

A very recent PGx study investigated the genetic variants of
CYP1A2 (OMIM ID: 124060), CYP2C19, CYP2D6, and SLC6A4
(OMIM ID: 182138) in 42 ASD children who were resistant to
pharmacological treatment. The findings of this study revealed
that 93% of the ASD children showed improved clinical
manifestations after receiving the PGx interventions.
Furthermore, 55% of the children in the PGx intervention
group achieved stability of clinical symptoms, reducing
potential hospital stays and leading to fewer frequent visits to

TABLE 2 Clinically significant DDIs of ASD therapies, as retrieved from the Medscape Drug Interaction Checker (https://reference.medscape.com/drug-
interactionchecker).

Main drug Interacting
drug

DDIs and clinical effects Recommendation

Risperidone Sertraline Sertraline may increase the level or effect of risperidone by affecting drug metabolism through
the CYP2D6 pathway

Use with caution/monitor

Aripiprazole Both risperidone and sertraline increase the QTc interval Use with caution/monitor

Risperidone Citalopram Citalopram and risperidone both increase the QTc interval Avoid or use an alternate drug

Citalopram will increase the level or effect of risperidone by affecting hepatic enzyme
CYP2D6 metabolism

Use with caution/monitor

Risperidone Escitalopram Escitalopram increases the toxicity of risperidone by changing the QTc interval Use with caution/monitor

Aripiprazole

Risperidone Fluoxetine Fluoxetine will increase the level or effect of risperidone by affecting hepatic enzyme
CYP2D6 metabolism

Avoid or use an alternative
drug

Aripiprazole Paroxetine Fluoxetine and risperidone both increase the QTc interval Use with caution/monitor

Risperidone Fluvoxamine Fluvoxamine and risperidone both increase the QTc interval Use with caution/monitor

Aripiprazole Citalopram Aripiprazole and citalopram both increase the QTc interval Avoid or use an alternative
drug

DDIs, drug–drug interactions; ASD, autism spectrum disorder.

Frontiers in Pharmacology frontiersin.org08

Biswas et al. 10.3389/fphar.2023.1285967

https://reference.medscape.com/drug-interactionchecker
https://reference.medscape.com/drug-interactionchecker
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1285967


their clinicians. This study suggested that PGx interventions have
significant potential to improve the clinical manifestations in
severe comorbid ASD children who are resistant to the usual drug
treatments (Arranz et al., 2022).

8.1 Therapeutic recommendations based on
pharmacogenomics testing: updated
guidelines

Due to strong genetic associations, pharmacogenomics (PGx)-
based dosing guidelines of risperidone clinically indicated for any
patients with CYP2D6 genetic variability have been released by the
Dutch Pharmacogenetics Working Group (DPWG) (Beunk et al.,
2023). For patients considered CYP2D6 PMs, the DPWG
recommends a dose reduction of risperidone. In contrast, for
patients considered CYP2D6 UMs, the DPWG recommends an
alternative antipsychotic drug not primarily metabolized by
CYP2D6 or suggests maximizing the dose to achieve the optimum
effects (Soria-Chacartegui et al., 2021; Biswas et al., 2022b).

The FDA-approved drug label recommends reducing
aripiprazole to 50% of the usual dose for poor CYP2D6
metabolizers. The DPWG recommends a reduced dose (no
more than 10 mg/day or 300 mg/month) for poor CYP2D6
metabolizers. However, there is no recommendation for
intermediate or ultra-rapid metabolizers taking aripiprazole
(Dean and Kane, 2012).

9 Non-genetic factors

9.1 Drug–drug interactions

The safety or effectiveness of risperidone in ASD patients may be
impacted by clinically significant DDIs, since comorbidities in these
patients are likely to be highly prevalent. Risperidone is frequently
co-prescribed with antidepressants, anti-epileptics, or other
antipsychotics, potentially causing clinically significant DDIs
(Puangpetch et al., 2016; Biswas et al., 2022b). Strong
CYP2D6 inhibitors (e.g., bupropion) or moderate
CYP2D6 inhibitors (e.g., sertraline) may increase the serum
concentration of risperidone due to DDIs and potentially cause
high blood risperidone-induced adverse effects (Lisbeth et al., 2016).
In contrast, CYP2D6 inducer drugs (e.g., rifampin and
carbamazepine) may significantly reduce the serum concentration
of risperidone if taken concurrently and may cause therapeutic
ineffectiveness/failure (Besag and Berry, 2006; Kim et al., 2008;
Biswas et al., 2022b). In addition, other mediators affecting the
pharmacokinetic properties of risperidone need to be taken into
account to avoid potential clinically significant DDIs. For example,
the safety or effectiveness of risperidone may be affected if substrate,
inhibitor, and inducer drugs of CYP3A4/5 or P-gp are co-prescribed
(Kim et al., 2008; Soria-Chacartegui et al., 2021; Biswas et al., 2022b).
For aripiprazole, concomitant use of strong CYP2D6/
CYP3A4 inhibitors may cause clinically meaningful DDIs, and
the prescriber may need to reduce the usual dose of aripiprazole

FIGURE 5
Pharmacogenomics and non-genetic factors affecting drug response in ASD. Here, PGx = Pharmacogenomics, PK = Pharmacokinetics, PD =
Pharmacodynamics, HLA = Human leukocyte antigen, DGIs = Drug-gene interactions, DDIs = Drug-drug interactions.

TABLE 3 Controversy regarding the CYP2D6 activity score range and predicted phenotype for the risperidone metabolism rate between “the consortium
(CPIC + DPWG)” and “the PPM-pharmacogenomics of autism spectrum disorders of Thailand Project.”

CYP2D6 predicted phenotype based on the
combined score

CYP2D6 activity score range
(CPIC + DPWG)

CYP2D6 activity score range for
risperidone in Thai: ASD

Ultra-rapid metabolizer (UM) >2.25 >2.0

Normal metabolizer (NM) 1.25, 1.5, 2.0, 2.25 1.0, 1.25, 1.5, 2.0

Intermediate metabolizer (IM) 0.25, 0.5, 0.75, 1.0 0.25, 0.5, 0.75

Poor metabolizer (PM) 0 0

CPIC, clinical pharmacogenetics implementation consortium; SSRIs, selective serotonin reuptake inhibitors; PPM, pharmacogenomics and precision medicine, Ramathibodi Hospital, Mahidol

University.
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(Dean and Kane, 2012). It is also likely to cause cumulative effects
due to the combined DDI andCYP2D6 genetic effects of risperidone,
which may further augment the net clinical effects. Although this
multifactorial phenomenon called multifactorial drug–gene
interactions (DGIs) is clinically feasible and has been evidenced
in cardiovascular drugs, e.g., clopidogrel (Biswas et al., 2021b), such
combined effects have not yet been quantified in risperidone
therapy. To optimize risperidone therapy, it is, therefore,
suggested to consider the risk of both DDIs and
pharmacogenomics effects of risperidone in future clinical
studies. Some of the clinically significant DDIs of ASD therapies
are shown in Table 2. Furthermore, the pharmacogenomic and non-
genetic factors affecting drug responses in ASD patients are shown
in Figure 5.

10 Pharmacogenomics of ASD in
Thailand: research and clinical
implementation

The prevalence of ASD in Thai children is increasing
significantly each year and is potentially increasing the family
and social burden (Khaiman et al., 2015; Biswas et al., 2022b).
PGx research has progressed considerably in some Asian countries,
including Thailand, since many clinically important medications are
in routine clinical use in Thailand, where PGx interventions are
taken into account (Kloypan et al., 2021; Sukasem et al., 2021; 2023).
A large number of clinical studies have already assessed the PGx
interference of risperidone in Thai ASD children (Medhasi et al.,
2016b; Vanwong et al., 2016b; 2020; Sukasem et al., 2016; 2018;
Nuntamool et al., 2017; Srisawasdi et al., 2017; Hongkaew et al.,
2018; 2021a; Biswas et al., 2022b). In a prior study, we discovered a
significant correlation between the plasma concentration of
risperidone and the CYP2D6 activity score (Vanwong et al.,
2016a). These results emphasized the importance of accurately
determining a patient’s CYP2D6 genotype-predicted phenotype in
clinical settings for the personalized customization of drug therapy
(Vanwong et al., 2016a). In addition to examining CYP2D6 gene
polymorphisms, a previous study aimed at exploring genetic
variations in drug-metabolizing enzyme and transporter (DMET)
genes associated with steady-state plasma concentrations of
risperidone among Thai ASD patients found that ABCB1 (OMIM
ID:171050), ADH7 (OMIM ID: 600086), SLCO1B1 (OMIM ID:
604843), SLCO1B3 (OMIM ID: 605495), SLC7A5 (OMIM ID:
600182), and UGT2B4 (OMIM ID: 600067) gene polymorphisms
were also linked to the plasma concentrations of risperidone. This
pharmacogenomic research identified novel genetic variations
modulating DMET function that can aid in monitoring
risperidone therapy (Medhasi et al., 2016a). In addition, our
prior study employed a microarray platform to perform a genetic
association analysis of DMETmarkers with the risperidone-induced
prolactin response, evaluated through the hyperprolactinemia and
prolactin levels in Thai ASD patients (Hongkaew et al., 2018).

We identified a potential link between UGT1A1 variants and the
prolactin response, which could serve as a foundation for future
pharmacogenomic investigations in diverse populations (Hongkaew
et al., 2018). In addition toUGT1A1, the occurrence ofDRD2 Taq1A
polymorphisms and DRD2 diplotypes may have a significant effect

on the emergence of hyperprolactinemia associated with risperidone
use in children and adolescents with a diagnosis of autism spectrum
disorder (Sukasem et al., 2016; Hongkaew et al., 2021a). Moreover,
the DRD2 Taq1A polymorphism is linked with a non-stable
response to risperidone treatment in patients. This research
endorsed the implementation of pharmacogenomics testing to
tailor risperidone therapy for individual autistic children and
adolescents (Nuntamool et al., 2017). Regarding metabolic
adverse effects, a previous study found that gene polymorphisms
in leptin and BDNFwere linked to insulin resistance in Thai children
and adolescents with ASD. This implied that leptin and BDNF
polymorphisms may serve as genetic markers for predicting insulin
resistance before commencing treatment in autism spectrum
disorder patients receiving risperidone (Sukasem et al., 2018).
The overall findings of these studies suggest that PGx screening
of some PK/PD genes may be very useful clinically in routine
practice to optimize the safety or effectiveness of risperidone in
Thai ASD children. Stakeholders and policymakers in Thailand
should now focus on the preparation of national PGx guidelines
based on the robust evidence from these studies, especially regarding
risperidone for Thai ASD children as part of precision medicine
(Biswas et al., 2022b).

11 Challenges in pharmacogenomic
implementation

11.1 CYP2D6 discrepancy

The CYP2D6 allele activity score (AS) varies greatly, and this
discrepancy may affect the designation of predicted phenotypes, as
discussed extensively in our previous review (Biswas et al., 2022b).The
AS of different CYP2D6 alleles is shown in Supplementary Table S1.
The assignment of predicted phenotypes based on the AS of CYP2D6
has been discussed previously (Biswas et al., 2022b), and the predicted
phenotypes based on the combined CYP2D6 allele AS are shown in
Supplementary Table S2.

Novel alleles (i.e., CYP2D6*142, *143, and *144) and a novel sub-
allele (CYP2D6*10.005) were discovered in the Thai population and
have already been recognized by the PharmVar (Hongkaew et al.,
2021c), but the ASs of these novel alleles have not yet been assigned.
Since the AS may vary, which may affect the assignment of predicted
phenotypes accordingly, it is suggested to assess the function ofCYP2D6
genetic variants by measuring the protein expression level for further
validation of the predicted phenotypes (Biswas et al., 2022b).

11.2 Polygenic risk score

When multiple genetic variants are involved in determining the
clinical response of a drug, the polygenic risk score (PRS) may be a
good predictor to assess the safety or effectiveness of that particular
drug rather than just considering the effects of each genetic variant
separately. The polygenic pharmacogenomics response model might
be an integral part of precision medicine development, especially
when more than one potential genetic variant will tailor the safety or
effectiveness of medications (Lewis et al., 2019; Biswas, 2021; Ikeda
et al., 2021). Since multiple PK/PD genetic variants may modify the
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clinical response of risperidone/aripiprazole, the PRS approach
would be suitable for these drugs and should be considered in
future clinical studies.

12 Future perspectives and
opportunities

12.1 Pharmacogenomics guidelines

The DPWGhas already published PGx-based dosing guidelines for
atypical antipsychotics, i.e., risperidone and aripiprazole, not just for
ASD, but for all other clinical conditions where these drugs are clinically
indicated. However, other international PGx working groups, such as
CPIC and CPNDS, have not yet published any guidelines for either
risperidone or aripiprazole. In the near future, it is expected that other
PGx working groups will publish guidelines to facilitate the translation
of risperidone/aripiprazole PGx into routine clinical practice (Biswas
et al., 2022b). Our group assigned a CYP2D6 score of ‘1’ as NM in
risperidone due to the comparative blood concentration levels of
risperidone. However, a CYP2D6 score of ‘I’ was assigned as IM by
the recent CPIC guidelines for selective serotonin reuptake inhibitors
(SSRIs) instead of NM (Hongkaew et al., 2021b; Bousman et al., 2023).
The controversy regarding CYP2D6 scoring systems and predicted
phenotypes for risperidone metabolism that has arisen between “the
consortium (CPIC + DPWG)” and “the PPM-pharmacogenomics of
autism spectrum disorders of the Thailand Project” is shown in Table 3.
The government of Thailand should consider the CYP2D6 scoring
system for risperidone as suggested by the PPM Laboratory, since it
may be highly applicable for Thai patients and may expedite the
formation of prescribing guidelines, which may further help to
improve the safety or effectiveness of risperidone in ASD.

12.2 Clinical implementation

Many factors, including infrastructure and robust evidence, are
involved in the successful implementation of PGx in routine clinical
practice. Precision medicine for ASD may be achieved through
ensuring PGx screening for at least CYP2D6 genetic variants in
routine clinical practice (Biswas et al., 2022b).

12.3 Reimbursement

Often, reimbursement for genetic testing hinders the clinical
implementation of PGx. Reimbursement coverage should be applied
for ASD medications, or at least for risperidone, with wider clinical
adoption (Biswas et al., 2022b).

12.4 Undetermined and rare SNPs

Novel genes and SNPs should be considered. WGS can help with
their discovery, such as our finding of novel SNPs in the discrepancy
between the risperidone level and CYP2D6 genotyping, leading to
the determination of novel *142, *143, and *144 in an ASD study
(Hongkaew et al., 2021c).

12.5 Healthcare provider awareness
and knowledge

Healthcare professionals must be aware of the PGx associations
of ASD medications and, obviously, must have adequate knowledge
about the PGx interference of ASD medications. Along with
pharmacists, doctors are the main driving force behind the
implementation of newly evolving PGx approaches in real clinical
practice (Albassam et al., 2018; Edris et al., 2021; Biswas et al.,
2022b). Since many of these healthcare professionals do not have
sufficient knowledge or confidence to implement precision
medicine in clinical settings, education and trainings are
obvious to make them professionally competent. A recent
study concluded that an adaptable and flexible training
module is needed for targeted healthcare professionals for the
successful implementation of precision medicine in routine
clinical practice (Mitchell et al., 2022).

13 Conclusion

Although there is no selective pharmacotherapy for ASD, the
FDA has recommended risperidone/aripiprazole to treat associated
symptoms of ASD, such as agitation/irritability. Strong associations
of some pharmacokinetic/pharmacodynamic gene variants, e.g.,
CYP2D6 and DRD2, with risperidone-induced
hyperprolactinemia have been found in children with ASD, but
such genetic associations have not been found directly for
aripiprazole in ASD. In addition to PGx factors, DDIs and
possibly the cumulative effects of DDIs and PGx, called
multifactorial DGIs, may regulate the safety or effectiveness of
risperidone/aripiprazole, which should be assessed in future
clinical studies in children with ASD. Reimbursement,
knowledge, and education of healthcare professionals are the key
obstacles preventing the successful implementation of ASD
pharmacogenomics into routine clinical practice. The preparation
of national and international PGx-based dosing guidelines for
risperidone/aripiprazole based on robust evidence may advance
the precision medicine of ASD.
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