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Pharmacogenomics (PGx) studies the impact of interindividual genomic
variation on drug response, allowing the opportunity to tailor the dosing
regimen for each patient. Current targeted PGx testing platforms are mainly
based on microarray, polymerase chain reaction, or short-read sequencing.
Despite demonstrating great value for the identification of single nucleotide
variants (SNVs) and insertion/deletions (INDELs), these assays do not permit
identification of large structural variants, nor do they allow unambiguous
haplotype phasing for star-allele assignment. Here, we used Oxford
Nanopore Technologies’ adaptive sampling to enrich a panel of
1,036 genes with well-documented PGx relevance extracted from the
Pharmacogenomics Knowledge Base (PharmGKB). By evaluating
concordance with existing truth sets, we demonstrate accurate variant
and star-allele calling for five Genome in a Bottle reference samples. We
show that up to three samples can be multiplexed on one PromethION flow
cell without a significant drop in variant calling performance, resulting in
99.35% and 99.84% recall and precision for the targeted variants,
respectively. This work advances the use of nanopore sequencing in
clinical PGx settings.
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1 Introduction

Personalizing drug therapy by implementing pharmacogenomics (PGx) holds the
promise of achieving better therapeutic outcomes and fewer adverse effects. PGx studies
the impact of interindividual genomic variation on drug response, providing the
opportunity to tailor the dosing regimen for each individual patient. Over 95% of
the population harbors a genetic variation in at least one actionable PGx gene,
commonly denoted as pharmacogene, illustrating the large potential of PGx (Ji et al.,
2016; Van Der Wouden et al., 2020; Swen et al., 2023). Recently, the results of the
European pre-emptive Pharmacogenomic Testing for Preventing Adverse Drug
Reactions (PREPARE) study, the largest study on the clinical utility of pre-emptive
genotyping up to now, provided convincing evidence for the clinical utility of panel-
based pharmacogenetic testing (Van Der Wouden et al., 2020; Swen et al., 2023).
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Furthermore, PGx information is available on the drug labels of
over 360 listed drugs1. To facilitate the translation of the observed
genetic variation towards clinical use, the Pharmacogene
Variation Consortium (PharmVar) uses star (*) designations
(Gaedigk et al., 2018; Gaedigk et al., 2021). Based on this
nomenclature, gene-drug clinical guidelines have already been
issued by the Clinical Pharmacogenetics Implementation
Consortium (CPIC) and the Dutch Pharmacogenetics
Working Group (DWPG) on how genetic test results can be
implemented to improve drug therapy. As germline genetic
testing, especially at early adult age, delivers information of
livelong value, targeted pre-emptive testing of relevant PGx
genes is proposed to be implemented in routine healthcare.

In recent years, there’s been a shift in PGx testing platforms from
polymerase chain reaction (PCR)- and array-based methods to
massively parallel sequencing (MPS) techniques (Tafazoli et al.,
2021a). By adopting MPS for PGx, there’s an effort to address
the limitations of traditional methods. This approach not only
investigates beyond the commonly known alleles but also offers
insights into copy number variations (CNVs). As described
previously, even dedicated PGx microarrays failed to detect 25%
of the clinically annotated variants in the Pharmacogenomics
Knowledge Base (PharmGKB) database (Tilleman et al., 2019).
Similarly, the PREPARE study only targeted 50 germline variants
in 12 genes using the PCR- based LGC SNPline workflow. For
reasons of cost-effectiveness, targeted MPS sequencing of relevant
PGx panels or whole exome sequencing (WES) is mostly performed.
However, WES misses variants in non-coding and regulatory
regions (Tilleman et al., 2020). Alternatively, whole genome
sequencing (WGS) has been proposed. As the costs for short-
read MPS are continuously decreasing, it is foreseeable that WGS
will replace WES in most settings (Tafazoli et al., 2021b). Yet, the
magnitude of data originating from WGS results in the need for
more computational requirements. Additionally, ethical questions
arise about how to handle sequencing data that is not directly
relevant to PGx (Johnson et al., 2020).

Furthermore, short-read MPS is still limited in the information
it provides for clinical PGx utility. As in short-read sequencing the
read length is limited to 600 bp, conventional MPS fails to provide
unambiguous haplotype phasing information, and the occurrence of
larger structural variants (SVs) can go undetected. Due to the larger
genomic regions involved, SVs affect more base pairs per individual
than single nucleotide variants (SNVs). In addition, highly similar
genes, such as the CYP2D6 gene and the highly similar neighboring
CYP2D7 and CYP2D8 pseudogenes, are difficult to characterize
using short-read sequencing due to mapping issues (Nofziger and
Paulmichl, 2018; Tafazoli et al., 2021b).

It is clear that being able to identify all genomic variants is
required to make comprehensive statements of the resulting
phenotype. Long-read sequencing (LRS) has been used before for
PGx purposes to deliver information on SNVs, SVs, and haplotype
phasing in complex loci. Their potential for pre-emptive clinical
testing has been confirmed (Fukunaga et al., 2021; van der Lee et al.,

2021; Scott et al., 2022; van der Lee et al., 2022). In recent years, the
accuracy of the two leading LRS systems has been substantially
increased, with Oxford Nanopore Technologies’ Q20+ chemistry
and PacBio’s HiFi long-read sequencing. However, most targeted
applications using these sequencing platforms rely on long-range
PCR to amplify the regions of interest before sequencing (Liau et al.,
2019). This PCR-step has been clearly shown to introduce artificial
chimeras which could result in downstream haplotyping errors
(Ammar et al., 2015; Laver et al., 2016). Recently, the PCR-free
nanopore Cas9-targeted sequencing (nCATS) method was
successfully used to characterize the full CYP2D6-CYP2D7 locus
to overcome this problem (Gilpatrick et al., 2020; Rubben et al.,
2022). However, optimization is still required and the iterative, time-
intensive process of guide RNA design and testing should be
repeated for each locus of interest of the PGx panel individually.

Therefore, we harnessed ONT’s adaptive sampling
enrichment feature to target the relevant PGx genes extracted
from PharmGKB (Whirl-Carrillo et al., 2021). Thanks to the real-
time sequencing nature of ONT sequencing, pre-selected DNA-
molecules can be accepted or rejected by the sequencer based on
fast initial alignment against a reference. This selection results in
increased sequencing of DNA of interest without any additional
library preparation steps, thereby fully occupying the sequencer’s
capacity to sequence target strands. The list of target genes can be
rapidly modified, without time-consuming optimization, if new
actionable PGx genes would be identified. We hypothesize that
the resulting long-read PCR-free information will result in
improved characterization of a patient’s haplotype and provide
a better prediction of phenotypical consequences in a cost-
effective manner.

2 Materials and methods

2.1 Target gene selection and .bed file
construction

The list of relevant PGx genes was constructed based on the
clinical_annotations.tsv file downloaded from the PharmGKB
database (Whirl-Carrillo et al., 2021). All clinical annotated
variants were extracted from the clinical_annotations.tsv file.
First, target regions were defined. If a variant was present
within the gene body (exon or intron), the entire gene was
selected as a target. When a variant was present outside the
gene body, the variant was considered of interest if located
within 100 kb from the gene’s start or end position. In the
latter case, the target region was defined as the span ranging
from the start/end of the gene until that variant. This resulted
in a panel of 3,347 variants, including 3,262 SNVs and 85 INDELs,
linked to 1,036 genes. Secondly, 20 kb was added to each target
region’s determined up- and downstream coordinates. This step
was needed to account for large DNA-molecules, of which the first
nucleotides being sequenced would not correspond to the target
region but do contain the target region further in their sequence.
Coordinates of overlapping target regions were collapsed into one
region. The final .bed file targeted 5.68% of the human genome
(Supplementary Table S1). A target region corresponding to 1%–

10% of the human genome is recommended by ONT (ONT, 2020).

1 FDA United States of America - Table of Pharmacogenomic Biomarkers in
Drug Labeling. https://www.fda.gov/drugs/science-and-research-drugs/
table-pharmacogenomic-biomarkers-drug-labeling2023.
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2.2 DNA sample collection and QC

The NA12878 (HG001), HG01190, NA19785, NA24385
(HG002), and NA24631 (HG005) reference DNA standards were
obtained from the Coriell Institute for Medical Research (Camden,
NJ, United States). The concentration was verified using a
PicoGreen assay (ThermoFisher, Waltham, MA, United States)
according to the manufacturer’s instructions. The length of the
DNA molecules was evaluated on Femto Pulse using the Agilent
Genomic DNA 165 kb kit (Agilent Technologies, Santa Clara, CA,
United States) according to the manual.

2.3 Library preparation

Library preparation for the HG001 reference on the
PromethION R9.4.1 flow cell was completed as described in the
Ligation sequencing gDNA manual of ONT using the SQK-LSK110
library preparation kit. 1.5 µg of unsheared input DNA was used for
DNA repair and end-prep. After adapter ligation and clean-up,
70.5 fmol of the final library was diluted with elution buffer (ONT,
Oxford, United Kingdom) and divided into three tubes. The flow cell
was initially loaded with 23.5 fmol. After 22 h and then 40 h of
sequencing, we washed the flow cell according to ONT’s Flow Cell
Wash Kit protocol and loaded the second and third portions of the
library.

Library preparation for HG002 and HG005 on the
PromethION R10.4.1 flow cell was completed based on the
Native Barcoding Kit 24 V14 protocol using the SQK-
NBD114.24 kit (ONT, Oxford, United Kingdom). For each
reference standard, 4 µg of unsheared DNA was used as input,
and the reagent volumes were doubled to yield a larger final
library compared to using the standard volumes. After DNA end-
repair and clean-up, the concentration of each individual sample
was determined using a PicoGreen assay (ThermoFisher,
Waltham, MA, United States). Based on the limiting one, an
equimolar amount of each sample was used in the barcoding
reaction to obtain an equal number of reads for each sample.
After barcoding, libraries were pooled and adapter-ligated. After
the final clean-up, 79 fmol of the library was obtained. 50 fmol of
the library was loaded on the flow cell. After 36 h of sequencing,
the library was recovered from the flow cell as stipulated in
ONT’s ‘Library recovery from flow cells’ protocol. After washing
the flow cell, the recovered library was reloaded on the same flow
cell, supplemented with the remaining 29 fmol of the library.

Library preparation for the HG001, HG01190, and
NA19785 samples on the PromethION R10.4.1 flow cells was
performed similarly as described above. For each reference
standard, 3 µg of unsheared DNA input was used, and
180 fmol of final sequencing library was obtained. Initially, the
flow cell was loaded with 60 fmol of the library to increase pore
occupancy. After 20 h of sequencing, the flow cell was washed
and reloaded with 70 fmol of the library. Finally, after 42 h, the
flow cell was washed again and reloaded with 50 fmol of the
library. As there was still pore capacity remaining after 72 h of
sequencing, we performed the Library recovery protocol with an
additional 10 µL spike of sequencing buffer and restarted the run.

2.4 Data analysis pipeline

The raw .fast5 sequencing data was first rebasecalled using the
super-accurate basecaller (SUP) model of Guppy version 6.4.2-gpu
for the R9.4.1 and the R10.4.1 HG002/HG005 flow cell and Guppy
version and 6.5.7-gpu for the R10.4.1 HG001/HG01190/
NA19785 flow cell. Only reads with a quality score above
10 were used for further analysis. Only the reads positively
selected by the adaptive sampling (AS) software were used in
downstream analysis to avoid using short reads of the rejected
strands that often do not map uniquely. Subsequently, the
basecalled data were aligned to the GRCh38 reference genome
using minimap2 version 2.18-r1015 (Li, 2018). Next, variant
calling was performed using Clair3 version v0.1-r10. Variants
were phased using WhatsHap version 2.0 with options --include-
homozygous --indels --distrust-genotypes. Variant calling was
benchmarked using the hap.py software. Recall and precision
values were calculated as truth_tp/(truth_tp + truth_fn) and
query_tp/(query_tp + query_fp), respectively. According to the
best practices for benchmarking small variant calls, truth negative
calls are not commonly included due to the high proportion of
concordant reference positions in case of WGS (Krusche et al.,
2019). However, as in this case we benchmark only the
predetermined variants of our panel, the concordant calls are
meaningful to report. Indeed, detection of absence of the
alternate (ALT) allele is in PGx settings as important as detection
of the reference (REF) allele. Therefore, we calculated the accuracy as
the (truth_tp + truth_tn)/(total variants present in the truth set). For
HG001, the hybrid Genome in a Bottle Consortium (GIAB) -
Platinum Genomes benchmark dataset described by Krusche
et al. was used (Krusche et al., 2019). For HG002 and HG005,
the GIAB benchmark version v4.2.1 was used (Wagner et al., 2022a).

For 24 out of the 1,036 genes included in our target .bed file, and
defined as Very Important Pharmacogenes (VIPs) by PharmGKB,
the *-alleles were determined using Aldy version v4.4 (https://
github.com/0xTCG/aldy) (Numanagić et al., 2018; Hari et al.,
2023). For HG001, HG01190, and NA19785, the results were
compared with the star alleles in the Genetic Testing Reference
Material Coordination (GeT-RM) studies. For HG002 and HG005,
no *-allele truth set was available, and we provide the results for
further reference.

3 Results

3.1 Sequencing summary statistics and
evaluation of variant calling performance

In the R9.4.1 sequencing run, we performed SQK-LSK110
library preparation on the HG001 reference DNA standard and
subsequently sequenced the library on a PromethION R9.4.1 flow
cell to establish the baseline performance of AS on the PGx panel.
This run resulted in an average depth on-target of 47 X and coverage
at 20 X of more than 99.9% of the targeted region (Table 1). Of the
3,347 targeted PGx variants selected as described in Methods, only
3,262 are present in the truth set of HG001. Of these, 99.69% were
called correctly in this dataset (Table 2).

Frontiers in Pharmacology frontiersin.org03

Deserranno et al. 10.3389/fphar.2023.1286764

https://github.com/0xTCG/aldy
https://github.com/0xTCG/aldy
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1286764


Next, two samples, HG002 and HG005, were pooled to increase
cost-effectiveness, using the newly released Q20+ Kit14 chemistry
and the R10.4.1 flow cells in early access. An average coverage of
40 X and 23 X was retrieved for HG002 and HG005 on a single flow
cell (Table 1). Despite the average coverage being only half of the
coverage in the first run, recall of over 99% was obtained for both
samples (Table 3).

Additionally, two other GIAB samples, HG01190 and NA19785,
were multiplexed on another PromethION R10.4.1 flow cell, along
with HG001. We chose the latter samples as extensive *-allele
nomenclature is available for these samples. While we anticipated
that recall and precision scores might drop, we hypothesized that the
coverage obtained would still be sufficient to detect larger structural

variants. Table 4 summarizes the recall and precision percentages of
the SNVs and INDELs compared to their references.

3.2 Structural variant calling and haplotype
phasing

WhatsHap was applied for read-based phasing of the identified
SNVs, indels and complex variants, as it specifically can make use of
the long-read information. The maximum read length that can be
achieved using ONT only depends on the length of the input
fragments. This results in the ability of reads spanning many
variants, including large and complex structural variants. The

TABLE 1 Summary statistics for the R9.4.1 and R10.4.1 multiplex runs.

R9.4.1 R10.4.1 R10.4.1

HG001 HG002 HG005 HG001 HG01190 NA19785

Gb output 49.9 55.9 73.3

Average depth on-target 47X 40X 23X 20X 32X 24X

% at 30X 98.8 91.2 11.1 5.1 64.6 17.8

% at 20X 99.9 99.4 71.2 57.7 97.6 81.1

% at 15X 99.96 99.8 93.9 89.1 99.6 97.0

TABLE 2 Summary of the variant calling metrics for the targeted variants in the HG001 reference sample relative to the Krusche et al. reference using the
R9.4.1 flow cell.

PGx variants in HG001 ALT variants in truth set ALT variants in R9.4.1 data Recall (%) Precision (%) Accuracy (%)

Variants 3,262 1,229 1,224 99.59 99.59 99.69

SNVs 3,186 1,218 1,214 99.67 99.75 99.79

INDELs 76 11 10 90.91 83.33 96.05

Genes 1,023

TABLE 3 Summary of the variant calling metrics for the targeted variants in the barcoded HG002 and HG005 reference samples relative to their GIAB references
using a single R10.4.1 flow cell.

PGx variants present ALT variants in truth set ALT variants in R10.4.1 data Recall (%) Precision (%) Accuracy (%)

HG002

Variants 3,229 1,048 1,042 99.43 99.81 99.75

SNVs 3,155 1,039 1,035 99.62 100.00 99.87

INDELs 74 9 7 77.78 77.78 94.59

Genes 1,008

HG005

Variants 2,813 1,039 1,030 99.13 100.00 99.68

SNVs 2,762 1,032 1,025 99.32 100.00 99.75

INDELs 51 7 5 71.43 100.00 96.08

Genes 991
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number of variants phased per gene for each sample is documented
in Supplementary Table S3.

As stated before, variation in pharmacogenes is commonly
denoted using the *-allele classification. Therefore, we applied
Aldy v4.4 to automatically assign *-alleles to the gathered AS
sequencing data. Since the performed library preparation does
not depend on PCR-amplification, no artificial hybrids are
expected. The results are summarized in Table 5.

4 Discussion

We applied the AS feature on PromethION to in silico enrich for
a panel of 1,036 PGx genes to assess its potential for personalizing
drug treatment regimens. PGx testing panels are already
incorporated in clinical standard-of-care settings in some of the
major hospitals worldwide, e.g., the Erasmus MC hospital in the
Netherlands offers six Taqman probe-based PGx testing panels.
These are available upon request by general practitioners or
pharmacists. However, the number of variants assayed per gene
is limited2. In other settings, more comprehensive tests are
performed. The American College of Medical Genetics and
Genomics (ACMG) recently issued an update of their technical
standard recommendations for clinical PGx testing and reporting
(Tayeh et al., 2022). These recommendations include aspects for
both targeted PGx testing, WES/WGS, and CNV testing. 34.49%
(269/780) of the PGx tests currently listed in the United States
National Institute of Health Genetic Testing Registry (GTR) are
classified as assays involving sequence analysis of the entire coding
region (Rubinstein et al., 2012). Still, variants residing in intronic or
regulatory regions remain excluded, despite their potential
functional consequences in, e.g., CYP2C19 or CYP3A4 (Morales-
Rosado et al., 2021; Zhou et al., 2022). As our AS strategy goes
beyond targeted PGx testing for specific variants and inherently
encompasses CNV information, we improve the current state-of-
the-art genotyping assays.

The panel we utilized encompasses the genes with demonstrated
PGx relevance, as evidenced by their inclusion in PharmGKB. We
also incorporated genes with variants of lesser evidence, anticipating

that these might gain higher evidential status as more data emerges.
For each gene, we examine the entire gene locus, which includes
intronic regions and areas up to 20 kb both upstream and
downstream of the starting coordinates. Thanks to the flexibility
in the way the target file is constructed, our in silico AS enrichment
strategy easily permits to include new genes as new medically
relevant information becomes available.

4.1 Recall and precision assessment for
HG001, HG002, and HG005

For the GIAB HG001 reference sample on the R9.4.1 flow cell,
overall recall and precision for the variants in the PharmGKB
database were 99.59% and 99.59%, respectively. These numbers
are comparable to recent whole genome sequencing results reported
by Byrska-Bishop et al. (Byrska-Bishop et al., 2022), i.e., recall of
99.53% and precision of 99.57%, generated using Illumina NovaSeq
sequencing targeting 30X whole genome coverage and the GATK
HaplotypeCaller.

In the subsequent run, we multiplexed the HG002 and
HG005 samples on a single R10.4.1 flow cell using ONT’s latest
chemistry. We hypothesized that the increased read accuracy of the
newest chemistry would permit to accurately genotype two samples
simultaneously, even at the anticipated lower coverage than for the
former non-multiplexed sample. Indeed, recently it was shown that
assuming a Poisson coverage distribution, 6 X and 8 X coverage
suffices to recall 98% and 90% of the homozygous and heterozygous
variants, respectively (Mahmoud et al., 2023). As illustrated in
Table 3, we obtain similar sensitivity and even higher precision
scores than for HG001. Recently, Wagner et al. defined an additional
benchmark for 273 autosomal challenging medically relevant genes
(CMRG) in HG002, from which less than 90% of the bases were
included in the latest GIAB v4.2.1 benchmark, as they are
challenging to sequence or contain challenging variants (Wagner
et al., 2022b). 32 of the 1,036 genes targeted in our set-up are present
in the CMRG benchmark. Benchmarking variant calls for these
32 genes to the CMRG-reference resulted in the perfect recall and
precision scores for all INDELs and SNVs present in PharmGKB.

In the final experiment, we checked the ability to multiplex three
samples, HG001, HG01190, and NA19785 on a single R10.4.1 flow
cell. We chose these three GIAB samples to compare the recall and
precision for HG001 with the R9 flow cell data without multiplexing.
Secondly, extensive *-allele reference calls are available for these

TABLE 4 Summary of the variant calling metrics for the targeted variants in the HG001 reference sample relative to the Krusche et al. reference using an
R10.4.1 flow cell loaded with a pooled library of the barcoded HG001, HG01190, and NA19785 reference samples. As the truth set of SNVs and INDELs for the
HG01190 and NA19785 reference samples is not available, direct comparison is not possible.

PGx variants present ALT variants in truth set ALT variants in R10.4.1 data Recall (%) Precision (%) Accuracy (%)

HG001

Variants 3,262 1,229 1,224 99.35 99.84 99.70

SNVs 3,186 1,218 1,214 99.43 99.92 99.75

INDELs 76 11 10 90.91 90.91 97.65

Genes 1,023

2 Erasmus MC. https://www.erasmusmc.nl/nl-nl/patientenzorg/laboratorium
specialismen/farmacogenetica#bf37da51-0bb9-441f-99de-c58eea568603.
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samples. Recall and precision values are shown in Table 4. Overall
recall for the variants included in the PharmGKB panel dropped
only by 0.24% while average depth decreased from 47 X to 20 X.
Precision increased from 99.59% to 99.84%. We illustrate that the
transition from the R9.4.1 to the R10.4.1 flow cell resulted in clear
benefits for variant calling in PGx regions. The latter flow cells are
now also considered as default by ONT. Therefore, we conclude that
multiplexing of three samples on a single R10.4.1 PromethION flow
cell while enriching for 5.68% of the human genome is acceptable
for PGx.

Multiplexing three samples on a single flow cell allows the
estimated cost per sample to drop to € 320 (Supplementary Table

S2). Interestingly, Twist Bioscience recently launched a long-read
probe-based PGx panel, optimized for PacBio sequencing. However,
this panel only targets 49 genes and requires new probe design if
novel targets have to be included. In addition, the capture reaction
and accompanying reagents add to the final cost3.

TABLE 5 Comparison of the reference GeT-RM PGx star-allele calls to the calls made by Aldy for the VIP genes. The light blue, dark blue, and orange bars indicate
that the call is identical to the reference, augments the reference, or is incorrect, respectively. White bars indicate that there is no reference call available.

HG001 HG01190 NA19785

Gene GET-RM ALDY R9.4.1 ALDY R10.4.1 GET-RM ALDY R10.4.1 GET-RM ALDY R10.4.1

CFTR – (*WT/*WT)Δ *WT/*WT *WT/*WT – *WT/*WT – *WT/*WT

COMT – *Met/*ValA *Met/*ValA – *Met/*ValA – *Met/*ValB

CYP1A2 *1F/*1F *1M/*1M *1M/*1M *1A/*1A *1B/*1B *1L/*1L *1L/*1L

CYP2A13 *1A/*1A≠ *1/*1 *1/*1 *1A/*1A≠ *1/*1 – *1/*1

CYP2A6 *1/*1 *1+*1/*12 *1+*1/*12 *1/*1 *1/*1 *1/*1≠ *1/*1

CYP2B6 *1/*1 *1/*1 *1/*1 *1(*5)/*1(*27) *1/*5 *1/*1 *1/*5

CYP2C19 *1/*2 *1/*2 *1/*2 *1/*2 *1/*2 *1/*1 *1/*1

CYP2C8 *1/*3 *3/*5 *1/*3 *1/*3 *1/*3 *1/*1 *1/*1

CYP2C9 *1/*2 *1/*2 *1/*2 *2/*61 *1/*61 *1/*1 *1/*1

CYP2D6 *3/*4+*68 *3 + *82/
*4 +*132

*4N.ALDY/
*10+*82

*4/*5 *4/*4 *1/*2+*13 *2/*13

CYP2E1 no consensus
(*5)/*7

*1/*5A_7A_1B *1/*5A_7A_1B *1/*7 *1/*7 *7/*7≠ *4/*5

CYP2J2 *1/*1≠ *1/*1 *1/*1 *1/*7≠ *1/*7 – *1/*1

CYP3A4 *1/*1 *1/*1 *1/*1 *1/*1B *36/*36 *1/*1 *1/*36

CYP3A5 *3/*3 *3/*3 *3/*3 *1/*1 *1/*1 *1/*3 *1/*3

CYP4F2 *1/*1 *1/*1 *1/*1 *1/*3 *1/*3 *3/*3≠ *3/*3

DPYD *1/(*4) *4/*5 *4/*5 *1/*9 *1/*9 *1/*1 *1/*1

G6PD NEG≠ *B/*B *B/*B NEG≠ *B/*B NEG≠ *B/*B

GSTP1 *A/*C; *B/*D *A/*C *A/*C *A/*B *A/*B *A/*B≠ *A/*B

NAT2 *4/*5 *4/*5 *4/*5 *4/*4 *4/*4 no
consensus

*7/*7 (curated:
*7/*12)

NUDT15 – (*1/*1)‡ *1/*1 *1/*1 – (*1/*1)‡ *1/*1 – (*1/*1) ‡ *1/*1

SLCO1B1 *1/*15 *1/*15 *1/*15 *1/*1 *1/*1 *1/*1 *1/*37

TPMT *1/*1 *1/*1 *1/*1 *1/*1 *1/*1 *1/*1 *1/*1

UGT1A1 *1/*28 *60_80/*112 *1/*28_60_80_93 no consensus
(*37)/*60

*1/*60_80 (curated: *1/
*37_60_80)

no
consensus

*1/*28_60_80_93

VKORC1 H1/(H9) *H1/*H8 *H1/*H9 *H7/*H7 *H7/*H7 *H1/*H1 *H1/*H1

Δ Diplotype not determined in Get-RM, based on the results of Pranesh et al. (2019), *WT/*WT, was assigned.≠ Diplotype based on Get-RM, non-consensus data (data from one assay only).

For G6PD, NEG, denotes the absence of the A+/A-allele in the Tech Open Array. *B/*B outputted by Aldy denotes wild type.‡ Diplotype not determined in Get-RM, based on the results of

Yaqing et al. (Liu et al., 2023), the diplotype was assigned.

3 Twist Bioscience. https://www.twistbioscience.com/products/ngs/Long-
Read-Sequencing-Panels.
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4.2 Long-read phasing success rate

We used our long-read data to phase both alleles, which is
crucial for accurate *-allele assignment. While short-read,
imputation-based methods are not ideal for informing PGx at an
individual patient level, long reads allow for the direct phasing of
both alleles without the need for additional population or trio data.
Based on the ground truth set of phased variants for HG001, HG002,
and HG005, we calculated the phasing success rate for
47 PharmGKB VIPs for which reference phasing information was
available (Figure 1). For some genes, e.g., CFTR, CYP2A6, CYP2C19,
NRAS, NUDT15, clear differences in the phasing success rate

between the samples are observed. While discrepancies for the
HG001 sample on the R9 and R10 flow cell can be attributed to
differences in sequencing depth and chemistry, large differences
between samples are most likely the result of the number of
heterozygous variants available for phasing. For example, the
CFTR gene in the HG001 reference encompasses 39 phased
variants (Supplementary Table S3). In contrast, the
HG002 reference encompasses 280 phased variants for the same
gene. The more heterozygous variants inherently present in the
reference sample, the larger the haplotype blocks that can be
constructed based on our sequencing data and the higher the
odds of phasing more variants. Additionally, the impact of
unphased variants on the calculated phasing success rate is
higher if the reference only considers a limited number of
variants as demonstrated for CYP2A6, i.e. 1 variant out of the
3 considered reference variants was correctly phased in our
HG001 data compared to 1 variant out of the 1 considered
reference variant correctly phased in our HG002 data
(Supplementary Table S3).

As expected, genes encompassing very large genomic regions
contain more unphased variants than smaller genes, as even the
long reads do not permit to span the entire gene locus. Upon
comparing the gene span length between genes for which either less
or equal to/over 90% of the variants could be phased correctly
(Supplementary Table S3), our results clearly indicate the difference
in length between both. Figure 2 depicts the relationship between gene
span length and the number of genes that are either less than or over
90% phased across various reference samples. These findings highlight
the significance of using high-molecular-weight DNA as the input
material. Longer reads increase the likelihood of capturing more
variants within that read, thus extending the haplotype phasing
block. Supplementary Figure S1,S2 show that the average input
DNA-length used varied between reference samples. Dedicated high-
molecular weight DNA-extraction protocols might be required as DNA
extracted for short-read NGS or microarrays may not be of sufficient
quality and length for LRS PGx purposes.

FIGURE 1
Percentage of variants that were correctly phased compared to
their respective truth sets. For figure clarity, the percentages are only
shown for 47 Very Important Pharmacogenes (VIPs) for which
reference phasing information was available. The number of
reference variants considered for each gene in each sample can be
retrieved from Supplementary Table S3.

FIGURE 2
Boxplots illustrating the gene span lengths for genes for which
less or more/equal to 90% of the variants could be traced back to their
allele of origin, respectively.
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4.3 Star allele calling using Aldy 4

Finally, we used Aldy 4 to perform *-allele calling of the PGx
genes in our panel (Numanagić et al., 2018; Hari et al., 2023). For
optimal utilization of the PGx information in our dataset, we need
an analysis tool that incorporates SNV, INDEL, and CNV variants,
as well as the phasing information provided by the long reads. While
most tools like PharmCAT use .vcf files as input for *-allele calling,
and subsequently ignore copy number variants and gene fusions,
Aldy 4 accepts whole genome .bam files as input (Sangkuhl et al.,
2020). The PyPGx package has a pipeline dedicated to long-read
sequencing data using .vcf files as input, but does not support
structural variant detection (Lee et al., 2022). Although tools
such as Cyrius also use a WGS .bam file, they are designed for
short-read data and are specific to the CYP2D6 locus (Chen et al.,
2021). The benchmarking results from Graansma et al. and Shugg
et al. strengthen us in using Aldy as the most informative tool
(Graansma et al., 2023; Shugg et al., 2023). We summarized our
results for the 24 VIPs that Aldy currently supports in Table 5.

The GeT-RM calls for HG001, HG01190, and NA19785 were
used as a reference, supplemented with other available sources if the
former did not provide reference information (Pratt et al., 2016;
Gaedigk et al., 2019; Gaedigk et al., 2022). While Aldy can call both
major and minor alleles, only major *-alleles were considered, as no
minor allele calls are available from GeT-RM. Nevertheless, the raw
Aldy output files containing minor allele calls are provided in
Supplementary Table S4–S9.

For the R9.4.1 data, there were 14 concordant calls, 8 discordant
calls, and 2 calls without a reference. However, for 3 of these
discordant calls, more specifically for CYP1A2, DPYD, GSTP1,
our results improved the reference calls. For CYP1A2, the *1M
allele was not included in the GeT-RM, and *1M allele shares the
rs762551 variant with *1F. However, our results clearly indicate the
presence of the additional rs2472304 for both alleles (Supplementary
Figure S3). For DPYD, *4 was only found by Affymetrix DMET,
LifeTech Taqman LDT, and Agena Bioscience iPLEX ADME PGx
Pro did not check for it. None of the reference assays assessed *5
(Supplementary Figure S4). For GSTP1, both Affymetrix and Agena
could not discriminate between *A/*C or *B/*D, nor could Ramudo-
Cela L. et al. using an NGS panel (Ramudo-Cela et al., 2020). Aldy
miscalled the CYP2A6 diplotype by assuming the presence of the
*12 structural variant. For CYP2C8, UGT1A1 and VKORC1, the
discordant results can be explained by the presence of an underlying
homopolymeric region, known to be problematic for the ONT
R9.4.1 pore (Stevanovski et al., 2022). Lastly, the incorrect call
for the CYP2D6 *4+*68 haplotype is anticipated, as this
haplotype was also missed in the Aldy publication (Hari et al., 2023).

The calls made based on the R10.4.1 data are correct for
CYP2C8, VKORC1, and UGT1A1, despite the reduced coverage.
This is not unexpected, as ONT has implemented a dual reader head
in the R10 pores, to augment basecalling in homopolymeric regions.

For HG01190 on the R10.4.1 flow cell, our results improve the
calls made for the CYP1A2, CYP2B6, CYP2C9, and CYP3A4 genes
while no correct Aldy calls could be made for CYP2D6 andUGT1A1.
For CYP1A2, the *1B allele was not examined in the GeT-RM studies
so the presence of this allele was manually verified (Supplementary
Figure S5). For CYP2B6, LifeTech Taqman LDT and Agena
Bioscience iPLEX ADME PGx Pro found *1/*1 but did not check

for *5. Affymetrix found *5 but called the other allele as *27 as it
incorrectly assumed the presence of the rs36079186 variant. The *1/
*61 call compared to the *2/*62 call of the GeT-RM NGS panel for
CYP2C9 was also reported by Liu Y. et al (Liu et al., 2023). For
CYP3A4, *36 was not assessed in the GeT-RM studies. Aldy is
correct in assigning *36/*36, however, this haplotype was withdrawn
from PharmVar as of version v5.2.17. After manual curation
according to the latest version of PharmVar, this allele should
now be noted as *1/*1.

For NA19785, the improved calls for CYP2B6 and SLCOB1 are
concordant with the results of Liu Y. et al (Liu et al., 2023). For
CYP2E1, the Agena assay did not examine *4 nor *5, while the
variants were manually validated to be present in IGV
(Supplementary Figure S6). Aldy is correct in *1/*36 for CYP3A4,
however, as mentioned before, *36 of CYP3A4 is withdrawn and this
haplotype should now be denoted as *1. For NAT2, Aldy calls *7/*7,
but after manual curation, *7/*12 should have been assigned
(Supplementary Figure S7). Due to low coverage, Aldy calls
*7 for the *12 allele as it assumes that rs1799931 is present on
this allele. As for the other GIAB samples, Aldy fails to correctly
diplotype CYP2D6.

CYP2D6 *-allele calling consistently failed for the tested
reference samples, which can be attributed to the complex
genomic context of the gene. In HG01190, Aldy miscalled one
allele as *4 instead of *5 (full gene deletion) probably due to
misalignment of the CYP2D7-mapping reads to CYP2D6 for that
allele. Both the HG001 and NA19785 samples harbor hard-to-
decipher CYP2D6-CYP2D7 fusion genes, for which Aldy only
succeeded in calling a part of the *-allele. Aldy relies on literature
databases to detect fusion breakpoints based on SNV definitions,
which might not be discriminative enough to characterize these gene
hybrids. Pangenome graph assembly-based approaches might be an
attractive alternative compared to reference-based methods to
elucidate the complex structure of this gene (Liao et al., 2023).

In addition, the UGT1A1 gene poses a significant challenge for
accurate diplotyping. The UGT Nomenclature committee lists
113 annotated haplotypes4. The Get-RM studies do not provide a
consensus call for HG01190 and NA19785, despite testing on four
and three different platforms, respectively. For HG001, the *1/
*28 reference call is provided, while the Affymetrix platform
additionally reports *60 and *93, and the Agena platform called
*1/*60. The HG001UGT1A1*28 allele was missed in our R9 flow cell
data, but was detected in the R10 data, which might, as discussed
before, be attributed to the improved homopolymer detection. Our
Aldy results additionally indicated the presence of the *112 allele
(C>A transversion) in all samples, however, A is now the reference
allele, explaining the Aldy call. Therefore, this call was corrected to
*1 (Supplementary Figure S8). For HG01190, the phased reads
reveal the presence of the *37 allele (9 TA repeats instead of 7)
missed by Aldy, probably due to limited coverage. Additionally, the
*60 and *80 alleles were detected by Aldy for all samples tested, and
were manually verified to be present on the same allele. In
conclusion, renewed definitions of the UGT1A1 *-alleles and

4 UGT Alleles Nomenclature Home Page. UGT Nomenclature Commitee.
June 2005. http://www.ugtalleles.ulaval.ca.
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further validation studies in larger cohorts are required to ascertain
which alleles are truly present. Our results indicate that ONT long-
reads sequencing might offer additional advantages in classifying the
UGT1A locus.

For HG002 and HG005, no reference *-allele calls are available
from the GeT-RM studies. We provide the major *-allele calls made
by Aldy for these samples in Supplementary Table S10 for future
reference.

4.4 Future perspectives

Alternative enrichment algorithms might be explored to
further increase the throughput for our PGx panel with AS.
Currently, the MinKNOW algorithm uses read mapping of the
first part of the read, followed by matching this information to the
provided target .bed file. Readfish is an open-source alternative to
the MinKNOW algorithm and provides greater flexibility (Payne
et al., 2021). The most notable improvement is the time it takes to
reject a DNA strand from the nanopore. Our experiments’
average sequenced read length before a rejection decision was
made was 830–880 bp, corresponding to just over 2 s of
sequencing. Readfish reported shorter read N50s for the
rejected reads of about 500 bp but is up to the time of writing
less efficient for PromethION than for MinION/GridION due to
the slower unblock time. Readbouncer, which uses k-mer
counting to classify reads, claims to make faster rejection
decisions than MinKNOW and Readfish, but is unsuitable for
large reference databases such as whole human genomes (Ulrich
et al., 2022). Recently, the BOSS-RUNS AS framework was
proposed as an alternative to the AS implemented in
MinKNOW. BOSS-RUNS enables to dynamically update the
regions of interest based on the information already
sequenced. The continuously updated target information is
then passed to ReadFish, to refocus sequencing resources to,
e.g., lower variant coverage sites. However, the algorithm’s
computational complexity makes it unsuitable for human
genomes (Weilguny et al., 2023).

Furthermore, equimolar pooling of each HMWDNA sample on
a single PromethION flow cell can be difficult when the different
samples’ input DNA have different size distributions
(Supplementary Figure S1,S2). Shearing the DNA to a consistent
input length might address this issue. However, shorter DNA
fragments are disadvantageous for the AS enrichment efficiency
and might result in shorter haplotype phasing blocks, which would
be disadvantageous to accurately phase PGx variants. Therefore,
novel approaches are emerging to tackle this pooling challenge in
silico. Analogous to how AS enhances target genes, it can be adapted
to enrich specific barcodes. While MinKNOW does not currently
support the simultaneous use of AS for target genes and barcodes,
barcode-aware AS with ReadFish makes this possible (Alexander
et al., 2022). However, a dedicated framework to automatically
balance the barcodes and achieve uniform coverage across
different samples and targeted regions would be beneficial.
SwordFish has been described to achieve this for SARS-CoV-
2 amplicon testing and enables barcode- and amplicon balancing
simultaneously. Yet, it was not demonstrated to be compatible with
large-scale genomes (Munro et al., 2023).

Finally, the field of PGx itself is subject of ever-progressing
knowledge into the biological consequences of genetic variation.
Alternative approaches for correlating diplotypes and
phenotypes are already being explored. Rather than using a
categorical *-allele classification system, continuous scales
have been proposed to further optimize therapeutic dosing
regimens. Machine learning models can be trained to take the
complete gene sequence into account to predict the resulting
phenotype. These models allow to predict the effect of variants
not included in a particular *-allele. The superiority of these
approaches has already been shown for CYP2D6 and validated in
tamoxifen- and venlafaxine cohorts (McInnes et al., 2020; van der
Lee et al., 2021). Our phased long-read PCR-free sequencing data
could provide even better input for these models. However, as
limitation of the current research we acknowledge that extended
validation of our results in larger cohorts should be performed
before clinical adoption is possible.

5 Conclusion

We have successfully showcased that by leveraging AS on
PromethION, we can obtain comprehensive PGx data to
characterize a broad panel of 1,036 PGx genes. This encompasses
not just SNVs/INDELs but also structural variants, phasing, and
*-allele calling. Our proposed long-read PGx diplotyping approach
is not only comprehensive but also adaptable to future medical
insights, making it a resilient strategy. We demonstrate that up to
three DNA samples can be efficiently multiplexed on a single
PromethION flow cell, improving cost-effectiveness, with recall
and precision rates for targeted variants being 99.35% and
99.84%, respectively. Assigning *-alleles to the genes in our panel
is currently only limited by the bioinformatical tools available to call
these correctly. Future optimizations to the AS algorithms could
permit multiplexing even more samples and boosting accuracy by
increasing enrichment efficiency and balancing coverage across
multiplexed samples. Finally, we conclude that PGx based on
targeted LRS is a valuable tool to advance the implementation of
personalized medicine.
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