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Introduction: Aflatoxins (AFT) are ubiquitous environmental pollutants that are
extremely dangerous for both human beings as well as animals. A safe, effective,
and considerate strategy is therefore credited with controlling AFT intoxication.
Therefore, our study aimed to evaluate the mitigating properties of Chlorella
vulgaris (ChV) against AFT-induced nephrotoxicity and altered egg quality.

Methods: Quails were randomized into Control group (receiving a normal diet);
ChV group (1 g/kg diet); AFT group (receiving an AFT-containing diet); and the
AFT-ChV group were given both treatments.

Results and discussion: AFT provoked kidney injury, exhibited by increased renal
biochemical parameters and reduced protein levels. Malondialdehyde (MDA)
levels dramatically increased as a consequence of AFT exposure, and
glutathione (GSH) levels, superoxide dismutase (SOD), and glutathione
peroxidase (GPx) activities were also decreased. Substantial up-modulation of
the mRNA expression of the inflammatory cytokines (TNF-α, IL-1β, and IL-6) was
additionally reported. Furthermore, AFT residues were detected in the egg
compromising its quality and nutritional value. Contrarily, ChV supplemented
diet suppressed the AFT-prompted oxidative stress and inflammation, together
with enhancing the nutritional value and quality of eggs and decreasing AFT
residues. These beneficial impacts are proposed to be attributed to its antioxidant
and nutritional ingredients. The molecular docking dynamics confirmed the
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inflammatory and apoptotic protein targets for ChV. Our findings recommend that
adding ChV supplements to foods might guard against nephrotoxicity brought on
by AFT exposure.
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oxidative stress, inflammatory cytokines, apoptosis, residues, Japanese quail,
computational modeling

1 Introduction

Aflatoxins (AFTs), di-furanocoumarin metabolites, accumulate
in food and fodders due to contamination with Aspergillus flavus
and Aspergillus parasiticus strains (Zhang et al., 2022). The global
climatic shift caused by global warming offers favorable conditions
for fungi to grow and generate AFTs in contaminated crops, which
can build up to lethal concentrations (Medina et al., 2017). The Food
and Drug Administration (FDA) has classified AFTs as ineluctable
contaminants due to their pervasiveness along with their potential
jeopardy to the health of humans and animals (Abdel-Daim et al.,
2021). AFT intoxication has genotoxic, mutagenic, and carcinogenic
impacts and is designated by the International Agency for Research
as a class-I carcinogen in various organs (Hebels et al., 2009; Ahmed
et al., 2022).

The toxicity of AFTs is principally due to their metabolism to a
more toxic metabolite, namely, aflatoxin-exo-8,9-epoxide (AFTO)
through hepatic cytochrome-P450 biotransformation (Zhu et al.,
2020; Yilmaz and Bag, 2022). AFTO is an extremely reactive
intermediate that targets DNA’s guanine residues, resulting in
DNA adducts and mutations. Thereafter, AFTO is detoxified by
the phase-II glutathione (GSH) system to a minimally toxic GSH
complex, which is then excreted from the cells via the mercapturic
acid pathway (Dlamini et al., 2021). It is intriguing that in addition
to the liver (Ahmed et al., 2022), the kidney is a probable target since
AFT and AFTO are preferentially absorbed and concentrated by
tubular cells, and their accumulation in the renal medulla before
being expelled in the urine causes direct renal tubular damage
(Wang et al., 2022).

There is ample proof indicating the embroilment of oxidative
stress, inflammatory responses, and apoptotic pathway in AFT-
induced nephrotoxicity (Owumi et al., 2020; Wang et al., 2022).
Thus, excess generation of reactive oxygen species (ROS), with
consumption of antioxidant enzymes after AFT intoxication,
provokes tissue injuries such as DNA mutations, mitochondrial
disruption, improper folding of protein, and ultimately necroptosis
(Dlamini et al., 2021; Elgazzar et al., 2022; Li et al., 2022). Moreover,
the stability of AFTs and their metabolites highlights the necessity
for developing secure, feasible, and efficient strategies for reducing
their damaging impacts (Kolosova and Stroka, 2012). Therefore,
supplementation with natural antioxidants could be an appropriate
therapeutic approach to counteract AFT-induced kidney damage.

Chlorella vulgaris [Chlorellaceae; Chlorella vulgaris var.
vulgaris], ChV, the most renowned microalgae that pertain to the
Chlorophyta class, has outstanding nutritional value, owing to their
enrichment in bioactive compounds such as long-chain

polyunsaturated fatty acids (PUFAs), phenolic compounds,
proteins, amino acids, peptides, and vitamins (Andrade et al.,
2018; Elbasuni et al., 2022), which play a beneficial role in
animal and human health (Chen et al., 2023). Plenty of studies
have been published about ChV as a splendid natural antioxidant,
anti-inflammatory, and antiapoptotic agent (Abdelnour et al.,
2019b; Abdelhamid et al., 2020). Accordingly, Accumulating
literature has emphasized the effectiveness of ChV against a
variety of nephrotoxic agents, including, mercury chloride (Blas-
Valdivia et al., 2011), cadmium (Shim et al., 2009), and gentamicin
(Al-Halaseh et al., 2022).

In accordance with this assertion, we speculated that ChV
supplementation might mitigate oxidative stress and
inflammation induced AFT. Consequently, the present study was
intended to evaluate the modulatory impact of ChV as a feed
supplement against AFT bioaccumulation and nephrotoxicity.
Biochemical and oxidative stress markers, as well as pro-
inflammatory-related gene expression, were evaluated in this
study. In addition, quail production and egg quality were evaluated.

2 Materials and methods

2.1 Experimental approach

Japanese quails (Coturnix japonica; 10 weeks old with an average
body weight of 200–250 g) were bought from the Faculty of
Veterinary Medicine at Benha University in Egypt. Quails
received a commercial maize and soybean meal baseline diet that
satisfied all their nutritional needs according to the guidelines set
forth by the NRC (1994) and free access to water as needed during
the trial. They were reared in a well-ventilated room (25°C ± 2°C,
humidity 55%–60%, and 17 h of light/day). Quails were allotted
randomly over the deep litter floor pen compartments each
consisting of eight females and two males. Following 2 weeks of
acclimation, the quails were randomized and assigned into four
groups, each group consisting of three replicates of five birds: the
control group—fed on a basal diet; the ChV group—fed on a basal
diet supplemented with a dried powder of whole ChV (1 g/kg)
(Marine Toxins Lab, National Research Centre, Egypt) (Abdelnour
et al., 2019b); the AFT group—fed on an AFT-contaminated diet
(50 ppb; AFT mix, purity >98%, Merck, Darmstadt, Germany) as
described by Elbasuni et al. (2022); and the AF + ChV group—fed on
an AFT-contaminated diet along with ChV for 3 weeks. The same
management, sanitary, and environmental standards were followed
in the rearing of birds in each experimental group.
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2.2 Productive performance assessment

Eggs were gathered and checked for deformity to calculate the
proportion of cracked eggs. Egg mass was calculated by multiplying
the number of eggs by their average weight.

2.3 Evaluation of egg nutritional values

Randomly selected eggs from each group were gathered,
homogenized, and stored at 80°C for later analysis. Egg protein,
fat, cholesterol, and triacylglycerol levels were assessed
spectrophotometrically.

2.4 Biochemical analyses

Blood samples were drawn from the jugular vein, and sera
were harvested and stored at −20°C for further biochemical
analysis [urea (Cat# UR2110), creatinine (Cat# CR1250), uric
acid (Cat# UA2120), total protein (Cat# TP2020), and albumin
(Cat# AB1010) levels] at the end of the trial. All methods were
conducted following the manufacturers’ instructions
(Biodiagnostic, Cairo, Egypt).

2.5 Determination of renal tissue LPO and
antioxidant enzyme activities

At the end of the trial, the quails were euthanized in the
absence of other birds to reduce the distress. The birds were first
anesthetized using 2% isoflurane inhalation followed by cervical
dislocation. Kidney specimens from the humanely sacrificed
quails were obtained and stored at −80°C until evaluation of
tissue oxidation indices. Renal tissues were discretely
homogenized in phosphate buffer, pH 7.4, and the
homogenate was used to determine the MDA (Cat# MD2529)
and GSH (Cat# GR2511) levels, as well as the SOD (Cat#
SD2521) and GPx (Cat# GP2524) activities, according to the
manufacturer’s recommendations (Biodiagnostic).

2.6 Quantitative real-time PCR

Using the RNeasy Mini Kit (Cat# 74104, QIAGEN Sciences Inc.,
Germantown, MD, United States), the total RNA was extracted in
accordance with the manufacturer’s instructions. The primer
sequences for the targeted genes (housekeeping gene 28S rRNA
and the inflammatory cytokines TNF-α, IL-1β, and IL-6) are
presented in Supplementary Table S1. The QuantiTect probe RT-
PCR kit (Cat#204443, QIAGEN Sciences Inc.) was employed to
carry out quantitative real-time PCR (qRT-PCR). Real-time PCR
equipment (Applied Biosystems, Waltham, CA, United States) was
used to capture signals. The cycling conditions for PCR were as
follows: 50°C for 30 min, 94°C for 10 min, 40 cycles at 94°C for 15 s,
and 60°C for 1 min. The cycle threshold (Ct) values and
amplification curves were calculated using Stratagene Mx3005P
software. Following normalization using the housekeeping gene,

the 2Ct technique was used to calculate the fold changes in the
expression levels, as described in Habotta et al. (2023).

2.7 Detection of aflatoxin residues in eggs

The egg was collected after the completion of the trial to detect
the residual AFT using high-performance liquid chromatography
(HPLC). AflatoxinM1 reference materials (Sigma-Aldrich, St. Louis,
MO, United States) were used in the analyses.

2.8 Molecular docking assessment

The three-dimensional structures of Coturnix japonica’s
extracellular SOD1, SOD2, GPx, GR, GCLC, GSH synthase,
IL1RAP, IL6RA, TNFRSF1A, and TRAF1 were generated using
the Robetta server (Baek et al., 2021). Proteins were prepared for
docking using Molecular Operating Environment (MOE 2015.10,
Chemical Computing Group, Montreal, QC, Canada) software. The
three-dimensional structures of AFB1, AFB2, AFG1, and AFG2 were
retrieved from the PubChem (https://pubchem.ncbi.nlm.nih.gov/)
database. In addition, bioactive compounds of ChV were retrieved
from PubChem and LOTUS: Natural Products Online (https://lotus.
naturalproducts.net/) databases. Furthermore, MOE software was
used for molecular docking, protein–ligand interaction analysis, and
visualization.

2.9 Statistical analyses

One-way analysis of variance (ANOVA) with the LSD post hoc
test was used to analyze the collected data. Prior to performing
ANOVA, all data were tested for normality (Shapiro–Wilk and
Kolmogorov–Smirnov tests; p > 0.05) and homogeneity of variances
(Levene’s test; p > 0.05). All analyses were performed using SPSS
25 software for Windows (SPSS Inc., Chicago, IL, United States).
Data were represented as the mean ± SE. The data were considered
statistically significant at p-values <0.05. Additionally, RStudio’s R
version 4.0.2 was used to create a debiased sparse partial correlation
(DSPC) algorithm network, clustering heatmap, and variable
importance projection (VIP) score.

3 Results

3.1 Egg productive performance

The effect of ChV supplement on the productivity of quails that
received a diet contaminated with AFT is shown in Table 1. The egg
number, weight, and mass decreased significantly, while cracked
eggs increased dramatically in AFT-intoxicated birds versus all other
treated groups. With daily observation, the birds that fed the AFT
diet showed watery droppings, abnormal gait, and ruffled feathers.
On the other hand, the co-exposure to AFT and ChV caused marked
betterment of the production performance of birds. Intriguingly, the
ChV group surpassed the control group in terms of egg number,
weight, and mass.
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3.2 Changes in the egg nutritional value
following exposure to ChV and/or AFT

Table 2 shows that compared to controls, the ChV group showed
a significant increase in the egg protein content while a significant
decrease in egg fat, cholesterol, and triacylglycerol levels. ChV
supplementation to quails that fed on an AFT-contaminated diet
resulted in a noticeable increase in egg protein and a decrease in fat
and cholesterol contents compared to the AFT group.

3.3 Serum biochemical indices

In accordance with the findings depicted in Figure 1, quails that
fed on an AFT-contaminated diet demonstrated a substantial
increase in the kidney function test, including creatinine, urea,
and uric acid, alongside a decrease in total protein and albumin
levels, when confronted with those fed on a basal diet. In contrast,
concurrent consumption of a diet containing ChV and AFT
demonstrated amelioration in the renal function test and protein
levels compared to those exposed to AFT solely.

3.4 Lipid peroxidation and antioxidant
parameter assay

AFT induced an obvious state of oxidative damage and lipid
peroxidation, as shown in Figure 2. A substantial increase in the
renal malondialdehyde (MDA) level together with a discernible
reduction in the reduced-glutathione (GSH) level and the enzyme
activities of superoxide dismutase (SOD) and glutathione peroxidase
(GPx) was observed in birds that fed on an AFT-contaminated diet

when compared to other groups. Notably, AFT-triggered oxidative
stress was substantially hampered by ChV supplementation
exhibited by a dramatic reduction in the MDA level and drastic
increases in GSH, SOD, and GPx indices.

3.5 Expression levels of pro-inflammatory
genes in the kidney tissue

As depicted in Figure 3, AFT could trigger renal inflammation
indicated by considerable upregulation of mRNA expression levels
of the pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6)
compared with controls. Nevertheless, birds that fed on a diet
containing both ChV and AFT had a dampened inflammatory
reaction in their kidneys, elucidated by the downregulation of the
expression levels of the targeted pro-inflammatory genes.

3.6 Molecular docking

Data in Table 3 reveal the binding energy of AFT (B1, B2, G1,
and G2) to the SOD1, SOD2, GPx, GR, GCLC, and GSH synthase
binding sites of Japanese quails. AFB1 is the most abundant member
of AFT in the naturally contaminated diet. The molecular docking
dynamics revealed the great affinity of AFB1 to the SOD1, SOD2,
GPx, GR, GCLC, and GSH synthase binding sites, with binding
energy values of −5.34, −4.85, −5.57, −5.71, −7.26, and −6.69 kcal/
mol, respectively (Figures 4A–F).

Bioactive compounds of ChV interacted with the binding sites of
IL1RAP, IL6RA, TNFRSF1A, and TRAF1, as shown in Table 4. The
top five bioactive compounds, phytofluene, naringin, hesperidin, zeta-
carotene, and cis-phytoene, bind to the binding site of IL1RAP, with

TABLE 1 Egg productive performance parameters of laying Japanese quails following ChV supplementation and/or AFT exposure.

Parameter Experimental group

Control ChV AFT AFT–ChV

Egg no./bird 20.45 ± 1.16 22.21 ± 0.9 * 17.15 ± 0.62* 20.76 ± 0.31 #

Egg weight (g) 12.09 ± 0.01 13.41 ± 0.22 * 11.01 ± 0.11* 12.49 ± 0.04 *#

Egg mass (g) 247.18 ± 14.03 297.63 ± 10.58 * 188.94 ± 8.68* 259.4 ± 4.53 #

Cracked egg % 0.21 ± 0.21 00.00 ± 00.00 8.13 ± 1.02* 1.39 ± 0.42 #

AFTs, aflatoxins; ChV, Chlorella vulgaris. Values are represented as mean ± SE. *p < 0.05 vs. control group; #p < 0.05 vs. AFT group.

TABLE 2 Effect of ChV supplement on egg nutritive value of laying Japanese quails that fed on an AFT-contaminated diet.

Parameter Experimental group

Control ChV AFT AFT–ChV

Protein (%/g) 15.39 ± 0.38 18.29 ± 0.44 * 12.10 ± 0.29 * 14.26 ± 0.31 #

Fat (%/g) 1.23 ± 0.03 0.57 ± 0.02 * 1.96 ± 0.05 * 1.72 ± 0.04 *#

Cholesterol (mg/g) 142.92 ± 3.54 128.56 ± 1.79 * 176.84 ± 4.22 * 161.76 ± 3.74 *#

Triacylglycerol (mg/100 g) 87.74 ± 2.17 64.69 ± 1.73 * 102.42 ± 2.45 * 96.13 ± 2.07 *

AFTs, aflatoxins; ChV; Chlorella vulgaris. Values are represented as mean ± SE. *p < 0.05 vs. control group; #p < 0.05 vs. AFT group.
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binding energy values of −10.23 (Figure 5A), −10.21, −10.19, −9.74,
and −9.71 kcal/mol, respectively. The binding site of IL6RA can
interact with zeta-carotene (Figure 5B), rutin, phytofluene,
kaempferol, and cis-phytoene, with binding energy values
of −8.65, −8.48, −8.48, −8.46, and −8.46 kcal/mol, respectively. In
addition, the binding site of TNFRSF1A can be targeted by kaempferol
(Figure 5C), cis-phytoene, loroxanthin, rutin, and phytofluene,
with binding energy values of −8.08, −7.80, −7.63, −7.55,
and −7.36 kcal/mol, respectively. The binding site of TRAF can
interact with cis-phytoene (Figure 5D), zeta-carotene, hesperidin,

naringin, and rutin, with binding energy values of −7.30,
−7.24, −7.11, −7.01, and −6.97 kcal/mol, respectively.

3.7 Assessment of AFT residues in eggs

Figure 6 shows that birds that fed on the AFT-contaminated diet
displayed a noticeable increase in the level of AFT residues in their
eggs compared with birds that fed on a basal diet or supplemented
with ChV solely. However, supplementation with ChV could lessen

FIGURE 1
Bar-dot plot panel of serum biochemical tests upon ChV and/or AFT exposure. (A) Creatinine, (B) Urea, (C) Uric acid, (D) Total protein, and
(E) Albumin. AFT, aflatoxins; ChV, Chlorella vulgaris. Values are represented as mean ± SE (*p < 0.05).
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the accumulation of AFT in the eggs of birds that fed on an AFT-
contaminated diet.

3.8 Biological networks, hierarchical
clustering heatmap, and variable importance
in projection (VIP) score

Multivariate analyses were conducted to determine the
association between various parameters and treated groups, as
shown in Figure 7. Biological networks of all variables were
constructed. The nodes display various parameters, while the
lines depict the relationships among these variables in the DSPC
algorithm network (Figure 7A). During the data normalization
stage, the data were changed to log or cubic roots for the best
performance. The DSPC network is more suitable for creating
biologically pertinent networks and discovering unidentified
substances. The variable that is closer to the center exhibits a
stronger association with these selected parameters and the most
relevant position in the network, such as AFT residue. On the other
hand, AFT residue was positively correlated with the majority of

examined parameters while negatively correlated with egg protein%.
Furthermore, the metabolic pathway network was also constructed
to explore the relationships between the most disrupted pathways
and various parameters induced by AFT exposure.

The clustering heatmap exemplifies an evident visual depiction
of all datasets (Figure 7B) and reveals a notable discrepancy in the
concentration of whole measured parameters in response to AFT
toxicity compared to other groups. These findings posit that the
quails that fed on an AFT-contaminated diet exhibited greater
damage than those of other groups.

Additionally, according to the VIP score, the top influential
factors in our study were MDA, urea, uric acid, creatinine, TNF-α,
IL-1β, and AFT residue which were sensitive to various treatments
and could distinguish AFT treatment from others (Figure 7C).

4 Discussion

AFT is the most hazardous toxin that frequently contaminates
grains, food, and feedstuff and remains after food processing, raising
serious health concerns (Wang et al., 2022). As its metabolites

FIGURE 2
Bar-dot plot panel of oxidant/antioxidant indices following ChV and/or AFT treatment in the kidney tissue. (A)MDA, (B) GSH, (C) SOD, and (D) GPx.
AFTs, aflatoxins; ChV, Chlorella vulgaris; GPx, glutathione peroxidase; GSH, reduced glutathione; MDA, malondialdehyde; SOD, superoxide dismutase.
Values are represented as mean ± SE (*p < 0.05).
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(AFTO) preferentially accumulate in the renal tissue during urinary
excretion, it has been postulated in a number of studies as a potential
contributor to renal disorders (Yilmaz et al., 2018; Abdel-Daim et al.,
2021).

Ample literature, including our and others’ preceding studies,
strongly indicate that excess oxidant production and cellular
antioxidant depletion are fundamental pathways embroiled in
AFT-induced nephrotoxicity (Owumi et al., 2020; Abdel-Daim
et al., 2021; Wang et al., 2022). This, owing to the ability of AFT
to directly attack the cellular macromolecules, notably, nucleic acid

and proteins, results in immense ROS formation, including
superoxide anions (O2

•–), hydroxyl radicals (OH•), and hydrogen
peroxide (H2O2). Interestingly, SOD is an antioxidant enzyme that
promotes the breakdown of O2

•− radical into O2 and H2O2, thereby
annihilating oxidative damage (Wispriyono et al., 2021).
Additionally, GSH plays a crucial role as a co-substrate for
enzyme GPx, which is in charge of detoxifying the H2O2 and
lipid hydroperoxides, as well as direct neutralization of AFT (by
forming an AFT–GSH conjugation) (Kemal and Seker, 2023).
However, Fenton’s reaction is initiated when antioxidants are

FIGURE 3
Bar-dot plot panel of mRNA expression of pro-inflammatory cytokines following ChV and/or AFT exposure in the kidney tissue. (A) TNF-α mRNA,
(B) IL-1β mRNA, and (C) IL-6 mRNA. AFTs, aflatoxins; ChV, Chlorella vulgaris; IL-1β; interleukin-1β, IL-6, interleukin-6; TNF-α, tumor necrosis factor-α.
Values are represented as mean ± SE (*p < 0.05).

TABLE 3 Molecular docking scores of AFT on Japanese quails’ SOD1, SOD2, GPx, GR, GCLC, and GSH synthase.

AFT Molecular docking score (kcal/mol)

SOD1 SOD2 GPx GR GCLC GSH synthase

AFB1 −5.34 −4.85 −5.57 −5.71 −7.26 −6.69

AFB2 −5.15 −4.97 −5.58 −6.00 −7.30 −7.32

AFG1 −5.01 −5.20 −4.90 −5.66 −5.55 −7.17

AFG2 −5.18 −5.14 −5.71 −5.89 −5.78 −7.35

GCLC, glutamate-cysteine ligase catalytic subunit; GPx, glutathione peroxidase; GR, glutathione reductase; GSH synthase, glutathione synthetase; SOD1, extracellular superoxide dismutase;

SOD2, mitochondrial superoxide dismutase.
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depleted by AFT-initiated ROS; therefore, enormous amounts of
OH• are built up, which aggressively attack the phospholipid
membrane, leading to MDA accumulation (Aboubakr et al.,
2021; Abdelnaby et al., 2022). MDA is the byproduct of lipid
peroxidation (LPO) that represents the degree of membrane
damage. It could be more detrimental to human health than AFT
itself through engaging with essential intracellular molecules, thus
expediting oxidative injury (Fouad et al., 2019).

Accordingly, oxidative damage is prominently emphasized in
our study, expounded by an evident drop in GSH levels and the
activities of SOD and GPx in renal tissues. The ongoing work has
also further proven the detrimental impact of AFT-induced LPO on
the tubular epithelial membrane expounded by the substantial

elevation of the antioxidant enzymes such as MDA. As a
consequence, tubular dysfunction occurs and is demonstrated by
a significant upsurge in the serum levels of urea, creatinine, and uric
acid. These results support our preceding research, which revealed a
positive association between the MDA level and the increased serum
levels of renal function parameters (Abdelnaby et al., 2022). Our
findings are in agreement with those of Manafi (2018) who reported
that the albumin level is negatively affected when Japanese quails are
treated with AFT. Furthermore, as described in previous reports, the
current study revealed evident decreases in serum albumin and total
protein levels following AFT exposure. Such decreases might be
attributed to impaired tubular reabsorption with increased urinary
protein loss (Abdeen et al., 2020). In other words, the accumulated

FIGURE 4
Molecular docking interactions of AFB1, AFB2, AFG1, and AFG2 with Japanese quails’ (A) extracellular superoxide dismutase (SOD1), (B)
mitochondrial superoxide dismutase (SOD2), (C) glutathione peroxidase (GPx), (D) glutathione reductase (GR), (E) glutamate-cysteine
ligase catalytic (GCLC) subunit, and (F) glutathione synthetase.
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MDA may trigger further DNA and protein oxidation, resulting in
the inhibition of the processes of translation and transcription of
mRNA and thence protein synthesis (Abdeen et al., 2021; Aboubakr
et al., 2021).

Furthermore, the elevated levels of ROS due to AFT exposure led
to the deletion of antioxidant status in the renal tissue, as evidenced
by significant reductions in GSH, SOD, and GPx in the current
study. In addition, the molecular docking study revealed the
binding interaction between AFT and SOD1, SOD2, GPx, GR,
GCLC, and GSH synthase. In the same context, AFT significantly
elevated MDA and reduced whole-blood GSH (Citil et al., 2005)
and hepatic SOD and GPx (Elbasuni et al., 2022) in Japanese
quails.

In conformity to accumulating evidence, inflammation and
oxidative stress are remarkably correlated. Increased ROS
production boosts the nuclear factor kappa B (NF-κB) signaling
cascade and promotes the expression of pro-inflammatory cytokine

genes, resulting in a profound inflammatory reaction (Ahmed et al.,
2022). TNF-α is the most important pro-inflammatory cytokine that
is implicated in the activation of NF-κB, stimulating the regulation
of interleukins and other inflammatory mediators downstream
(Rajendran et al., 2018). Our results support the aforementioned
mechanism, exhibited by enhanced gene expression of inflammatory
factors, TNF-α, IL-1β, and IL-6, in response to AFT intoxication.
Thus, we propose that the inflammatory process is a possible
pathway that involved AFT-induced nephropathy. These findings
are consistent with those of Gao et al. (2021) who observed the
overexpression of these inflammatory cytokines in chick kidneys
upon AFT exposure.

Regarding the effect of AFT on the nutritional value of eggs,
contrary to other treated groups, AFT had an impact on the
nutritional value of eggs collected from quails subjected to AFT.
That was exhibited in the current work by reduced protein content
and elevated levels of total fat, cholesterol, and triacylglycerol

TABLE 4 Molecular docking scores of ChV’s bioactive compounds on Japanese quails’ IL1RAP, IL6RA, TNFRSF1A, and TRAF1.

Compound Molecular docking score (kcal/mol)

IL1RAP IL6RA TNFRSF1A TRAF1

7-Hydroxyflavanone −6.28 −5.47 −4.96 −4.76

Benzoic acid −4.79 −4.49 −4.16 −3.97

Caffeic acid −5.40 −4.91 −4.41 −4.59

Catechin −6.95 −5.60 −4.96 −5.53

Catechol −5.00 −4.28 −4.02 −3.66

Chlorogenic acid −8.19 −6.29 −6.14 −5.90

Cinnamic acid −5.11 −4.73 −4.13 −4.23

cis-Phytoene −9.71 −8.46 −7.80 −7.30

Ellagic acid −6.70 −5.78 −5.11 −5.04

Gallic acid −5.44 −4.92 −4.49 −4.08

Hesperidin −10.19 −7.67 −7.14 −7.11

Kaempferol −8.52 −8.46 −8.08 −6.77

Loroxanthin −8.90 −7.91 −7.63 −6.33

Luteolin −6.82 −5.86 −5.07 −5.01

Naringin −10.21 −8.43 −7.10 −7.01

Phytofluene −10.23 −8.48 −7.36 −6.69

Pyrogallol −5.12 −4.22 −3.97 −3.82

Quercetin −7.00 −6.16 −4.89 −5.40

Rutin −9.17 −8.48 −7.55 −6.97

Salicylic acid −5.46 −4.64 −4.05 −3.96

Syringic acid −5.73 −5.10 −4.68 −4.66

Zeta-Carotene −9.74 −8.65 −7.35 −7.24

β-Carotene −9.23 −7.77 −7.01 −6.57

IL1RAP, interleukin-1 receptor accessory protein; IL6RA, interleukin-6 receptor subunit alpha; TNFRSF1A, tumor necrosis factor receptor superfamily member 1A; TRAF1, tumor necrosis

factor receptor-associated factor 1.
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contents. Since the ROS produced by AFT substantially induces
DNA adducts and protein oxidation, protein synthesis and lipid
metabolism are negatively affected (Abdel-Daim et al., 2020; 2021;
Ahmed et al., 2022). As anticipated, the current trial proved the
presence of substantial residuals of AFT in eggs, which has an

impact on the safety and quality of edible components of birds that
fed on an AFT-contaminated diet. Manafi (2018) reported that
AFT metabolites are carried over from quail feed to eggs and
thence to the consumer. This finding agrees with that of Oliveira
et al. (2003) who identified AFT residues in the eggs of laying
quails.

A plethora of research has investigated the economic
implications of various levels of AFT in egg production. A
reduction in egg number along with egg weight was observed by
Oliveira et al. (2003) following dietary AFT inclusion in Japanese
quails, similar to that reported in the current work. This reduction in
egg production and quality may be due to the negative impact of
AFT on egg development through the disruption mobilization of fat
from the liver to the ovary (Manafi, 2018). Moreover, our data
demonstrated poor eggshell quality in quails that fed on an AFT-
contaminated diet, and this is due to reduced deposition of calcium
in the bone after AFT exposure, which accounts for one-third of the
calcium supply required for eggshell formation. AFT-induced
malfunction of the kidney leads to decreased synthesis and
activation of vitamin D and thus decreased calcium deposition in
the bone (Fouad et al., 2019).

ChV is a green microalga frequently used as a prophylactic
remedy to maintain renal health due to its renowned antioxidant,
anti-inflammatory, and immune-modulating properties (Blas-
Valdivia et al., 2011; Al-Halaseh et al., 2022). The antioxidant
capability has been related to its phenolic constituents identified
among other active phytoconstituents such as carotenoids, lutein,

FIGURE 5
Molecular docking interactions of Chlorella vulgaris bioactive compounds with Japanese quails’ (A) interleukin-1 receptor accessory protein
(IL1RAP), (B) interleukin-6 receptor subunit alpha (IL6RA), (C) tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), and (D) tumor necrosis
factor receptor-associated factor 1 (TRAF1).

FIGURE 6
Bar-dot plot panel of the impact of ChV supplementation on egg
total AFT residue. AFTs, aflatoxins; ChV, Chlorella vulgaris. Values are
represented as mean ± SE (*p < 0.05).
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catechin, carotenoids, gallic acid, caffeic acids, benzoic acid,
chlorogenic acid, and rutin (Blas-Valdivia et al., 2011; Andrade
et al., 2018; Prabakaran et al., 2019; Sikiru et al., 2019). Additionally,
it contains a variety of essential trace elements (Cu, Zn, Se, and Fe)
that are required for the function of numerous antioxidant
metalloenzymes (Abu-Serie et al., 2018).

Accumulating evidence corroborates that ChV consumption
counteracts oxidative stress via modulating antioxidant enzymes,
scavenging the free radicals, and mitigating LPO (Sikiru et al., 2019).
This hypothesis is supported by our finding, indicated by
improvements in renal function and oxidant/antioxidant status in
birds concurrently treated with AFT and ChV. Our findings agree

FIGURE 7
Clustering analysis of whole datasets after ChV and/or AFT exposure. (A) DSPC network of substantially distinct variables in the control and exposed
groups. In the DSPC network, the nodes represent the measured variables, while the edges signify the correlation measures. Variables with the stronger
correlation group cluster together and have wider edges between them. The blue lines display a negative correlation, while the red lines display a positive
correlation with variables. (B)Heatmap and hierarchical clustering provide a visual summary of all the data. Each colored cell on themap represents a
concentration value, and the rows and columns are made of different averages and treatment sets, respectively. Dark red has the highest value on the
gradation scale, while blue has the lowest. (C) VIP score; the average concentrations of the measured variables are displayed for each study group in
colored boxes on the right, and a colored scale from maximum (red) to least (blue) represents the contribution strength. AFTs, aflatoxins; ChV, Chlorella
vulgaris; DSPC, debiased sparse partial correlation; VIP score, variable importance in projection score.
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with the previous reports that ChV supplementation drastically
decreased the generation of MDA along with increased
antioxidant enzyme levels in a fish model (Abdelhamid et al.,
2020). Another report documented increased antioxidative
enzyme activities in rabbits fed on ChV supplements (Abdelnour
et al., 2019a).

Along with its antioxidant activity, ChV exhibits a well-known
potent anti-inflammatory property via regulating inflammatory
cytokine release, including IL-6, TNF-α, and iNOS, as well as
inhibiting proteinase and lipoxygenase activities, which are
implicated in the inflammatory process (Prabakaran et al.,
2019; Abdelhamid et al., 2020). Additionally, the molecular
docking study revealed the powerful binding of ChV
bioactive compounds to the binding sites of IL1RAP, IL6RA,
TNFRSF1A, and TRAF1 in quails. Accumulating evidence
indicates that ChV’s potential to mitigate inflammation is

ascribed to its abundance in PUFA, which plays a crucial role
in regulating the release of pro-inflammatory cytokines and
relieving cellular inflammation (Abdelnour et al., 2019a; Remize
et al., 2021; Yang et al., 2022). This is in agreement with
Abdelhamid et al. (2020) who reported that ChV
supplementation contributed to the downregulation of TNF-α
in splenic fish. Another report elucidated that ChV’s ability to
suppress inflammation might be attributed to its capacity to
upmodulate cellular antioxidant indices while downregulating
inflammatory mediators (Abu-Serie et al., 2018). In an
endorsement of previous studies, the current study elucidates
the anti-inflammatory action of ChV, as explained by the
downregulation of inflammatory cytokines.

It is worth mentioning that the findings of our research
highlight the economic benefits of ChV as an egg production
enhancer and nutritional value promoter when compared to the

FIGURE 8
The protective effect of ChV against AFT-induced kidney injury is underpinned by molecular processes. AFTs, aflatoxins; ChV, Chlorella vulgaris;
GCLC, glutamate-cysteine ligase catalytic subunit; GPx, glutathione peroxidase; GR, glutathione reductase; GSH synthetase, glutathione synthetase;
IL1RAP, interleukin-1 receptor accessory protein; IL6RA, interleukin-6 receptor subunit alpha; MDA, malondialdehyde; ROS, reactive oxygen species;
SOD, superoxide dismutase; TNFR, tumor necrosis factor receptor; TRAF1, tumor necrosis factor receptor-associated factor 1.
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AFT group. ChV contains a plethora of high-quality nutrients,
such as vital amino acids, vitamins, and minerals, and functions
as a growth enhancer and productive booster (Lamminen et al.,
2019). Additionally, supplementation of ChV reduced the AFT
residue compared to the AFT group in our trial. Such
enhancement might be related to ChV’s antioxidant activity,
improving renal function and, in turn, the metabolic
processes. According to Zheng et al. (2012), feeding diets
supplemented with ChV enhanced the eggs’ morphological
traits, which concurs with the current study. Furthermore, the
results indicate that ChV could enhance egg quality and laying
performance of laying hens, which is in agreement with previous
studies (Halle et al., 2009).

Additionally, multivariate statistical analyses using the DSPC
network, clustering heatmap, and VIP score were carried out to
analyze the variable contributions affected by different treatments on
renal tissue and quail eggs. TheDSPCnetwork revealed that AFT residue
exhibits the more relevant position in the network and positively
correlated with the majority of examined parameters while negatively
correlated with egg protein%. The clustering heatmap effectively
epitomizes that AFT exposure induced significant alterations in all
examined parameters compared to other treatment groups, indicating
prospective improvements in those parameters when ChV was
supplemented. MDA, urea, uric acid, creatinine, TNF-α, IL-1β, and
AFT residue were also found to be the top impacting variables in our
study according to theVIP score. Themolecular pathways underpinning
ChV’s potential to protect against kidney damage induced by AFT are
shown in Figure 8.

5 Conclusion

AFT induces renal dysfunction via the stimulation of oxidative
stress, LPO, and inflammatory response, which leads to decreased
egg nutritional value and increased AFT accumulation in the egg.
ChV supplement has the capability to safeguard the kidney from
the detrimental effects of AFT. This is likely due to ChV’s enriched
nutritional constituents and antioxidant, ROS-scavenging, and
anti-inflammatory attributes. The antioxidant, inflammatory,
and apoptotic proteins targeted by ChV active constituents were
validated by molecular docking dynamics. Thus, to mitigate the
potentially harmful effects of AFT on both humans and animals,
we strongly suggest that ChV supplementation may be a
promising, secure, and economical biological approach.
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