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Background: Pulmonary fibrosis features in damaged pulmonary structure or
over-produced extracellular matrix and impaired lung function, leading to
respiratory failure and eventually death. Fibrotic lungs are characterized by the
secretion of pro-fibrotic factors, transformation of fibroblasts to myofibroblasts,
and accumulation of matrix proteins.

Hypothesis/purpose: Imperatorin shows anti-inflammatory effects on alveolar
macrophages against acute lung injury. We attempt to evaluate the properties of
imperatorin on the basis of fibroblasts.

Methods: In in vitro, zymosanwas introduced to provoke pro-fibrotic responses in
NIH/3T3 or MRC-5 pulmonary fibroblasts. Imperatorin was given for examining its
effects against fibrosis. The mice were stimulated by bleomycin, and imperatorin
was administered to evaluate the prophylactic potential in vivo.

Results: The upregulated expression of connective tissue growth factor (CTGF), α-
smooth muscle actin (α-SMA), and collagen protein due to zymosan introduction
was decreased by imperatorin in fibroblasts. Zymosan induced the activity of
transglutaminase 2 (TGase2) and lysyl oxidase (LOX), which was also inhibited by
the administration of imperatorin. Imperatorin alone enhanced sirtuin 1 (SIRT1)
activity and growth differentiation factor 15 (GDF15) secretion in fibroblasts via
LKB1/AMPK/CREB pathways. In addition, GDF15 exerted a beneficial effect by
reducing the protein expression of CTGF, α-SMA, and collagen and the activities of
TGase and LOX. Moreover, orally administered imperatorin showed prophylactic
effects on bleomycin-induced pulmonary fibrosis in mice.
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Conclusion: Imperatorin reduces fibrotic marker expression in fibroblasts and also
increases GDF15 secretion via the LKB1/AMPK/CREB pathway, attenuating pro-
fibrotic responses in vitro. Imperatorin also alleviates pulmonary fibrosis induced by
bleomycin in vivo.
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1 Introduction

Pulmonary fibrosis is a chronic lung disorder with limited
therapeutic options. The excessive and continuous scarring of the
lung can be idiopathic or secondary to various conditions. Damaged
pulmonary structure and impaired lung function inevitably lead to
respiratory failure and death. Regardless of the various mechanisms
underlying initiation of fibrosis, it is commonly seen that pro-
fibrotic cytokines and growth factors are increased locally or in
the circulation during disease progression. Pro-fibrotic cytokines,
such as transforming growth factor-β (TGF-β) and tumor necrosis
factor-α (TNF-α), and growth factors, including connective tissue
growth factor (CTGF), insulin-like growth factor 1 (IGF-1), and
platelet-derived growth factor (PDGF), activate pulmonary
fibroblasts (Luzina et al., 2015; Huaux, 2021; Phan et al., 2021;
She et al., 2021; Effendi and Nagano, 2022). Activated fibroblasts
transform into α-smooth muscle actin (α-SMA)-expressing
myofibroblasts that deposit excessive extracellular matrix (ECM),
such as collagen, leading to its accumulation, which characterizes
fibrotic lungs (Horowitz and Thannickal, 2019).

Emerging evidence has revealed that ECM modification highly
involves ECM cross-linkage and increased tissue stiffness.
Transglutaminase 2 (TGase2) is an enzyme that cross-links
glutamine and lysine residues of proteins and covalently modifies
proteins, resulting in resistance to proteolysis, which consequently
leads to matrix stability and tissue rigidity (Lorand and Graham,
2003). In addition, lysyl oxidase (LOX) oxidizes lysine and
hydroxylysine residues in collagen to form covalent cross-linkage
of collagen, thus making it insoluble in the ECM (Wordinger and
Clark, 2014). On the other hand, sirtuin 1 (SIRT1) is an NAD+-
dependent lysine deacetylase associated with cardiovascular and
pulmonary diseases including fibrosis (Zerr et al., 2016; Liu et al.,
2019; Mazumder et al., 2020). Growth differentiation factor 15
(GDF15), a divergent member of the TGF-β superfamily, is
another factor that is involved in fibrosis (Kim et al., 2018a; Kim
et al., 2018c). However, the role of GDF15 is paradoxically varied
and depends on pathological conditions, target tissues, and
downstream pathways.

As a naturally occurring furanocoumarin derivative,
imperatorin has been studied for its pharmacological activities of
anti-tumor, neuroprotection, anti-inflammation, and anti-
hypertension (Nasser et al., 2019; Deng et al., 2020; Grabarska
et al., 2020; Huang et al., 2021a; Huang et al., 2021b). In our
previous study, we found that imperatorin is effective against
pulmonary inflammation (Li et al., 2019). However, little is
known about the effects of imperatorin against pulmonary
fibrosis. Therefore, in the present study, we have demonstrated
the beneficial effects of imperatorin in vitro and in vivo. The
prominent potential and mechanism of imperatorin against

pulmonary fibrosis manifests it as a promising candidate for drug
development.

2 Materials and methods

2.1 Materials

The details of the chemical compounds and antibodies used are
listed in Supplementary Figure S1.

2.2 Cell culture

The MRC-5 human lung fibroblast cell line was purchased from
Thermo Fisher Scientific (Waltham, MA) and maintained in
DMEM/F-12 medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin–streptomycin solution. The NIH/
3T3 mouse fibroblast cell line was obtained from Bioresource
Collection and Research Center (Hsinchu, Taiwan) and cultured
in DMEM containing 10% calf serum and 1%
penicillin–streptomycin solution. Both cell lines were cultured in
10-cm dishes and incubated at 37.5°C and 5% CO2.

2.3 Western blot analysis

The proteins extracted by RIPA buffer were quantified using the
BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA).
Equal amounts of proteins were subjected to SDS-PAGE. After
transfer of proteins, PVDFmembranes were blocked with 7.5% skim
milk for 1 h followed by immunoblotting with primary antibodies at
4°C overnight. After a brief wash, the membranes were hybridized
with a secondary antibody at room temperature for another 1 h. The
blots were visualized using the Pierce™ ECL Western Blotting
Substrate (Thermo Fisher Scientific, Waltham, MA) with Fuji
X-ray films (Chen et al., 2021) or using the iBright
FL1500 Imaging System with iBright Analysis software
(Invitrogen, Waltham, MA). The signal intensity was quantitated
using ImageJ (Schneider et al., 2012).

2.4 TGase2 activity assay

Cell lysates were harvested and subjected to TGase2 activity
assay using TGase2 Activity Assay Kit in duplicate for each
independent experiment. Standard procedures were conducted
by following the manufacturer’s instructions (Novus,
Centennial, CO).
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2.5 LOX activity assay

Cell lysates were collected and subjected to LOX activity assay
using Lysyl Oxidase Activity Assay Kit in duplicate for each
independent experiment. The procedures were performed by
following the standard protocol provided by the manufacturer
(Abcam, Cambridge, United Kingdom).

2.6 SIRT1 activity assay

The cells were harvested under non-denaturing conditions and
subjected to SIRT1 activity assay using SIRT1 Activity Assay Kit in
duplicate for each independent experiment. The procedures were
conducted by following the instructions provided by the
manufacturer (Abcam, Cambridge, United Kingdom).

2.7 GDF15 enzyme-linked immunosorbent
assay

Culture supernatants after the indicated treatment were
collected and subjected to GDF15 enzyme-linked immunosorbent
assay (GDF15 ELISA) in duplicate for each independent experiment.
The procedures were performed by following the protocol provided
by the manufacturer (Abcam, Cambridge, United Kingdom).

2.8 Bleomycin-induced pulmonary fibrosis
in mice

Animal experiments were approved by the Institutional Animal
Care and Use Committee (CMUIACUC-2021-164, China Medical
University, Taichung, Taiwan). Male C57BL/6 mice aged 7–8 weeks
were purchased from the National Laboratory Animal Center
(Taipei, Taiwan) and randomly grouped. After performing
anesthesia with 2% isoflurane, the mice were intratracheally
administered with equal volumes (40 μL) of either bleomycin
(2 mg/kg in saline) or saline within 15 s. After 1 h, imperatorin
(2 or 4 mg/kg in 100 μL saline) was given once per day every other
day through oral gavage for 21 days. The mice were sacrificed 24 h
later from the last dosage, and bronchial alveolar lavage fluid (BALF)
was collected using two 0.1 mL aliquots of sterile PBS. After
harvesting BALF, the lungs were dissected and the superior lobes
were taken and homogenized for hydroxyproline analysis, and the
left lungs were taken and prepared for H&E staining and Masson’s
trichrome staining.

For staining, the lung tissues were fixed with 10% formalin. After
paraffin embedding, 5-micron-thick slices were cut and stained
using H&E and trichrome staining kits.

For hydroxyproline analysis, lung homogenates were prepared,
and the procedures were performed by following the instructions
provided by the manufacturer (BioVision, Milpitas, CA) for
measuring the hydroxyproline content in the lungs.

For GDF15 secretion, BALF was centrifuged at 1,200 g for
10 min, and the cell-free supernatant was used to measure the
production of GDF15.

2.9 Statistics

The results were analyzed with one-way analysis of variance
(ANOVA) and multiple comparison procedures (Holm–Sidak)
using SigmaPlot software, and significance was defined as
p <0.05. Values are expressed as mean ± SD of at least three
independent experiments, unless stated otherwise.

3 Results

3.1 Imperatorin ameliorates zymosan-
induced pro-fibrotic response in fibroblasts

Our previous work (Li et al., 2019) showed that zymosan induces
pulmonary inflammation that leads to immune cell infiltration and
rapid lung fibrosis in mice. In this study, we have demonstrated that
zymosan provoked the expression of fibrotic markers in MRC-5 and
NIH/3T3 fibroblasts. As shown in Figures 1A–E, zymosan-induced
CTGF production and α-SMA expression were significantly
reversed by the pre-treatment of imperatorin in both MRC-5 and
NIH/3T3 fibroblasts. Zymosan induced CTGF production by 2.20 ±
0.25- and 2.12 ± 0.22-fold in NIH/3T3 and MRC-5 fibroblasts
compared to control cells, respectively, and the pretreatment of
imperatorin followed by zymosan introduction reduced CTGF
production by 1.29 ± 0.23- and 1.39 ± 0.07-fold compared to
control cells, respectively. α-SMA was increased by zymosan by
1.80 ± 0.15- and 2.26 ± 0.31-fold in NIH/3T3 andMRC-5 fibroblasts
compared to control cells, respectively, and 15 μg/mL imperatorin
reduced zymosan-induced α-SMA expression by 1.17 ± 0.07- and
1.42 ± 0.41-fold compared to control cells, respectively. In addition,
expression of α-SMA and collagen induced by 10 ng/mL of TGF-β
were significantly abrogated by the treatment of imperatorin in
MRC-5 fibroblasts (Supplementary Figure S2). Although CTGF was
mildly elevated by TGF-β, imperatorin still caused the decreasing
trend of CTGF expression.

Moreover, collagen accumulation and enzymes, including
TGase2 and LOX, which stabilize matrix deposition, enhanced by
zymosan were markedly reduced by the administration of
imperatorin in a dose-dependent manner. As shown in Figures
1F–K, zymosan increased collagen expression by 2.03 ± 0.26- and
1.85 ± 0.13-fold in NIH/3T3 and MRC-5 fibroblasts compared to
control cells, respectively, and 15 μg/mL imperatorin reduced
zymosan-induced collagen by 1.01 ± 0.15- and 0.98 ± 0.18-fold
compared to control cells, respectively. TGase2 activity was
enhanced by zymosan by 6.75 ± 1.03- and 5.22 ± 0.43-fold in
NIH/3T3 and MRC-5 fibroblasts compared to control cells,
respectively, and the pretreatment of imperatorin with zymosan
reduced TGase2 activity by only 2.13 ± 0.57- and 1.84 ± 0.18-fold
compared to control cells, respectively. Similarly, LOX activity was
enhanced by zymosan by 3.40 ± 0.38- and 3.01 ± 0.26-fold in NIH/
3T3 and MRC-5 fibroblasts compared to control cells, respectively,
and 15 μg/mL imperatorin inhibited zymosan-induced LOX activity
by 1.90 ± 0.30- and 1.73 ± 0.23-fold compared to control cells,
respectively. These data suggest that imperatorin is capable of
inhibiting both zymosan- and TGF-β-induced pro-fibrotic
responses by reducing the expression of fibrotic markers.
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3.2 Imperatorin enhances SIRT1 activity and
GDF15 secretion via the LKB1/AMPK/CREB
signaling pathway in fibroblasts

We surprisingly found that, without a pro-fibrotic stimulant,
imperatorin alone enhanced SIRT1 activity by 2.51 ± 0.27-fold at
the highest dosage in NIH/3T3 fibroblasts compared to control
cells in a dose-dependent manner (Figure 2A). In addition, 15
μg/mL imperatorin also increased GDF15 secretion by 6.24 ±
0.88-fold in NIH/3T3 fibroblasts compared to control cells
(Figure 2B).

It has been reported that AMP-activated protein kinase (AMPK)
and cyclic AMP (cAMP) response element-binding protein (CREB)
are upstream of SIRT1 and may enhance SIRT1 activity (Noriega
et al., 2011; Liu et al., 2021). Hence, we reasonably hypothesized that
imperatorin may induce the phosphorylation level of AMPK and its
upstream liver kinase B1 (LKB1) signaling pathways. As shown in
Figure 3, 15 μg/mL imperatorin elevated the phosphorylation levels
of LKB1, AMPK, and CREB by 4.33 ± 0.58-, 5.53 ± 0.91-, and 3.23 ±
0.30-fold in NIH/3T3 fibroblasts compared to control cells,
respectively (Figures 3A, C; Figures 3E, G). Imperatorin also
increased the expression of phospho-LKB1, phospho-AMPK, and

FIGURE 1
Imperatorin ameliorates zymosan-induced pro-fibrotic response in NIH/3T3 and MRC-5 fibroblasts. Representative images of protein expression
are shown in (A). Imperatorin (1.5, 5, and 15 μg/mL) was administered 30 min before zymosan (100 μg/mL) stimulation. After 24 h, the protein expression
of CTGF, α-SMA, and collagen in NIH/3T3 (B,D,F) and MRC-5 fibroblasts (C,E,G) was examined by Western blotting. For measuring TGase2 and LOX
activities, cell lysates were separately prepared after the same treatment in NIH/3T3 (H,J) and MRC-5 fibroblasts (I,K). Note that imperatorin alone
did not show significant effects on these pro-fibrotic markers. Graphs show the mean ± SD of three independent experiments. The p-value was
calculated using one-way ANOVA and multiple comparison procedures (Holm–Sidak). **p <0.01, ***p <0.001 compared to the control group. #p <0.05,
##p < 0.01, ###p <0.01 compared to the zymosan-treated group.
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phospho-CREB by 4.77 ± 0.35-, 4.15 ± 0.39-, and 3.33 ± 0.58-fold in
MRC-5 fibroblasts compared to control cells, respectively (Figures
3B, D; Figures 3F, H). In order to exhibit the upstream and
downstream cascade, AMPK inhibitors were used for examining
whether phospho-CREB is affected. As shown in Figure 3I,
inhibiting AMPK by ara-A or compound C in a dose-dependent
manner antagonized imperatorin-induced CREB phosphorylation
in NIH/3T3 fibroblasts. Furthermore, the activation of AMPK by
AICAR markedly enhanced CREB phosphorylation by 3.50 ± 0.30-
fold in a dose-dependent manner in NIH/3T3 fibroblasts compared
to control cells (Figure 3J).

To confirm that SIRT1 and GDF15 are regulated via the
AMPK and CREB pathway, the pharmacological activators/
inhibitors of AMPK and CREB were introduced. After
activating AMPK by AICAR, SIRT1 activity and
GDF15 secretion were significantly enhanced by 2.91 ± 0.15-
and 5.42 ± 0.55-fold in NIH/3T3 fibroblasts, respectively,
compared to control cells (Figures 4A, C). AICAR also
increased SIRT1 activity and GDF15 secretion by 2.72 ± 0.25-
and 3.74 ± 0.53-fold in MRC-5 fibroblasts, respectively,
compared to control cells (Figures 4B, D). Inhibiting AMPK
by ara-A and compound C or inhibiting CREB by 666-15 also
noticeably abrogated imperatorin-induced SIRT1 activity and
GDF15 secretion in both NIH/3T3 and MRC-5 fibroblasts.
These results indicate that imperatorin-enhanced
SIRT1 activity and GDF15 secretion are mediated by the
LKB1/AMPK/CREB signaling cascade.

3.3 GDF15 exerts anti-fibrotic effects on
fibroblasts

GDF15 has a controversy role in inflammation and fibrosis.
We found that the SIRT1 activator, CAY10591, induced
GDF15 secretion by 3.07 ± 0.56- and 2.35 ± 0.30-fold in NIH/
3T3 and MRC-5 fibroblasts, respectively, compared to control
cells in a dose-dependent manner (Figures 5A, B). Inhibition of
SIRT1 by EX527 also reduced imperatorin-stimulated
GDF15 secretion in a dose-dependent manner in both cell
lines. As shown in Figures 5D, E, we found that the
administration of GDF15 decreased CTGF and α-SMA
expression by 0.26 ± 0.08- and 0.42 ± 0.06-fold in

NIH/3T3 fibroblasts, respectively, compared to control cells.
GDF15 also reduced collagen production by 0.31 ± 0.04-fold
compared to control cells (Figure 5F). In addition, TGase2 and
LOX activities were also inhibited by the administration of
GDF15 by 0.11 ± 0.07- and 0.44 ± 0.13-fold, respectively,
compared to control cells (Figures 5G, H). These findings
indicate that GDF15 exhibits an anti-fibrotic effect on NIH/
3T3 fibroblasts.

3.4 Imperatorin attenuates bleomycin-
induced pulmonary fibrosis in mice

By performing H&E and Masson’s trichrome staining
techniques, bleomycin-stimulated mice demonstrated significant
basement membrane thickening, smooth muscle cell hypertrophy,
and subepithelial collagen deposition in the airway. In addition,
there was a visible collagen deposition in the interstitium; however, it
was more significant in the airway. All of the aforementioned
changes characterize pulmonary fibrosis (Figure 6A). With the
administration of imperatorin, these appearances were attenuated
both in the airway and interstitium in a dose-dependent manner. As
shown in Figure 6B, the hydroxyproline assay also manifested that
bleomycin-induced collagen deposition was alleviated by
imperatorin administration, as bleomycin elevated
hydroxyproline production by 2.58 ± 0.41-fold compared to
control mice, and the co-administration of 4 mg/kg imperatorin
reduced hydroxyproline production by only 1.60 ± 0.27-fold
compared to control mice. As shown in Figure 6C, the secretion
of GDF15 in BALF was analyzed by GDF15 ELISA. Imperatorin
treatment significantly enhanced GDF15 secretion in a dose-
dependent manner. With the co-treatment of bleomycin, 4 mg/kg
imperatorin increased GDF15 expression by up to 3.76 ± 0.52-fold
compared to control, while imperatorin alone increased
GDF15 production by 3.55 ± 0.47-fold compared to control
without bleomycin. These results indicate that imperatorin
elevated GDF15 secretion regardless of bleomycin administration.
Interestingly, bleomycin administration had slightly increased
GDF15 production. This may be an internal protective
mechanism that was carried out to defend pro-fibrotic
stimulants. These results suggest that imperatorin is prophylactic
against bleomycin-stimulated pulmonary fibrosis.

FIGURE 2
Imperatorin enhances SIRT1 activity and GDF15 secretion in NIH/3T3 fibroblasts. The cells were treated with imperatorin (1.5, 5, and 15 μg/mL) for
24 h. Cell lysates were harvested for examining SIRT1 activity (A), and culture supernatants were collected for measuring GDF15 secretion (B). Graphs
show the mean ± SD of three independent experiments. The p-value was calculated using one-way ANOVA and multiple comparison procedures
(Holm–Sidak). *p <0.05, **p < 0.01, ***p <0.001 compared to the control group.
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FIGURE 3
Imperatorin activates the phosphorylation cascade of LKB1/AMPK/CREB in NIH/3T3 and MRC-5 fibroblasts. The representative images of protein
expression in NIH/3T3 (A) and MRC-5 fibroblasts (B) are shown. The cells were treated with imperatorin (1.5, 5, and 15 μg/mL) for 30 min, and the
phosphorylation levels of LKB1, AMPK, and CREB in NIH/3T3 (C,E,G) and MRC-5 fibroblasts (D,F,H) were analyzed by Western blotting. (I) NIH/3T3 cells
were pre-treated with ara-A (2 or 10 μM) or compound C (1 and 5 μM), which are both AMPK inhibitors, 30 min before imperatorin administration
(15 μg/mL) for another 30 min. Note that imperatorin-inducedCREB phosphorylationwas antagonized by ara-A and compoundC. (J)NIH/3T3 cells were
treated with the AMPK activator AICAR (0.1, 0.3, and 1 mM) for 30 min, followed by the examination of CREB phosphorylation. Graphs show the mean ±
SD of three independent experiments. The p-value was calculated using one-way ANOVA and multiple comparison procedures (Holm–Sidak). *p <0.05,
**p <0.01, ***p <0.001 compared to the control group. ##p <0.01 compared to the imperatorin-treated group.
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4 Discussion

There are different types of pulmonary fibrosis with different causes
and histologies (Renzoni et al., 2021). Most of the pulmonary fibrosis
types are associated with acute or chronic inflammation, accompanied
by irreversible progressive scarring and thickening of tissues in the
airway or pulmonary interstitium (Kreuter et al., 2021). Some
pharmacological strategies propose novel molecules that tend to
inhibit the inflammatory process, fibroblast differentiation, ECM
component synthesis, and epithelial–mesenchymal transition and
delay lung function decline and mortality, even without healing
fibrosis (Savin et al., 2022). Currently, there are few FDA-approved
treatments for pulmonary fibrosis. On the one hand, steroids are a class
of medication that can treat certain types of pulmonary fibrosis by
reducing inflammation. On the other hand, nintedanib (Richeldi et al.,
2011; Richeldi et al., 2014; Flaherty et al., 2019) (a tyrosine kinase
inhibitor) and pirfenidone (King et al., 2014; Behr et al., 2021) (an
inhibitor of TGF-β, PDGF, and TNF-α singling) are anti-fibrotic
therapies for idiopathic pulmonary fibrosis that can decelerate fibrosis
and scarring. There is a clear need to develop useful alternative
therapeutic strategies against pulmonary fibrosis. On top of our
previous study showing that imperatorin exerts an anti-inflammatory
effect on alveolarmacrophages and alleviates rapid fibrotic injury in vitro
and in vivo (Li et al., 2019), we aim at investigating the beneficial effect of
imperatorin on fibroblasts and decelerating the establishment of
pulmonary fibrosis in vivo in this study.

Evidence has suggested that AMPK and SIRT1 have similar effects
on cellular metabolism, inflammation, and mitochondrial dysfunction
by regulating each other and sharing common target molecules

(Ruderman et al., 2010). Some reports suggest that AMPK is
upstream of SIRT1 and can enhance SIRT1 activity (Canto et al.,
2009; Liu et al., 2021), while others indicate that SIRT1 is required for
AMPK phosphorylation and activation (Price et al., 2012; He et al.,
2017). In addition, it has been identified that there are putative CREB-
binding sites in the proximal promoter region of SIRT1, and it has been
proven that SIRT1 promoter activity is induced by CREB;
SIRT1 mRNA expression is also increased by the overexpression of
CREB in HepG2 cells (Noriega et al., 2011). It has also been
demonstrated that CREB directly mediates the transcription of
SIRT1 by binding to SIRT1 chromatin and CREB deficiency
markedly reduces the expression of SIRT1 (Fusco et al., 2012b).
Moreover, SIRT1 and CREB may form a complex on the cAMP-
responsive element, and SIRT1 may promote CREB transcriptional
activity and the expression of target genes, creating a positive feedback
loop (Fusco et al., 2012a; Fusco et al., 2012b). In this study, we have
displayed that imperatorin enhances the phosphorylation of LKB1,
AMPK, and CREB and subsequently elevates the activity of SIRT1.
Inhibition of AMPK and CREB abolish imperatorin-induced
SIRT1 activation and GDF15 expression.

This study is the first to reveal the protective effects of GDF15 that is
regulated by SIRT1. Inversely different from our findings, SIRT1 is
responsible for the protective effects of GDF15 by alleviating alveolar
epithelial cell damage in a LPS-mediated acute lung injurymodel, and the
beneficial effect of GDF15 is abrogated by SIRT1 suppression (Song et al.,
2020). However, in this study, we demonstrated that GDF15 exerts the
anti-fibrotic effect, and the expression of GDF15 is elevated downstream
of SIRT1 activation. However, the exact mechanism underlying how
SIRT1 mediates GDF15 expression requires further investigation.

FIGURE 4
Imperatorin-induced SIRT1 activity and GDF15 secretion are mediated through AMPK/CREB in NIH/3T3 and MRC-5 fibroblasts. The cells were
treated with the AMPK activator AICAR (1 mM) for 24 h or pre-treated with ara-A (2 or 10 μM), compound C (1 or 5 μM), or 666-15 (0.2 or 0.5 μM) for
30 min before imperatorin administration (15 μg/mL) for 24 h in NIH/3T3 (A,C) and MRC-5 fibroblasts (B,D). Cell lysates were harvested for examining
SIRT1 activity (A,B), and culture supernatants were collected for measuring GDF15 secretion (C,D). Graphs show the mean ± SD of three
independent experiments. The p-value was calculated using one-way ANOVA and multiple comparison procedures (Holm–Sidak).
***p <0.001 compared to the control group. #p <0.05, ##p <0.01, ###p <0.01 compared to the imperatorin-treated group.
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Whether GDF15 is protective or harmful is controversial.
GDF15 may even play divergent and paradoxical roles within the
same pathological condition based on the tissues and downstream
activated signaling, showing that GDF15 appears to have both beneficial
and deleterious properties. GDF15 expression is elevated and is
considered a marker of many pathological states, including
inflammation, oxidative stress, and cancer (Han et al., 2008; Wang
et al., 2013).While cigarette smoke extracts increase GDF15 production
(Jiang et al., 2018), the concentrations of circulating GDF15 are
generally increased in chronic obstructive pulmonary disease
(COPD) compared with healthy individuals, where

GDF15 contributes to mucin production in ciliated epithelial cells
(Wu et al., 2012; Jiang et al., 2018), and the deletion of
GDF15 leads to the amelioration of cigarette smoke-related
pulmonary inflammation (Verhamme et al., 2017). In addition,
GDF15 exhibits pro-fibrotic effects by activating fibroblasts and
macrophages (Takenouchi et al., 2020). However, another study
showed that GDF15 represses the TGF-Smad signaling pathway and
leads to the inactivation of fibroblasts during pulmonary remodeling
(Kim et al., 2018b). Furthermore, the GDF15 level positively indicates a
poor prognosis in patients with acute respiratory distress syndrome
(Clark et al., 2013; Kempf and Wollert, 2013). Nevertheless, it has also

FIGURE 5
GDF15 exhibits anti-fibrotic effects in fibroblasts. The cells were treated with the SIRT1 activator CAY10591 (5 or 10 μM) for 24 h or pre-treated with
the SIRT1 inhibitor EX527 (2 or 5 μM) for 30 min before imperatorin administration (15 μg/mL) for 24 h. Culture supernatants of NIH/3T3 (A) and MRC-5
fibroblasts (B)were collected for measuring GDF15 secretion. NIH/3T3 cells were treated with mouse recombinant GDF15 (5, 10, and 20 ng/mL) for 24 h,
and the protein expression of CTGF, α-SMA, and collagen was examined by Western blotting (D,E,F). Cell lysates were also subjected to TGase2 (G)
and LOX activity (H) analyses. Representative images of protein expression are shown in (C). Graphs show the mean ± SD of three independent
experiments. The p-value was calculated using one-way ANOVA and multiple comparison procedures (Holm–Sidak). *p <0.05, **p <0.01,
***p <0.001 compared to the control group. #p <0.05, ##p <0.01, ###p <0.01 compared to the imperatorin-treated group.
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been demonstrated that GDF15 attenuates pulmonary inflammation
induced by lipopolysaccharides (Song et al., 2020) or alleviates injury by
reducing platelet–neutrophil aggregates (Herter et al., 2015). The anti-
inflammatory effect of GDF15 is also exhibited in ischemia/reperfusion
and septic injury (Kempf et al., 2006; Kempf et al., 2011; Abulizi et al.,
2017). It is apparent that GDF15 does not exert a unifying character and
its role is highly varied in different pathological states. In this study,

GDF15 expression is induced by imperatorin, which in turn decreases
the expression of pro-fibrotic markers, exerting a beneficial effect
against pulmonary fibrosis.

Accumulating evidence demonstrates that pulmonary
inflammatory damage occurs within 7 days after intratracheal
stimulation, and second-stage fibrosis becomes gradually obvious
on days 14–21 (Izbicki et al., 2002; Li et al., 2009). On the other hand,

FIGURE 6
Imperatorin alleviates bleomycin-induced pulmonary fibrosis in mice. (A) Representative images of H&E and Masson’s trichrome staining of lung
sections show that imperatorin (2 or 4 mg/kg) ameliorated bleomycin-induced pulmonary fibrosis in a dose-dependent manner. This fibrotic
phenomenon was featured in basement membrane thickening, smooth muscle hypertrophy, and subepithelial collagen accumulation in the airway.
There was also mild collagen deposition in the interstitium of bleomycin-stimulatedmice. Hematoxylin stains the nuclei in blue, and eosin stains the
cytoplasm in pink. Trichrome staining demonstrates collagen in blue, cytoplasm in pink, and nuclei in dark brown. The scale bar is 200 μm in the central
panel and 400 μm in the right panel. Bleomycin-induced hydroxyproline production (B) was also decreased in a dose-dependent manner by orally
administered imperatorin. (C) Expression of GDF15 in BALF was analyzed by GDF15 ELISA. Note that imperatorin enhanced GDF15 production regardless
of the presence of bleomycin. Graphs show the mean ± SD of four independent experiments. The p-value was calculated using one-way ANOVA and
multiple comparison procedures (Holm–Sidak). **p <0.01, ***p <0.001 compared to the control group. ##p <0.01, ###p <0.001 compared to the
bleomycin-treated group.
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there are accumulating reports studying the beneficial effects and
medicinal value of imperatorin. Despite the various pharmacological
activities that have been reported, there are also a wide range of
dosages of imperatorin that have been used. A measure of
5–50 mg/kg imperatorin shows anxiolytic effects and improves
precognition activity (Budzynska et al., 2012). It has also been
reported that 15–60 mg/kg imperatorin relieves allergic responses
in mice (Xian et al., 2019). A measure of 50–100 mg/kg imperatorin
inhibits cancer cell proliferation in mice (Mi et al., 2017). In our
previous study, 4 mg/kg imperatorin protects mice from zymosan-
induced pulmonary inflammation and rapid fibrosis (Li et al., 2019).
In addition, high imperatorin dosages may cause extended
prothrombin time and symptoms of poisoning, such as a loss of
appetite, hepatocellular necrosis, and hypotension in rats (Awaad
et al., 2012; Gong et al., 2014). Kidney damage and liver damage are
also observed in mice (Gong et al., 2014). Taking into account the
toxicity and side effects that may occur, we used imperatorin within
a low-dosage range. Herein, we have demonstrated the beneficial
effects of imperatorin in bleomycin-induced mice at a dosage of
4 mg/kg.

It is well known that during pulmonary fibrosis, there are several
different cell types, such as epithelial cells, macrophages, and
fibroblasts, orchestrating the fibrotic process from the early phase
to the later phase. Evidence from our previous study shows that
imperatorin exerts anti-inflammatory properties under pulmonary
inflammatory conditions in alveolar macrophages and in vivo (Li
et al., 2019). Here, in this study, we further confirm that imperatorin
reduces fibrotic responses in fibroblast cell lines, indicating that
imperatorin, taken together, may exhibit multiple beneficial effects
on different cell types during the progression of pulmonary fibrosis.

In summary, this study has demonstrated the prophylactic effect
of imperatorin against zymosan-induced pro-fibrotic responses by
reducing the expression of CTGF, α-SMA, and collagen and the
activities of TGase2 and LOX. Furthermore, imperatorin alone can
increase SIRT1 activity via the LKB1/AMPK/CREB pathway, which
mediates GDF15 secretion that reduces the pro-fibrotic responses.
Moreover, evidence suggests that imperatorin alleviates pulmonary
fibrosis in vivo, indicating the beneficial property of imperatorin
against pulmonary fibrotic diseases.
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