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G2/M cell cycle checkpoint protein WEE1 kinase is a promising target for inhibiting
tumor growth. Although various WEE1 inhibitors have entered clinical
investigations, their therapeutic efficacy and safety profile remain
unsatisfactory. In this study, we employed a comprehensive virtual screening
workflow, which included Schrödinger-Glide molecular docking at different
precision levels, as well as the utilization of tools such as MM/GBSA and
Deepdock to predict the binding affinity between targets and ligands, in order
to identify potential WEE1 inhibitors. Out of ten molecules screened, 50% of these
molecules exhibited strong inhibitory activity against WEE1. Among them,
compounds 4 and 5 showed excellent inhibitory activity with IC50 values of
1.069 and 3.77 nM respectively, which was comparable to AZD1775. Further
investigations revealed that compound 4 displayed significant anti-proliferative
effects in A549, PC9, and HuH-7 cells and could also induce apoptosis and
G1 phase arrest in PC9 cells. Additionally, molecular dynamics simulations
unveiled the binding details of compound 4 with WEE1, notably the crucial
hydrogen bond interactions formed with Cys379. In summary, this
comprehensive virtual screening workflow, combined with in vitro testing and
computational modeling, holds significant importance in the development of
promising WEE1 inhibitors.
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1 Introduction

Various external factors such as ultraviolet, ionizing radiations and cytotoxic drugs can
cause DNA damage (Ou and Schumacher, 2018). Normally, tumor cells halt cell cycle to
provide time for DNA repair. WEE1 is a serine/threonine kinase and serves as a crucial
regulatory protein for the G2/M checkpoint (Do et al., 2013; Matheson et al., 2016; Geenen and
Schellens, 2017). Specifically, in response to DNA damage, WEE1 induces G2/M arrest by
inhibitory phosphorylation of CDK at Tyr15 (Li et al., 2020). Previous research has
demonstrated that over 50% of tumor cells exhibit p53 mutations that disable G1/S
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checkpoint, thereby rendering cells more reliant on the G2/M
checkpoint (Dillon et al., 2014). Inhibition of WEE1 results in the
elimination of G2/M arrest, allowing tumor cells to enter the division
phase with incompletely-repaired DNA, finally leading to mitotic
catastrophe and cell death (Vakili-Samiani et al., 2022). Moreover,
WEE1 is associated with cancer progression and highly expressed in
breast cancer (Ha et al., 2020), lung cancer (Liu et al., 2019), head and

neck cancer (Diab et al., 2019), and ovarian cancer (Zhang et al.,
2017). Consequently, WEE1 emerges as a promising target for
therapeutic interventions directed at malignancies.
WEE1 inhibitors can be utilized as single agents or in combination
with DNA-damaging agents to enhance their therapeutic efficacy.

Although several WEE1 inhibitors such as Adavosertib
(AZD1775), ZN-c3, IMP7-68, IMP7068, SY-4835, and Debio-

FIGURE 1
Structures of WEE1 inhibitors.

FIGURE 2
The workflow of virtual screening.
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0123 (Fu et al., 2018; Huang et al., 2021; Lin et al., 2022;
Papadopoulos et al., 2022) have entered clinical research
(Figure 1), none of them have been approved for marketing.
Among these candidates, AZD1775 and ZN-c3 have achieved
notable progress and are currently undergoing phase II clinical
trials. Most WEE1 inhibitors have terminated clinical research
due to inadequate efficacy and safety issues. Notably, AZD1775,
especially in combination regimens, was associated with a
heightened incidence of adverse events such as anemia, diarrhea
and vomiting (Leijen et al., 2016). In contrast, ZN-c3 has exhibited
superior kinase selectivity and favorable in vivo oral exposure and is
presently in phase II clinical investigation. Therefore, the
development of highly effective small molecule inhibitors
possesses promising clinical prospects.

In this study, a comprehensive virtual screening workflow has
designed to discover new WEE1 inhibitors with novel skeletons
(Figure 2). The workflow included several processes such as
Schrödinger-Glide molecular docking at different precisions,
MM/GBSA, and Deepdock for high-precision evaluation. After
multiple iterations, molecules with potential were screened for
further evaluation. Ten molecules were screened in this study,
and five of them exhibited good inhibition rates against
WEE1 kinases. Compound 4 (GSK3182571) and compound 5
(Milciclib) showed comparable inhibitory activity to the positive
molecules AZD1775. To explore the therapeutic potential of two
compounds on tumor cells, we conducted anti-proliferation
inhibitory assays in human lung cancer cells A549 and PC9, and
human liver cancer cells Bel-7402 and HuH-7. Compound
4 demonstrated significant inhibitory effects on Bel-7402, HuH-7,
and PC9 cells. Furthermore, we performed an analysis of apoptosis
and cell cycle in PC9 cells after treated with compound 4, revealing
its ability to induce apoptosis and arrest cell cycle in G1 phase. These
results indicate that compound 4 has the potential to serve as a lead
compound targetingWEE1, with prospects for further optimization.
To gain a better understanding of the molecular interactions
between compounds and their targets, we conducted molecular
dynamics simulations. The investigation into the key
contributions of residues around the binding pocket of
compound 4 in its interaction with WEE1 could serve as a
valuable theoretical reference for future structural modifications.

2 Result and discussion

2.1 Virtual screening

2.1.1 Verification of docking parameters
In the present study, we investigated the protein structures with

the aim to discern strategies that could enrich high-affinity
compounds specific to WEE1. High-definition structural data for
these proteins were sourced from the RCSB Protein Data Bank.
Specifically, the human-originated WEE1 protein structure, labeled
5VD8, was assessed, boasting a resolution of less than 2Å.

This protein was subjected to further preparation via the
Schrödinger’s Protein Preparation Wizard module. Subsequent
evaluations of the prepared proteins were conducted using the
Glide_SP to ascertain the efficacy of these techniques and protein
chains in differentiating between inhibitors and decoys. A

substantial dataset, consisting of 389 validated WEE1 inhibitors
obtained from ChEMBL database (Stein et al., 2021) and
139,320 random decoys acquired through DUDE-Z method
(Mendez et al., 2019), was created, and these ligands were docked
to the protein pocket. Throughout this docking procedure, scores
were documented, facilitating the calculation of p-values. The
achieved area under the curve (AUC) was 0.969 with a p-value
falling below 0.001 (Figure 3A). This remarkable statistical
significance underscores the robustness of our method in
distinguishing between inhibitors and decoys. A frequency
histogram evaluation illuminated that 5VD8 exhibits exemplary
discriminatory capabilities and was thus selected for further
screening processes (Figure 3B).

2.1.2 Preparation “in-house” database and
WEE1 protein

Our “in-house” database currently contains 160,0000 unique
molecules sourced from the Maybridge compound database and
MCE drug-like compound database. To ensure data accuracy, we
utilized RDKit to preprocess and eliminate any redundant molecular
structures. The resulting molecules were then transformed into 3D
structures using Schrödingers LigPrep module.

The protein structure with PDB ID 5VD8 was retrieved from the
RCSB protein database (https://www.rcsb.org/) for further
preparation. The Protein Preparation Wizard in Schrödinger
2021–2 suite was used for protein preparation, which involved
filling in missing hydrogens, partial charges, side chains, and
loops, optimizing hydrogen bond assignments, and minimizing
energy.

2.1.3 Comprehensive virtual screening workflow
A multi-stage process was designed, which consisted of several

key components. The initial screening was performed by
Schrödinger-Glide molecular docking, using varying levels of
precision to identify promising candidates. The selected
molecules were then further evaluated and refined by MM/GBSA
and Deepdock. This iterative and comprehensive screening
approach ensures efficient exploration of potential
WEE1 inhibitors. In this study, the Glide docking tool in the
Schrödinger package was utilized for screening molecules in the
internal database. The screening process consisted of two rounds,
with the first round using standard precision (SP) to select the top
25,000 molecules with a score lower than or equal to −6.5 kcal/mol.
The second round used ultra-precision (XP) with stricter restrictions
on ligand-receptor shape complementarity, resulting in the selection
of 2000 molecules with a score lower than or equal to −8 kcal/mol
(Vass et al., 2012). MM/GBSA calculation and the geometric deep
learning framework algorithm Deepdock were then used to predict
the molecular and target affinity of the selected molecules (Sándor
et al., 2010). Compared to traditional docking scoring functions,
MM/GBSA has higher accuracy in predicting binding affinity by
taking into account both molecular mechanical energy and solvation
energy. The study followed standard MM/GBSA procedures as
outlined in Schrödinger, including the preparation of the protein-
ligand complex and energy minimization using the OPLS4 force
field (Jorgensen et al., 1996; Halgren et al., 2004; Friesner et al.,
2006). The use of the Deepdock model further improved the
understanding of the interaction between small molecules and
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WEE1 protein by predicting the binding mode between ligand and
target protein.

From the remaining molecules, a manual selection process was
used to identify 10 compounds (Figure 4; Table 1). This selection
method took into account the interaction pattern scores and
molecular combinations from different software, while also
excluding molecules with incorrect binding patterns. We then
conducted empirical assessments by evaluating the binding
scores, binding modes (with a focus on critical amino acid
interactions), inherent properties of the molecules (molecular
weight less than 600, hydrogen bond donor number less than 5,
hydrogen bond acceptor less than 10, topologically polarized surface
(TPSA) less than 120, rotational bond number (RotB) less than 10,
calculated value of lipid water partition coefficient (clogP) less than
5, etc.), and molecular synthesizability. This determination aimed to

identify molecules with higher binding affinities, while excluding
those lacking potential for drug development.

2.2 Biological evaluation

2.2.1 Inhibitory activity assay
The kinase activity of these ten compounds obtained by virtual

screening were evaluated. Compounds 2, 3, 4, 5, and 8 exhibited a
strong inhibitory effect onWEE1 protein, with an inhibition rate of
almost 100% at a concentration of 25 μM (Figure 5; Table 2).
Consequently, these five molecules were selected for further testing
to determine their half maximal inhibitory concentration (IC50).
The results indicated that five compounds displayed good
inhibitory activity, with IC50 values less than 1 μM. Compound

FIGURE 3
(A) Receiver operating characteristic (ROC) curve for evaluating virtual screening methods; (B) Docking score distribution of WEE1 inhibitors and
decoys.

FIGURE 4
The structures of the ten selected compounds.
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4 and Compound 5 showed strongest inhibitory effect, displaying
IC50 values of 1.069 and 3.77 nM, respectively. These IC50 values
were comparable to the activity result of the positive control
AZD1775, with an IC50 value of 0.786 nM. Therefore, the anti-
proliferative activity of these two compounds was investigated in
further studies.

2.2.2 In vitro antiproliferative activity
As shown in Figure 6, The anti-proliferation activity of compound

4 and compound 5 against lung cancer (A549 and PC9) and liver
cancer (HuH-7) cells were studied. The results indicated that
compound 4 exhibited better anti-proliferation activity than
compound 5 in 3 cells. Moreover, PC9 cells demonstrated higher

sensitivity to compound 4, with an IC50 value of 0.44 nM.
Meanwhile, compound 4 displayed anti-proliferation activity against
A549 and HuH-7 cells with the IC50 values 5.171 and 0.875 μM,
respectively. Additionally, compound 4 was assessed for its anti-
proliferation activity on liver cancer cell Bel-7402, and it exhibited
promising activity with an IC50 of 0.147 μM. Thus, the kinase and cell
antiproliferative activity evaluation suggested that compound 4 could
be a potential WEE1 inhibitor, and therefore, it may be selected as the
lead compound for structural optimization.

2.2.3 Cell apoptosis analysis
To validate the inhibitory effects of WEE1 inhibitors in PC9 and

A549 cells, Annexin V/PI was utilized to stain apoptotic cells (early

TABLE 1 The docking score and inhibition rate of the selected 10 small molecules.

Entry Docking score
(SP)(kcal/mol)

Docking score
(XP)(kcal/mol)

MM-GBSA ΔG
Bind(kcal/mol)

Deep dock
score

Inhibition
Rate(%)

Compound 1 −9.205 −9.018 −76.921 −121.682 64.18 ± 1.16

Compound 2 −8.566 −9.207 −71.743 −166.292 134.70 ± 1.61

Compound 3 −7.825 −8.778 −70.275 −266.036 127.17 ± 1.08

Compound 4 −9.075 −10.01 −71.062 −256.034 126.59 ± 1.66

Compound 5 −9.612 −11.083 −75.997 −231.753 137.84 ± 1.08

Compound 6 −8.678 −8.57 −81.389 −158.969 24.75 ± 2.33

Compound 7 −8.632 −7.191 −81.189 −138.888 11.18 ± 0.04

Compound 8 −9.129 −6.280 −75.282 −247.979 95.45 ± 2.24

Compound 9 −9.476 −10.367 −79.068 −173.712 58.18 ± 4.03

Compound
10

−9.393 −9.781 −80.855 −91.280 32.77 ± 0.22

FIGURE 5
(A) The inhibition rate (%) assay of ten selected compounds (25 μM) against WEE1; (B) The IC50 value of compound 4, compound 5 and
AZD1775 against WEE1 kinase.

TABLE 2 The IC50 value of five selected compounds against WEE1 kinase.

Compound 2 Compound 3 Compound 4 Compound 5 Compound 8 AZD1775

WEE1 IC50 (nM) 102.7 988.4 1.069 3.77 796.9 0.786
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FIGURE 6
(A) The IC50 value of compound 4 and compound 5 against HuH-7 cell; (B) The IC50 value of compound 4 and compound 5 against A549 cells; (C)
The IC50 value of compound 4 and compound 5 against PC9 cells; (D) The IC50 value of compound 4 against Bel-7402 cells.

FIGURE 7
Cell apoptosis analysis of compound 4. (A) PC9 cells were treated with AZD1775 or compound 4 (500 nM) for 72 h; (B) A549 cells were treated with
AZD1775 or compound 4 (2 μM) for 72 h. Apoptosis rate = Q2% (late apoptosis rate) + Q3% (early apoptosis rate), (ANOVA multiple comparison tests).
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apoptosis + late apoptosis). After PC9 cells were treated with
500 nM compound 4 or AZD1775 for 72 h, the percentage of
apoptotic cells reached to 13.24%, 27.20%, and 84.75% in blank
control group, AZD1775 group and compound 4 group,
respectively. A549 cells were treated with 2 μM compound 4 or
AZD1775 for 72 h, the percentage of apoptotic cells reached to
9.86%, 16.62%, and 17.73% in blank control group, AZD1775 group
and compound 4 group, respectively. These results suggest that
compound 4 is more effective than AZD1775 in inducing apoptosis
in PC9 cells. Furthermore, compared to A549 cells (p53 wild type),
compound 4 or AZD1775 can induce more apoptosis in PC9 cells
(p53 mutant) (Figure 7).

2.2.4 Cell cycle analysis
As shown in Figure 8, the impact of compound 4 on cell cycle

distribution of PC9 and A549 cells were studied by flow cytometry
using propidium iodine (PI) staining. Results showed that when
PC9 cells were treated with 500 nM compound 4 for 24 h, the
proportion of cells in the G1 phase was significantly increased
compared to the blank group, while the proportion of cells in the
G2 phase did not change significantly. However, after A549 cells
were treated with 2 μM compound 4 or AZD1775 for 24 h, there was
no significant change on cell cycle distribution. These findings
suggested that WEE1 inhibitor abolished G2/M phase arrest and
increased the proportion of G1 phase cells, likely due to compound 4
also appeared to exert significant effects on the G1/S checkpoint.
Moreover, in comparison to cells with wild-type p53,

WEE1 inhibitors exert a more pronounced impact on the cell
cycle of cells with p53 mutations.

2.3 Molecular dynamics and binding mode
analysis

According to the results of biological evaluation, compound 4was
selected for MD simulation. The MD simulation was performed for
500 ns, and equilibrium was reached at 100 ns (Figure 9A). Figure 9B
shows the RMSF plot for WEE1, indicating that the fluctuation of the
amino acid residue index ranges from 0.5 Å to 4.5 Å. As demonstrated
in Figure 9C, the data indicate that Cys379 interacted with compound
4 at nearly all time points. To explain these observations, we selected
the last conformation for further analysis and plotted a schematic
illustrating the detailed ligand atom interactions with specific protein
residues. We observed that the hydrogen bond interactions with
Cys379 mainly involved the nitrogen and amino groups on the
pyrimidine of compound 4, as indicated in Figures 9D,E. In
addition, compound 4 also interacts with Glu390 of WEE1 protein
through hydrogen bonding interactions, which is different from that
of AZD1775. Compound 4 interacts with Lys328 through water
bridge interactions. The amino group on the benzene ring creates
an intramolecular hydrogen bond with the carbonyl group, serving to
stabilize the compound’s conformation. Importantly, this interaction
of Cys379 is a well-established model and has also been observed in
other WEE1 inhibitors.

FIGURE 8
Cell cycle analysis of compound 4. (A) PC9 cells were treated with AZD1775 or compound 4 (500 nM) for 24 h; (B) A549 cells were treated with
AZD1775 or compound 4 (2 μM) for 24 h.
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FIGURE 9
(A) RMSD value of compound 4 (red) andWEE1 (blue); (B) The RMSF profile of WEE1 (PDB ID 5VD8) which represents local changes along the protein
chain throughout simulation trajectory; (C) Timeline representation ofWEE1-compound 4 interactions; (D) The 2D diagram of protein-ligand interaction.
The purple arrows represented H-bond interactions andwater bridges; (E) Themajor contributions of individual amino acid residues to the compound 4-
WEE1 complex.
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3 Conclusion

This research has utilized a robust virtual screening workflow
to identify potential WEE1 inhibitors. Compounds 4 and 5 have
been identified as potent inhibitors of WEE1 kinases. Particularly,
compound 4 has demonstrated significant therapeutic potential
against various cancer types, exhibiting inhibitory and anti-
proliferation characteristics that are comparable to, if not better
than, existingWEE1 inhibitors. The investigation of compound 4′s
ability to induce apoptosis and its impact on the cell cycle further
highlights its potential application in cancer treatment. These
results confirm that compound 4 is a novel WEE1 inhibitor,
which can be used as a potential lead compound for the further
development of highly active molecules targeting the
WEE1 signaling pathway. However, our study still has some
limitations. For instance, the selectivity of compound 4 towards
other kinases, as well as the pharmacokinetic properties and safety
of compound 4, necessitate further experimental validation. In
summary, these findings contribute significantly to the scientific
understanding of WEE1 inhibitors and provide a foundation for
future refinement of molecular structures and laboratory
optimization.

4 Material and methods

4.1 Compounds

Compound 1 (Denfivontinib, HY-12333), Compound 2
(AEE788, HY-10045), Compound 3 (ALK inhibitor 2, HY-
15358), Compound 4 (GSK3182571, HY-12400), Compound 5
(Milciclib, HY-10424), Compound 6 (CX-6258 hydrochloride,
HY-18095B), Compound 7 (GNE-317, HY-12763), Compound 8
(TCS7010, HY-70061), Compound 9 (LY2874455, HY-13304) and
Compound 10 (LDN-214117, HY-16712) were purchased from
MedChemExpress (Junction, NJ, United States).

4.2 Protein and ligand preparation

The X-ray co-crystallized protein structure (PDB ID: 5VD8) was
obtained from the RCSB Protein Database for further protein
preparation (Zhu et al., 2017; Burley et al., 2023). Among the
total of WEE1 protein structures recorded in the RCSB database,
PDB ID: 5VD8 was selected as our target for virtual screening after
filtering based on species and non-covalent ligand. The protein
preparation process, including preprocessing, hydrogen bond
assignment, and restrained minimization, was carried out using
the Protein Preparation Wizard module from the Schrödinger
2021–2 suite (Sastry et al., 2013; Schrödinger, 2021a). During the
preprocessing step, any issues with the protein were identified and
resolved using default parameters, such as filling in missing side
chains and loops. The hydrogen bond assignments were then
optimized by sampling water orientations and using PROPKA at
a pH of 7.4 (Rostkowski et al., 2011). Finally, a restrained energy
minimization was performed, using the OPLS4 force field to
converge the heavy atoms to an RMSD of 0.30 Å (Lu et al., 2021).

4.3 Database preparation

The in-house database used for screening was comprised of two
components, the commercial Maybridge compound database and
MCE’s drug-like molecule library. The preparation of all ligands was
carried out using the default parameters of the LigPrep module from
the Schrödinger 2021–2 suite (Schrödinger, 2021b). The Epik
(version 5.6) program was utilized to perform hydrogenation, salt
removal, tautomer generation, and calculation of ionization states,
all under the OPLS4 force field and at a pH of 7.0 ± 2.0 (Shelley et al.,
2007; Greenwood et al., 2010; Schrödinger, 2021c). Additionally, up
to 32 stereoisomers can be generated for each ligand while
preserving the specific chirality under the computational conditions.

4.4 Receptor grid generation

To prepare for the subsequent docking stage, a file was generated
containing the center coordinates of the protein pockets. The central
coordinates of the original ligand were selected as a reference for the
docking process. Subsequently, the original ligands were deleted,
resulting in the creation of the grid file. These steps were performed
using the receptor mesh generation module from the Schrödinger
2021–2 suite.

4.5 Docking based virtual screening

The virtual screening workflow described in this paper consists
of a series of filtering steps, each increasing in precision. The process
began by selecting the top 250,000 molecules from the in-house
database through the use of the SP precision in Glide docking. These
molecules were then screened through the XP precision of Glide
docking, where 10 docking conformations were established for each
compound. In the third step, 20,000 molecules obtained from the
previous round of Glide docking were filtered throughMM/GBSA to
identify the molecules with the highest scores, which were
determined using a combination of DeepDock and manual
selection. Finally, 10 molecules were chosen for further analysis
of their bioactivity.

4.5.1 Glide docking
The Glide molecular docking module of Schrödinger’s suite is a

widely-used tool in the field of computational drug discovery,
allowing for the prediction of the 3-dimensional structure of a
small molecule when in complex with a protein target (Friesner
et al., 2004). These interactions, determined by physical and
chemical properties such as shape complementarity, hydrogen
bonding, and electrostatic interactions, are crucial for
understanding the efficacy and specificity of a drug candidate.

In this study, both the Glide SP and XP precision were utilized.
The receptor grid file of the WEE1 target and ligand file were loaded
into the system and the OPLS4 force field was selected. The desired
precision level was set to determine the accuracy of the simulation,
and themaximum number of output structures and number of poses
per ligand were set to 5. The docking simulation was initiated by
running the program.
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4.5.2 MM/GBSA
The MM/GBSA method, which stands for Molecular Mechanics

Generalized Born Surface Area, is a widely used computational
technique for predicting the binding affinity of a small molecule to a
protein target in computational drug discovery (Rastelli et al., 2010;
Genheden and Ryde, 2015). It integrates the benefits of molecular
mechanics and generalized Born methods to provide a precise and
efficient estimation of binding free energy. In this study, the binding
free energy was calculated using the MM/GBSA calculation method.
The WEE1-ligand complexes obtained from docking were
optimized using the local optimization feature in Prime wizard of
Maestro (Schrödinger Release 2021–2) (Jacobson et al., 2002;
Jacobson et al., 2004; Schrödinger, 2021d). The force field
employed in this calculation was OPLS4, and the binding energy
was determined based on a set of receptor and ligand. The equation
used to calculate the binding free energy was as follows:

ΔG (bind) = ΔG (solv) + ΔE (MM) + ΔG (SA). The binding free
energy was calculated using the MM/GBSA method, which
combines molecular mechanics and generalized Born methods.
The minimized energy of the protein-ligand complexes,
represented as ΔE (MM), was determined using the OPLS4 force
field. The solvation energy variance between the protein-ligand
complexes and the sum of the solvation energies for the protein
and ligand, represented as ΔG (Solv), was also considered.
Furthermore, the difference in surface area energies for the
complexes, represented as ΔG (SA), was included in the
calculation. The minimization of the docked complexes was
conducted using the local optimization feature of Prime in
Maestro (Schrödinger Release 2021–2).

4.5.3 Deepdock
The DeepDock program on GitHub is a deep learning

framework designed for protein-ligand docking, a computational
approach that predicts the binding affinity between a protein and a
small molecule (Liao et al., 2019). This program uses a convolutional
neural network (CNN) to learn the correlation between the three-
dimensional structures of the protein and the ligand and their
binding affinity. The process started with the application of the
masif algorithm to determine the interfacial characteristics of
WEE1 when bound to a molecule.

The program inputs 2D molecular and protein pocket graphs
and generates continuous representations. Based on these
representations, it calculates a statistical potential based on the
likelihood of distances between the protein and the molecule.
Finally, it employs an optimization technique to produce the
binding configuration of the molecule.

4.6 Inhibitory activity assay

The tested compounds were dissolved in DMSO to make a
10 mM stock solution, which was further diluted to a drug
solution of 25 µM. Initially, 2× ATP and substrate solution and 2×
kinase and metal solution were prepared using assay buffer (Hepes
50 mM, MgCl2 2 mM, Brij35 0.01%, EGTA 1 mM, DTT 2 mM and
ddH2O.). Transfer 20 nL compound to 384 assay plate by Echo 655.
Then, 2 μL of 2× kinase and metal solution was mixed and incubated
in a 384 assay plate for 10 min at 25°C. 2 μL of 2× substrate & ATP

solution were added to the well, and incubated at 25°C for 60 min 4 μL
of ADP-Glo reagent was added to the well, and incubated for 40 min
at 25°C. 8 μL of kinase detection reagent was added to the well, and
incubated for 40 min at 25°C. Read the RLU (relative light-emitting
unit) signal using the BMG multifunction microplate reader, and the
signal intensity is used to characterize the degree of kinase activity.We
used Staurosporine (10 µM) as a positive control compound to
calculate the relative inhibition rate. Staurosporine is a prototypical
ATP-competitive kinase inhibitor in that it binds to many kinases
with high affinity. The inhibition rates were calculated using the
equations (X: log of inhibitor concentration; Y: % Inhibition). Assays
were performed on three independent experiments.

Y � Bottom + Top –Bottom( )/(1 + 10̂ ( LogIC50 –X( ) × hillslope))

4.6 Flow apoptosis and cell cycle detection

For apoptosis detection, Cells were performed with Pharmingen
FITC Annexin V Detection KitⅠ(BD Bioscience, Oxford, UK).
Briefly, Cells were harvested and washed once with 1×binding
buffer and then incubated with Annexin V and Propidium
Iodide (PI) for 15 min in the dark at 37°C.

For cell cycle detection, Cells were harvested and gently
washed with PBS, and fixed with 70% cold ethanol −20°C
overnight. After centrifugation, Cells were retained for
precipitation and incubated with PI/RNase Staining Buffer (BD
Bioscience, Oxford, United Kingdom) for 15 min in the dark
at 37°C.

All samples were acquired by flow cytometry (FACS CantoⅡ, BD
Bioscience) and analysed with Flowjo software version 10.4.

4.7 Anti-proliferation activity assay

Anti-proliferation activity assay was detected by Cell
Counting Kit-8 detection kit (CCK-8, #K1018) provided by
Apexbio (United States). In brief, cells were seeded in 96-wells
plates at a density of 3 × 103/well for 24 h. Then, cells were treated
with indicated concentrations of compounds for 72 h.
Supernatant was totally removed, and 100 μL of CCK-8
solution was added to each well and cultured for another 1 h
at 37°C. The absorbance of plates was measured by SpectraMax
M2 (Molecular Devices, San Jose, CA, United States) at 450 nm.
The inhibition rates were calculated for each wells as (1-
(OD450 treated cells/OD450 control cells)) × 100%. Assays
were performed on three independent experiments.

4.8 Molecular dynamics

The compound 4 selected for complex formation with
WEE1 underwent molecular dynamics simulations. The initial
structure of WEE1-compound 4 used for MD simulations was
obtained by extra-precision (XP) docking (Schrödinger, 2021e). It
was first processed through the Protein PreparationWizard module.
The input system was built using the System Builder module from
the Schrödinger 2021–2 Suite. With default parameters, the complex
molecule was placed at the center of a box filled with SPC water
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molecules, and the ensemble class for molecular dynamics
simulations was set to NPT. The temperature was kept at 300K,
and the boundaries of the box were established 10 Å away from the
farthest radius of the protein. 0.15 MNaCl, was added to balance the
system charge, with energy minimized to 100 ps? The prepared
model contained 34,412 atoms was loaded into the Molecular
Dynamics module for further simulation. The simulation
duration was set at 500 ns, with a recording interval of 1 ns for
each recording. The dynamics simulations were performed under
OPLS4 force field at the temperature of 300 K and the pressure of
1.01325 bar. The results of the simulations were analyzed using
Simulation Interaction Analysis Diagram.

4.9 Statistical analysis

The results were presented as mean ± SD of three independent
experiments. We analyzed data with GraphPad Prism 8.0 software
(San Diego, CA, United States). The significance of differences
between two groups were determined by unpaired Student’s
t tests and ANOVA multiple comparison tests. Statistically
significant p values were labelled as: *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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