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Gastrointestinal (GI) cancers comprise a significant number of cancer cases
worldwide and contribute to a high percentage of cancer-related deaths. To
improve survival rates of GI cancer patients, it is important to find and implement
more effective therapeutic strategies with better prognoses and fewer side effects.
The development of new drugs can be a lengthy and expensive process, often
involving clinical trials that may fail in the early stages. One strategy to address
these challenges is drug repurposing (DR). Drug repurposing is a developmental
strategy that involves using existing drugs approved for other diseases and
leveraging their safety and pharmacological data to explore their potential use
in treating different diseases. In this paper, we outline the existing therapeutic
strategies and challenges associated with GI cancers and explore DR as a
promising alternative approach. We have presented an extensive review of
different DR methodologies, research efforts and examples of repurposed
drugs within various GI cancer types, such as colorectal, pancreatic and liver
cancers. Our aim is to provide a comprehensive overview of employing the DR
approach in GI cancers to inform future research endeavors and clinical trials in
this field.
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1 Introduction

Gastrointestinal (GI) cancers, a group of malignancies occurring within the digestive
system including colorectal cancer (CRC), esophageal cancer (EC), gastric cancer (GC), liver
cancer (LC), and pancreatic cancer (PC) comprised a substantial proportion of global cancer
cases. They were responsible for approximately 27.7% of cancer cases (5.5 million cases out
of 18.1 million worldwide) and 35.8% of global cancer-related deaths in 2020 (Sung et al.,
2021). GI cancers have different global prevalence and mortality rates. CRC is the most
frequently occurring type, ranking third in prevalence and the second in cancer-related
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TABLE 1 List of repurposed drugs proposed for targeting colorectal carcinoma.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported targets/
pathways

Status References

Adapalene Inhibition of
proliferation, and
induction of cell
cycle arrest

Acne Colorectal cancer PTGS2 In vitro (LoVo and
DLD1 cell lines), and
in vivo (mouse
xenograft model)

Shi et al. (2015)

Aflibercept Inhibition of
angiogenesis

Neovascular (wet) age-
related macular
degeneration, macular
edema following retinal
vein occlusion, diabetic
macular edema, and
diabetic retinopathy

Metastatic
colorectal cancer

VEGFA Clinical trial: Phase 3
(NCT04392479)

Li et al. (2018a)

Amantadine Inhibition of cell
proliferation, and
induction of
apoptosis

Parkinson Colorectal cancer Endoretroviruses
(HERV-WE1, HERV-
FRD1, HERV-31, and
HERV-V1)

In vitro (HCT8 cell
line)

Díaz-Carballo et al. (2015)

Artesunate Induction of
apoptosis and
cytotoxicity

Antimalarial Colorectal cancer Downregulation of β-
catenin

Clinical Trial: Phase
2 (NCT02633098)

Kumar et al. (2019)

Aspirin Inhibition of tumor
proliferation

Analgesia Colorectal cancer,
Gastrointestinal,
esophageal
cancer, etc.

COX-1/2, ANXA1-
NF–κB axis, CDX2,
COMMD1–RelA axis

Clinical trial: Phase 3
(NCT02301286)

Frouws et al. (2017)

Azithromycin Inhibition of
autophagy

Antibiotic Colorectal cancer Inhibition of autophagy
by upregulating p62 and
LC-3B

Clinical trial: Phase 4
(NCT04454151)

Qiao et al. (2018)

Berberine Inhibition of
invasion and
metastasis

A chemical found in some
plants and is typically used
to treat bacterial diarrhea

Gastric, colorectal,
lung cancer, etc.

Ephrin-B2, MMP-2/
MMP-9, EMT, miR-101,
VEGF

Clinical trial: Phase 3
(NCT02226185)

Yu et al. (2014)

Captopril Inhibition of cell
proliferation and
metastasis

Hypertension Colorectal cancer Angiotensin converting
enzyme (ACE)

In vivo (mouse
model)

Neo et al. (2007)

Celecoxib Inhibition of
proliferation
through apoptosis

Pain and inflammation Familial
adenomatous
polyps

COX-2 Clinical trial: Phase 3
(NCT00005094)

Grösch et al. (2001)

Chloroquine
and related-
derivatives

Inhibition of tumor
growth and
induction of
apoptosis

Malaria, rheumatoid
arthritis

Colorectal cancer Autophagy, PPT1,
TLR9/NFκB

In vitro (HCT116,
HT29, and CT26)
and in vivo (mouse
xenograft model)

Anselmino et al. (2023)

Clarithromycin Inhibition of cell
growth, autophagy
and angiogenesis

Antibiotic Colorectal cancer Inhibition of autophagy
by targeting hERG1,
PI3K

In vitro
(HCT116 and
LS174T, HEK293,
and HT29 cell lines),
and in vivo (mouse
xenograft model)

Petroni et al. (2020)

Dalteparin Inhibition of
angiogenesis

Anticoagulant Colorectal cancer VEGFA Clinical trial: Phase 2
(NCT00323011)

Agnelli et al. (2022)

Dapagliflozin Reduction of cell
adhesion and
proliferation

Antihyperglycemic Colorectal cancer ADAM10, DDR1,
cellular interaction with
Collagen types I and IV
Increased Erk
phosphorylation

In vitro (HCT116 cell
line)

Okada et al. (2020)

Diclofenac Inhibition of cell
proliferation via
MYC-dependent
and -independent
mechanisms

Pain of osteoarthritis Colorectal cancer Bcl-2, COX-1, COX-2,
MCP-1, MIP-1α and
VEGF

In vitro (sw480, and
Caco-2 cell lines) and
in vivo (rat model)

Kaur and Sanyal, (2011)

Disulfiram Reprogramming
energy metabolism

Alcohol dependence Colorectal cancer NF-κB, NPL4 In vitro (H630, DLD-
1 and RKO cell lines)

Wang et al. (2003)

(Continued on following page)
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TABLE 1 (Continued) List of repurposed drugs proposed for targeting colorectal carcinoma.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported targets/
pathways

Status References

Doxycycline Induction of
apoptosis and
inhibition of
proliferation and
invasive potential

Antibiotic Colorectal cancer Inhibition of matrix
metalloproteinases
Activation of caspase-3,
-8, and -9 Release of
cytochrome c and Bax
translocation

In vitro (LS174T, and
HT29 cell lines)

Onoda et al. (2004)

Ebselen Inhibition of tumor
growth

Multifunctional
compound

Colorectal cancer ATG4B, autophagy and
tumor suppression

In vitro (HCT116,
and RKO cell lines),
and in vivo (mouse
xenograft model)

Xie et al. (2022)

Efavirenz Induction of
apoptosis

Anti-retroviral (anti-HIV
drug)

Colorectal cancer Activation of the
phosphorylation of p53

In vitro (HCT-15 cell
line)

Hecht et al. (2013)

Fluoxetine Inhibition of colitis-
associated
tumorigenesis,
dysplasia and
angiogenesis

Antidepressant Colorectal cancer Inhibition of NF-κB
activation and IKK
phosphorylation Cell-
cycle arrest at G0/
G1 Enhanced
p27 expression Reduced
VEGF expression

In vitro (HT29 cell
line), in vivo (mouse
model)

Kannen et al. (2012)

Gemifloxacin Inhibition of cell
migration and
invasion

Antibiotic Colorectal cancer Inhibition of NF-κB
activation Inhibition of
TNF-α, IL-6, IL-8, and
VEGF

In vitro (SW620, and
LoVo cell lines)

Kan et al. (2013)

Indinavir Inhibition of tumor
growth

Anti-retroviral (anti-HIV
drug)

Colorectal cancer Proteasome-
independent block of
angiogenesis and matrix
metalloproteinases

In vitro (SW480 cell
line), in vivo (mouse
xenograft model)

Toschi et al. (2011)

Indomethacin Induction of
G1 arrest and
apoptosis

Rheumatic disease Colorectalcancer Shc-ERK axis, PKCζ-
p38-DRP1 axis, Wnt/β-
catenin

Clinical trial: Phase 4
(NCT00473980)

Lin et al. (2019),
Mazumder et al. (2019),
Bahmad et al. (2022)

Irbesartan Inhibition of
metastasis

Hypertension Colorectal cancer Angiotensin receptor In vivo (mouse
xenograft model)

Neo et al. (2007)

Ivermectin Inhibition of
proliferation and
induction of
apoptosis

Antihelmintic drug Colorectal cancer WNT-TCF signaling In vitro (SW480 and
SW1116 cell lines)

Zhou et al. (2021)

Linagliptin Inhibition of
metastasis

Type-2 diabetes Colorectal cancer Rb/Bcl-2/p53 In vitro (HCT
116 cell line), and in
vivo (mouse
xenograft model)

Li et al. (2020b)

Lovastatin Inhibition of cancer
progression and
metastasis

Antilipidemic Colorectal cancer Inhibition of MACC1 In vitro (SW480 cell
line) and in vivo
(mouse model)

Xiao et al. (2022)

Mebendazole Inhibition of
metastasis

Antihelmintic drug Colorectal cancer MYC and
COX2 pathways

Clinical trial: Phase 3
(NCT03925662)

Nygren and Larsson
(2014), Hegazy et al.
(2022)

Mefloquine Induction of
apoptosis and
growth arrest

Antimalarial Colorectal cancer Inhibition of NF-κB
activation

In vitro (HT-29,
HCT116, RKO,
SW620 and Lovo cell
lines), and in vivo
(mouse xenograft
model)

Xu et al. (2018)

Metformin Reprogramming
energy metabolism

Obese type 2 diabetes Colorectal cancer AMPK, PI3K-mTOR
pathways, BACH1

Clinical trial: Phase 3
(NCT05921942)

Higurashi and Nakajima
(2018)

(Continued on following page)
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TABLE 1 (Continued) List of repurposed drugs proposed for targeting colorectal carcinoma.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported targets/
pathways

Status References

Midostaurin Inhibition of cell
growth and cell
cycle arresting

A protein kinase inhibitor
that has been developed for
the treatment of acute
myeloid leukemia,
myelodysplastic syndrome
and advanced systemic
mastocytosis

Rectal cancer cGAS, STING, IRF3,
IFNAR1, Trex-1, c-Kit,
and Flt3

Clinical trial: Phase 1
(NCT01282502)

Lai et al. (2022)

Nebivolol Inhibition of tumor
growth

Hypertension and other
indications

Colorectal cancer Inhibition of
mitochondrial
respiration by
decreasing the activity of
Complex I of the
respiratory chain

In vitro (HCT116 cell
line), and in vivo
(mouse xenograft
model)

Nuevo-Tapioles et al.
(2020)

Niclosamide Inhibition of
invasion and
metastasis

Antihelminthic drug Colorectal cancer Wnt/β-catenin, STAT3,
NF-κB

Clinical trial: Phase 2
(NCT02519582)

Wang et al. (2019)

Nitazoxanide Induction of
G1 arrest,
Modulation of
angiogenesis and
metabolism

Anti-Parasite Colorectal cancer mTOR Clinical trial: Phase 3
(NCT06049901)

Senkowski et al. (2015),
Ripani et al. (2020)

Oxiconazole Inhibition of tumor
growth

Antifungal agent Colorectal cancer Inhibiting autophagy
through downregulation
of peroxiredoxin-2
(PRDX2)

In vitro (HCT116,
SW480, RKO, DLD-
1, SW620, LoVo cell
lines), and in vivo
(mouse xenograft
model)

Shi et al. (2022a)

Parecoxib Prevention of
inflammation and
tumor-promotion

Pain Colorectal cancer COX2, PTGS2 In vitro
(HCT116 and
HT29 cell lines), and
in vivo (mouse
xenograft model)

Xiong et al. (2015)

Perhexiline Induction of
apoptosis, and
reduction of cell
viability

Anti-anginal Colorectal cancer - In vitro (SW480,
SW620, HCT116,
HT29 and
COLO205 cell lines),
and in vivo (Patient-
derived organoids)

Dhakal et al. (2022)

Propranolol Induction of
apoptosis

Hypertension Colorectal cancer Activating autologous
CD8+ T cells and
decreasing the
expression of p-AKT/
p-ERK/p-MEK,
inhibiting the expression
of p-ERK.

Clinical trial: Phase 3
(NCT00888797)

Liao et al. (2020)

Raltegravir Inhibition of
invasion

Anti-retroviral (anti-HIV
drug)

Colorectal cancer Blockage of fascin-1 In vitro (HCT-
116 and DLD-1), and
in vivo (mouse
xenograft model)

Alburquerque-González
et al. (2021)

Rapamycin or
Sirolimus

Inhibition of cell
proliferation,
invasion, and
angiogenesis, and
induction of
apoptosis

Immunosuppressant, anti-
restenosis agent,
Prevention of kidney
transplant rejection

Rectum, and
colorectalcancers

mTOR and associated
signaling networks,
CHOP-dependent
DR5 induction on 4E-
BP1 dephosphorylation
Suppressed
FBXW7 loss-
driven EMT

Clinical trial: Phase 2
(NCT00409994) and
(NCT03439462)

Gulhati et al. (2009),
Mussin et al. (2017)

Ritonavir Induction of
apoptosis and
inhibition of
angiogenesis

Anti-retroviral (anti-HIV
drug)

Colorectal cancer Inhibition proteolytic
degradation and
accumulation of
p21 Decreased

In vitro (DLD-1 cell
line)

Mühl et al. (2004)

(Continued on following page)
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deaths. GC, LC and EC rank as the fifth, sixth and eighth most
commonly diagnosed cancers, with mortality rates ranking
fourth, third and sixth, respectively. PC which has a poor
prognosis with low curability rates compared to the other GI
cancers, ranks 12th in frequency and the seventh in cancer death
(Ferlay et al., 2021).

GI cancers exhibit diverse incidence patterns across regions,
with PC and CRC being more prevalent in Europe and Northern
America, and GC, LC, and EC in Asia. Interestingly, the countries
with high human development indicators (HDIs) report a higher
incidence of PC cases (Li et al., 2021a; Huang et al., 2021). In
addition, the incidence of GI cancers is influenced by several
factors such as lifestyle habits and dietary choices as well as age,

with elderly males having a higher risk of incidence and mortality
compared to females. This emphasizes the complex interplay of
environmental and biological factors in the development of GI
cancers (Sung et al., 2021).

The existing standard treatment options for GI cancers
comprise surgery, chemotherapy, radiation therapy, targeted
therapy, and immunotherapy (Nakayama et al., 2013;
Anwanwan et al., 2020; Biller and Schrag, 2021; Joshi and
Badgwell, 2021). Although combination regimens offer higher
response rates and improved survival rates than single-agent
therapy, it is crucial to consider the toxicity profile of these
regimens closely (Chakraborty and Rahman, 2012; Miller et al.,
2016; Jin and Mills, 2020). Reducing GI cancer mortality involves

TABLE 1 (Continued) List of repurposed drugs proposed for targeting colorectal carcinoma.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported targets/
pathways

Status References

production of TNF-α,
IL-6, IL-8, and VEGF
Increased expression of
heme oxygenase-1

Rofecoxib
(Withdrawn)
(Phase 3)

Inhibition of
mMetastasis

Osteoarthritis, rheumatoid
arthritis, juvenile
rheumatoid arthritis, acute
pain conditions, migraine,
and dysmenorrhea

Colorectal cancer COX-2 Clinical trial: Phase 3
(NCT00031863)

Midgley et al. (2010)

Simvastatin Inhibition of
metastasis

Dyslipidemia Colorectal cancer KRAS Clinical trial: Phase 3
(NCT01238094)

Lee et al. (2011)

Spiperone Induction of
apoptosis

Schizophrenia Colorectal cancer Activating
phospholipase C,
disrupting intracellular
calcium balance,
inducing irreversible
endoplasmic reticulum
stress, causing lipid
metabolism changes,
damaging the Golgi
apparatus

In vitro (HCT116,
SW620, HCT8, and
MDA-MB-231 cell
lines)

Antona et al. (2022)

Sulindac Prevention of
inflammation and
tumor-promotion,
and induction of
apoptosis

Pain, swelling, and joint
stiffness from arthritis

Colorectal cancer PTGS2, Cyclin G2 Clinical trial: Phase 2
(NCT01856322)

Wang et al. (2022)

Thalidomide Inhibition of
angiogenesis

Sedative, antiemetic Colorectal cancer Various proangiogenic
factors, VEGF receptor,
NF-κB

Clinical trial: Phase 3
(NCT02748772)

Sakamoto and Maeda
(2010), Zhang and Luo
(2018)

Tolfenamic acid Inhibition of cell
proliferation,
metastasis, and
induction of
apoptosis

Migraine Colorectal cancer Cyclin D, cyclin E, Cdk2,
E2F-1, c-Myc, Mmp7,
S100a9, Nppb and
Aldh1a3, PTGS, VEGF,
survivin, XIPA

In vitro
(HCT116 and LoVo
cell lines)

Jeong et al. (2013)

Valproate Reduction of cell
proliferation and
cytotoxicity
enhancement

Antipsychotic Colorectal cancer Histone
hyperacetylation Relief
of HDAC-mediated
transcriptional
repression

Clinical trial: Phase 2
(NCT05694936)

Jeong et al. (2013), Patel
and Patel (2018)

Zidovudine Induction of
apoptosis, and cell
cycle arrest

Anti-retroviral (anti-HIV
drug)

Colorectal cancer Increased expression of
the p53-Puma/Bax/
Noxa pathways
Activation of the p53-
p21 pathway

Clinical trial: Phase 2
(NCT03144804)

Falcone et al. (1997)
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TABLE 2 List of repurposed drugs proposed for targeting pancreatic cancer.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported
targets/
pathways

Status References

AM580 Increasing tumor
sensitivity to
chemotherapy

Acute promyelocytic
leukemia

Pancreatic ductal
adenocarcinoma

Upregulation of Meflin
expression

In vitro (Pancreatic
Stellate Cells)

Iida et al. (2022)

Bazedoxifene Inhibition of cell
viability and
migration

Selective estrogen receptor
modulator

Pancreatic ductal
adenocarcinoma

Inhibition of
STAT3 activation
mediated by
interleukin 6 (IL-6) and
11 (IL-11)

In vitro (AsPC-1,
PANC-1, HPAF-II,
BxPC-3, HPAC,
Capan-1 cell lines),
and in vivo (mouse
xenograft model)

Wu et al. (2016)

Carglumic acid Induction of
apoptosis

Hyperammonemia Pancreatic ductal
adenocarcinoma

COX-1/2, ANXA1-
NF–κB axis, CDX2,
COMMD1–RelA axis

In vitro (Capan1,
AsPc1/luc, and
PanO2/luc cell lines),
and in vivo (mouse
model)

Chen et al. (2015a)

(Hydroxy)-
Chloroquine

Inhibition of
proliferation

Malaria Pancreatic Cancer Inhibition of autophagy
in PSCs through
reduced IL-6
expression and ECM
protein production,
Reduction of metastatic
PC cells, ERK/MAPK
inhibitors, Inhibition of
CXCL12/
CXCR4 signaling,
reduced
phosphorylation of
ERK and STAT3,
downregulation of
Hedgehog signaling

Clinical trial: Phase 1
(NCT01777477)

Samaras et al. (2017)

Systemic Lupus

Erythematosus

Rheumatoid arthritis

Doxycycline Induction of
apoptosis, and cell
cycle arrest

Antibiotic Pancreatic ductal
adenocarcinoma

Impairment of
mitochondrial
biogenesis and
oxidative
phosphorylation,
downregulation of
PAR1/FAK/PI3K/AKT
signaling

Clinical trial: Phase 2
(NCT02775695)

Liu et al. (2020c)

Digoxin Induction of
apoptosis

Atrial fibrillation, atrial
flutter, and heart failure

Pancreatic Cancer Nrf2 inhibitor Clinical trial: Phase 2
(NCT04141995)

Zhou et al. (2019b)

Disulfiram Induction of
autophagy-
dependent apoptosis,
and ER stress

Drugs used in addictive
disorders, Chronic
alcoholism

Pancreatic ductal
adenocarcinoma

Activation of the
IRE1a-XBP1 pathway
upregulation of
p27 Inhibition of the
NF-kB signaling
pathway and
downregulate
stemness-related genes
(HER2, c-myc and
SOX9), Promotion of
aponecrosis death
pathways in K-Ras
mutant PC cells,
activation of the ER
stress/IRE1α-
XBP1 pathway

Clinical trial: Phase 2
(NCT03714555)

Zhang et al. (2019)

Efavirenz Inhibition of cell
proliferation, and
induction of
apoptosis

HIV infection Pancreatic Cancer ROS production and
mitochondrial
membrane
depolarization,
phosphorylation of
both ERK1/2 and
p38 MAPK stress
pathways

Clinical trial: Phase 2
(NCT00964171)

Hecht et al. (2018)

(Continued on following page)
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TABLE 2 (Continued) List of repurposed drugs proposed for targeting pancreatic cancer.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported
targets/
pathways

Status References

Emetine,
Ouabain

Induction of cancer
cell death

Emetine; Anti-protozoal,
Ouabain; The cardiac
glycoside

Pancreatic ductal
adenocarcinoma

Interfering in hypoxia
response

In vitro (ASPC-1, and
PANC-1 cell lines), in
vivo (patient-derived
organoid)

Hirt et al. (2022)

Fulvestrant This study focused on
bioinformatic
approaches

Fulvestrant; Metastatic
breast cancer,
Midostaurin; AML

Pancreatic ductal
adenocarcinoma

Fulvestrant; target
ESR1, Midostaurin;
target PRKA

Clinical trial: Phase 1
(NCT04247126)

Mugiyanto et al.
(2022)

Gemcitabine Inhibition of DNA
synthesis and
induction of
apoptosis

Antiviral Bladder cancer;
Pancreatic ductal
adenocarcinoma;
Non-small cell lung
cancer; Ovarian
cancer; Breast cancer

_ Clinical trial: Phase 4
(NCT02812992), FDA
approved

Rebelo et al. (2021)

Haloperidol Inhibition of
proliferation by
promoting ER stress,
and induction of
apoptosis

Psychosis Pancreatic Cancer DUSP6 In vitro (MIA PaCa-2,
and PANC-1 cell
lines)

Kim et al. (2012),
Heer et al. (2022)

Ibrutinib Induction of
apoptosis

Antineoplastic agents
(protein kinase inhibitors)

Pancreatic ductal
adenocarcinoma

Mast cell-dependent
antifibrotic effect

Clinical trial: Phase 3
(NCT02436668)

Massó-Vallés et al.
(2015), Gunderson
et al. (2016),
Overman et al.
(2020)

Itraconazole Induction of
apoptosis, and
Inhibition of cell
proliferation

Antifungal Pancreatic ductal
adenocarcinoma

Inhibition of TGF-β/
SMAD2/3 signaling
ROS production and
mitochondrial
membrane
depolarization, Bak-1
activation, TGF-β/
SMAD2/3 signaling
suppression

In vitro (CFPAC-1,
MiaPaCa-2, Panc-1,
and BxPC-3 cell lines),
and in vivo (mouse
xenograft model)

Chen et al. (2018),
Jiang et al. (2019)

Losartan Inhibition of cell
proliferation

Angiotensin II receptor
antagonist

Pancreatic ductal
adenocarcinoma

Inhibition of collagen I
synthesis, Blockade of
AT1R leading to
inhibition of VEGF
synthesis, increasing
CD8+ T cells,
decreasing IL-1β,
TANs and Tregs,
inhibiting aberrant
TGF-β activity

Clinical trial: Phase 2
(NCT03563248)

Diop-Frimpong
et al. (2011)

Metformin Inhibition of
proliferation

Antidiabetic Pancreatic ductal
adenocarcinoma

Inhibition of mTOR,
STAT3 and TGF-β1/
Smad2/3 signaling
suppression of insulin/
IGF-I receptor
activation and
downstream signaling
mediators IRS-1 and
Akt Activation of
AMPK

Clinical trial: Phase 2
(NCT01210911)

Karnevi et al. (2013),
Nair et al. (2014),
Kordes et al. (2015)

Nitroxoline Induction of cell cycle
arrest and apoptosis

Antiviral (Nelfinavir),
Antibiotic (Nitroxoline)

Pancreatic ductal
adenocarcinoma

ROS production, DNA
damage response,
mitochondrial
depolarization and
deregulation of
cytosolic iron
homeostasis

In vitro (AsPC-1,
BxPC-3, and Capan-2
cell lines)

Veschi et al. (2018),
Veschi et al. (2020)

Olanzapine Inhibition of tumor
proliferation

Antipsychotic Pancreatic ductal
adenocarcinoma

Inhibition of surviving
in CSCs

In vitro (PANC-1, and
PSN-1 cell lines)

Sanomachi et al.
(2017)

(Continued on following page)
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TABLE 2 (Continued) List of repurposed drugs proposed for targeting pancreatic cancer.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported
targets/
pathways

Status References

Parbendazole Induction of
apoptosis, and cell
cycle arrest

Anthelmintic Pancreatic ductal
adenocarcinoma

Apoptosis induction,
DNA damage, cell cycle
arrest and alterations of
tubulin distribution

In vitro (AsPC-1, and
Capan-2 cell lines)

Florio et al. (2019)

Pentoxifylline Inhibition of
metastasis

Vasodilator Pancreatic ductal
adenocarcinoma

Reduction in collagen I
and downregulation of
alpha-smooth muscle
actin and connective
tissue growth factor
Inhibition of chitinase
3-like-1

In vitro (BxPC3, and
PANC-1 cell lines)

Xavier et al. (2021)

Pimavanserin Induction of
apoptosis

Parkinson disease psychosis Pancreatic Cancer Abrogation of Akt/
Gli1 signaling cascade
leading to the
downregulation of Oct-
4, SOX2 and NANOG
cancer stem cell
markers

In vitro (AsPC1,
BxPC3, MIAPaCa2,
and PANC1 cell lines),
and in vivo (mouse
xenograft model)

Ramachandran and
Srivastava (2020)

Pimozide Induction of ER
stress, cell cycle
arrest, apoptosis and
activation of the UPR

Antipsychotic Pancreatic ductal
adenocarcinoma

Inhibition of DRD2 In vitro (BxPC-3,
Panc-1, MiaPaCa-2,
Capan-1, and
CFPAC-1 cell lines),
and in vivo (mouse
xenograft model)

Jandaghi et al. (2016)

Pirfenidone Inhibition of
proliferation and
promotion of cell
cycle arrest

Antifibrotic Pancreatic ductal
adenocarcinoma

Suppression of
desmoplasia through
regulation of PSCs,
Suppression of PDGF-
A, HGF, periostin,
collagen type I and
fibronectin, Cell cycle
arrest and upregulation
of p21 of PDAC cells,
Inhibition of
CHI3L1 and FN1,
Downregulation of
collagen I and TGF-β,
Inhibition of
fibronectin

In vitro (SW1990 cell
line), and in vivo
(mouse xenograft
model)

Ji et al. (2017), Gao
et al. (2019)

Propranolol Induction of
apoptosis

Hypertension Pancreatic Cancer Inhibiting the
expression of NF-kB,
AP-1 and CREB, as well
as the expression of
MMP-9, MMP-2 and
VEGF target genes,
decreasing Fz1, Wnt-1
and vimentin
expression,
downregulation of
α7nAChR, ERK1/2 and
p-CREB

Clinical trial: Phase 2
(NCT03838029)

Al-Wadei et al.
(2009), Zhang et al.
(2009), Zhang et al.
(2010), Li and Xu
(2019)

Pyrvinium Inhibition of tumor
cells in nutrient-
depleted condition by
targeting
mitochondria

Anthelmintic Pancreatic ductal
adenocarcinoma

Inhibition of
mitochondrial
function, the WNT
pathway, and cancer
stem cell renewal

Clinical trial: Phase 1
(NCT05055323)

Schultz et al. (2021);
Ponzini et al. (2023)

Ritonavir Induction of
apoptosis and cell
cycle arrest

Antiviral Pancreatic ductal
adenocarcinoma

Induction of apoptosis
and cell cycle arrest,
through Inhibition of
E2F-1 and AKT
pathway, suppression
of Akt and Rb
phosphorylation

In vitro (BxPC-3, MIA
PaCa-2, and PANC-1
cell lines)

Batchu et al. (2014)

(Continued on following page)
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identifying and implementing more efficient therapy strategies
that lead to superior prognosis and/or fewer side effects.
Although the discovery and development of novel drugs are
crucial for halting and reversing disease effects, they demand
substantial funding, broad experimentation, and subsequent
investigations into efficacy, pharmacokinetics, and toxicity.
Moreover, only a small percentage of these drugs,
approximately 5%, undergo clinical trials which may be
approved for clinical use after successful results from the three
phases of clinical trials (Gupta et al., 2013). Thus, developing new
drugs is a costly and time-consuming procedure that requires
extensive resources and expertise.

Drug repurposing (DR), also known as drug repositioning, is
an alternative and promising strategy for cancer treatment. It
involves exploring the potential therapeutic applications of
already approved drugs or withdrawn/outdated agents in the
clinic (Tables 1–4; Supplementary Table S2; Figure 1). DR offers a
substantial asset in drug development, uses the prior knowledge
of the pharmacodynamics, pharmacokinetics and toxicity of
already approved drugs which have undergone extensive
animal and human studies (Gupta et al., 2013; Bertolini et al.,
2015). Accordingly, repurposed compounds can be authorized
for use in cancer treatment and other therapeutic applications
rapidly, relying on the established safety profiles and efficacy
data. Moreover, the regulatory approval process for repurposed
drugs is often faster and less expensive, making DR an attractive
alternative strategy for drug development (Chong and Sullivan,
2007). In this review, we aim to provide a critical overview of the
current therapies for GI cancers, as well as examples of
repositioned components, and the most promising candidate
for drugs repurposing in GI cancers.

2 Current gastrointestinal cancers
therapies, challenges, and limitations

The treatment approaches for GI cancer patients are diverse and
contingent upon factors such as the patient’s performance status,
medical comorbidities, cancer type, stage, potential side effects and
overall health (Joshi and Badgwell, 2021; Catalano et al., 2022;
Ducreux et al., 2023). Treatment strategies encompass adjuvant
chemotherapy, adjuvant chemoradiotherapy, preoperative
chemoradiotherapy, endoscopic/colonoscopy resection, surgical
resection, and perioperative chemotherapy. A comprehensive
therapy regimen involves a combination of suitable treatment
options to effectively address GI cancers (Sugarbaker, 2005).

Targeted therapy serves as a viable treatment option within
various therapeutic regimens for GI cancers. Notably, for GC,
HER2-targeted therapy (trastuzumab) and anti-angiogenesis
therapy (ramucirumab) are major targeted therapies employed
(Joshi and Badgwell, 2021). Ramucirumab is also considered as a
targeted therapy alternative for patients with EC who have not
responded well to initial treatment approaches (Fuchs et al., 2014).
Erlotinib, an epidermal growth factor receptor (EGFR) blocking
agent, has obtained Food and Drug Administration (FDA) approval
for advanced PC patients (Moore et al., 2007). In the treatment of
CRC, the commonly employed anti-angiogenesis agent,
bevacizumab, in combination with chemotherapy can prolong the
survival rate of advanced CRC patients (Xiong et al., 2021).
Unresectable or metastatic hepatocellular carcinoma (HCC)
patients commonly undergo a combination of anti-angiogenesis
targeted therapy and immunotherapy as the predominant treatment
strategies for HCC, while systemic chemotherapy proves ineffective
in such cases (Greten et al., 2008).

TABLE 2 (Continued) List of repurposed drugs proposed for targeting pancreatic cancer.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported
targets/
pathways

Status References

Somatostatin Inhibition of
angiogenesis and cell
migration

Neuroendocrine inhibitor Pancreatic Cancer Cytotoxic,
somatostatin receptors
(SSTR) targeted
therapy

In vitro (Capan-1,
Capan-2, CAV, MIA
PaCa-2, and Panc-1
cell lines), and in vivo
(pancreatic tumor
xenografts)

Li et al. (2005)

Simvastatin Inhibition of
metastasis

Dyslipidemia Pancreatic ductal
adenocarcinoma

KRAS Clinical trial: Phase 2
(NCT00944463)

Liu et al. (2020b)

Trifluoperazine Induction of
apoptosis and
necroptosis

Antipsychotic Pancreatic ductal
adenocarcinoma

Impairment of
mitochondrial and ER
homeostasis, induction
of apoptosis and
necroptosis and
activation of the UPR

In vitro (MiaPaCa-2),
and in vivo (patient-
derived xenograft)

Huang et al. (2019)

Verteporfin Induction of
apoptosis

Antineovascularization
agent (Verteporfin),
Sensitizers in
photodynamic therapy
(protoporphyrin IX)

Pancreatic ductal
adenocarcinoma

Activation of apoptosis
via TAp73 activation,
Inhibition of
thioredoxin reductase,
Inhibition of Hippo/
YAP signaling pathway

Clinical trial: Phase 2
(NCT03033225)

Huggett et al. (2014);
Hanada et al. (2021)

Vorinostat Inhibition of
proliferation

HDAC inhibitors Pancreatic Cancer FBP1 Clinical trial: Phase 2
(NCT00831493)

Emamzaden et al.
(2022)
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TABLE 3 List of repurposed drugs proposed for targeting hepatocellular carcinoma.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported targets/
pathways

Status References

Amiodarone Inhibition of
proliferation and
induction of apoptosis,
and autophagy

Antiarrhythmic Hepatocellular
Carcinoma

mTOR In vitro (Hep 3B,
HepG2 and Hu-H7 cell
lines), and in vivo (HBx-
transgenic mice)

Favoulet et al.
(2001); Lan et al.
(2014)

Atovaquone Induction of apoptosis Pneumonia Hepatocellular
Carcinoma

DNA double-stranded
breaks

In vitro (HepG2, Hep3B,
and Huh7 cell lines), and
in vivo (mouse xenograft
model)

Gao et al. (2018)

Bortezomib Inhibition of
proliferation

26S proteasome inhibitor Hepatocellular
Carcinoma

FBP1 Clinical trial: Phase 2
(NCT00077441)

Jin et al. (2017)

Canagliflozin Inhibition of Cell
proliferation,
differentiation, stress
response, and induction
of apoptosis

Oral hypoglycemic Hepatocellular
Carcinoma

ERK, p38, AKT In vitro (Huh7, HepG2,
and HLE cell lines), and in
vivo (patient-derived
xenograft)

Kaji et al. (2018)

Dexamethasone Inhibition of
proliferation

Synthesized
glucocorticoid

Hepatocellular
Carcinoma

FBP1 Clinical trial: Phase 3
(NCT05711823)

Zhao et al.
(2021)

Fenofibrate Metabolic
reprogramming

Antihypercholesterolemia Hepatocellular
Carcinoma

PPARa, AKT, CTMP In vitro (Hep3B, Li7,
Huh7, and HepG2 cell
lines), and in vivo (mouse
xenograft model)

Yamasaki et al.
(2011), Chen
et al. (2023)

Genistein Inhibition of glycolysis
and induction of
mitochondrial
apoptosis

Inhibits HK2 Hepatocellular
Carcinoma

Downregulates HIF-1α,
therefore inactivating
GLUT1 and HK2,
enhances the antitumor
effect of sorafenib in
sorafenib-resistant HCC
cells

In vitro (CC-LM3,
SMMC-7721, Hep3B, Bel-
7402, and Huh-7 cell
lines), and in vivo (mouse
xenograft model)

Li et al. (2017b)

Guanabenz
acetate

Induction of apoptosis Antihypertensive Hepatocellular
Carcinoma

DNA damage-inducible,
p34, eukaryotic initiation
factor 2α

In vitro (NU398, SNU423,
SNU 449, SNU475,
Huh7 cell lines), and in
vivo (patient derived
xenograft)

Kang et al.
(2019)

Ketoconazole Inhibition of tumor
growth, invasion, and
metastasis

Antifungal Hepatocellular
Carcinoma

PTGS2 In vitro (cell line-derived
xenograft), and in vivo
(patient-derived
xenograft)

Chen et al.
(2019a); Chen
et al. (2019b)

LBH589 Inhibition of
proliferation

HDAC inhibitors Hepatocellular
Carcinoma

FBP1 Clinical trial: Phase 1
(NCT00823290)

Yang et al.
(2017)

Linagliptin Immune destruction Oral hypoglycemic Hepatocellular
Carcinoma

ADORA3 In vitro (HepG2, and
Huh7 cell lines)

Ayoub et al.
(2018)

Metformin Inhibition of
proliferation

Oral hypoglycemic Hepatocellular
Carcinoma

KLF6/p21, AMPK Clinical trial: Phase 3
(NCT02319200)

Vacante et al.
(2019)

Niclosamide
ethanolamine

Inhibition of
proliferation and
angiogenesis, induction
of apoptosis

Anthelmintic Hepatocellular
Carcinoma

STAT3 In vitro (HepG2, Huh7,
Hep3B, Hep40, PLC/PRF/
5, SNU-398, SNU-449,
SNU-182, SNU-475 and
SNU-423 cell lines), and in
vivo (patient-derived
xenograft)

Chen et al.
(2017a)

Obeticholic acid Inhibition of
proliferation and
angiogenesis and
metastasis, induction of
apoptosis

Primary biliary
cholangitis

Hepatocellular
Carcinoma

IL-6/STAT3 pathway In vitro (HepG2, Huh7,
and SNU-449 cell lines),
and in vivo (orthotopic
liver tumor model)

Attia et al.
(2017), Gou et al.
(2022)

Simvastatin Controlling of tumor
growth via metabolism
reprogramming

Antihypercholesterolemia Hepatocellular
Carcinoma

AMPK, STAT3 Clinical trial: Phase 2
(NCT02968810)

Wang et al.
(2017), Dehnavi
et al. (2021)

(Continued on following page)
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TABLE 3 (Continued) List of repurposed drugs proposed for targeting hepatocellular carcinoma.

Drug name Mechanism of
action

Original indication Proposed
indication

Reported targets/
pathways

Status References

Tranylcypromine Inhibition of
proliferation

LSD1 inhibitor Hepatocellular
Carcinoma

FBP1 Asian cohort study:
population-based nested
case-control study

Chen et al.
(2017c)

Valproate Prevention of
proliferation via
Reactive Oxygen
Species (ROS)-
mediated cytotoxicity

Antiepileptic Hepatocellular
Carcinoma

HDAC In vitro (HepG2 cell line) Rithanya and
Ezhilarasan
(2021)

Vorinostat Blocking growth
promoting signal
transduction pathways
and inhibition of
proliferation

Histone deacetylase
inhibitor

Hepatocellular
Carcinoma

ERK/NF-κB signaling Clinical trial: Phase 1
(NCT01075113)

Gordon et al.
(2019)

TABLE 4 List of repurposed drugs proposed for targeting Gastric cancer.

Drug
name

Mechanism of action Original indication Proposed
indication

Reported
targets/
pathways

Status Ref

Sulfasalazine Inhibition of proliferation and
metastasis and induction of
ferroptosis

Rheumatoid arthritis Gastric cancer _ Clinical trial
(EPOC1205)

Shitara et al.
(2017)

Trastuzumab Inhibition of cell proliferation Oncology drug, HER2 positive
breast cancer

HER2 positive
Gastric cancer

HER2 Approved
(NCT01260194)

Rose and
Bekaii-Saab
(2011)

6-
Thioguanine

Induction of cell death Antimetabolite, guanine
analog, acute and chronic
myelogenous leukemias

Gastric cancer Ferroptosis inducer In vitro and in vivo
(xenograft mouse
model)

Zhang et al.
(2022a)

FIGURE 1
Repurposed drugs currently being evaluated against gastrointestinal cancers in various clinical phases. Metformin, simvastatin, and propranolol are
entering phases 2 and 3 to treat more than 2 gastrointestinal cancers. Two drugs indomethacin and azithromycin for colorectal cancer, and gemcitabine
for pancreatic cancer have reached phase IV.
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Immunotherapy, aimed at restoring immune system function,
represents another line of therapy for patients with advanced GI
cancer. An alternative treatment for metastatic CRC, HER2-positive
EC, and advanced GC patients who exhibit Programmed Cell Death
Ligand 1 (PD-L1) or microsatellite instability-high (MSI-H)
biomarkers and are resistant to chemotherapy is pembrolizumab,
an anti-PD-1 antibody, which functions by targeting the PD-1
receptor on tumor cells and preventing their evasion from the
immune system. In addition, dostarlimab is another alternative
option for the treatment of PCs with MSI-H or deficient
mismatch repair (dMMR). Nivolumab either alone or in
combination with ipilimumab is employed to treat adults with
MSI-H or dMMR who have metastatic and drug-resistant CRC
or EC (Zhang X. et al., 2022; Teixeira Farinha et al., 2022). It is worth
noting that dostarlimab and nivolumab act upon the PD-1 receptor,
whereas ipilimumab specifically targets CTLA-4. For additional
information on this subject, refer to the Supplementary Material,
Supplementary Table S1.

Despite the range of therapy options available for GI cancers, the
high mortality rate highlights the limited efficiency of current
treatments for these malignancies (Sung et al., 2021). Several
challenges impede the improvement of existing therapeutic
strategies, including chemotherapy resistance, tumor
heterogeneity, late diagnosis, and limited efficiency of certain
treatments, all contributing to treatment failure in GI cancer
patients (Au et al., 2017; Parikh et al., 2019; Raziq et al., 2020).
The development of drug resistance involves a complex multi-step
process influenced by a variety of contributing factors. Numerous
studies have shown that intensified DNA repair, apoptosis or
autophagy disorders, epithelial-mesenchymal transition,
inactivation of drug-metabolizing enzymes, and changes in
expression or activity of membrane transporters are potential
factors that promote chemotherapy resistance (Zheng, 2017).
Furthermore, In the context of GI cancers, the unique
characteristics of certain gastrointestinal tumors pose significant
challenges to their effective treatment. For instance, the pancreas is
anatomically situated in a hard-to-reach location, leading to
difficulties in early diagnosis and the absence of effective
screening techniques presents a significant challenge in detecting
PC during its initial stages (McGuigan et al., 2018). Despite
endeavors to implement personalized treatments, PC has not
exhibited convincing outcomes comparable to those seen in other
cancer types (Chantrill et al., 2015). The efficiency of radiotherapy in
EC is limited due to the prevention of TAZ (Transcriptional
Activator with PDZ-Binding Motif) ubiquitination and
degradation (He et al., 2021). Furthermore, epigenetics and non-
coding RNAs play a critical role in EC-related multidrug resistance
and affect the effectiveness of therapies. In fact, EC’s susceptibility to
recurrence, metastasis, and drug resistance development after first-
line treatment, highlights the urgent requirement for optimizing the
medicine regimen (Liu et al., 2021; Wei et al., 2021).

3 Drug repurposing

DR, is a strategic approach aimed at investigating alternative
therapeutic applications of existing approved medications, beyond
their originally intended uses. This method offers significant

advantages in improving treatment outcomes, primarily by
circumventing several essential stages of drug development. This
results in reduced expenditure, shorter clinical trial durations, and
mitigated risks associated with clinical trial failures due to adverse
reactions (Ashburn and Thor, 2004; Chong and Sullivan, 2007;
Zamami et al., 2017).

Repurposing FDA-approved medications is an efficient and
inexpensive method to address oncology needs, including cancer
treatment and reducing problems from existing anticancer
treatments or radiation therapy (Ciociola et al., 2014). The drug-
repurposing strategy has various advantages, including a shorter
development period (usually 3–5 years), reduced costs (under
$10 million), and higher success rates than original drug research
(Morgan et al., 2011). Furthermore, DR can offer numerous benefits
in overcoming therapeutic challenges by targeting various
components both inside and outside of cancer cells (Würth et al.,
2016). The concomitant use of multiple drugs that can target
different tumor subtypes simultaneously can be a remarkable
plan to overcome tumor heterogeneity (Li and Jones, 2012).
Moreover, DR reveals the anticancer potential of non-oncology
drugs with fewer side effects than traditional chemotherapy,
making it a valuable option for cancer treatment (Crawford,
2014; Ferioli et al., 2018). Repositioned drugs can be used in
combination with regular chemotherapy, and some demonstrate
selectivity in causing cytotoxicity to cancer cells while sparing non-
cancerous cells (Foglietta et al., 2021).

Drug repositioning involves a multi-step process. Initially, drug
selection can start with in silico methods like molecular docking,
pathway matching, and genome-wide association studies to create a
ranked list of compounds. The next step is secondary analysis, which
includes experimental techniques to refine and prioritize these
compounds. Tertiary analysis aims to validate these compounds
using cell cultures and animal models. Finally, the chosen drugs are
advanced to clinical trials, and successful ones are repurposed for
new uses (Shameer et al., 2015; Kulkarni et al., 2023). The key stages
of DR are elucidated in (Figure 2).

4 Approaches used for drug
repurposing in cancer therapy

To evaluate the repurposing of an existing drug as a potentially
effective anti-cancer agent, a mechanistic assessment of the drug’s
action in preclinical models is crucial and requires systematic
approaches (El-Hachem et al., 2017; Nagaraj et al., 2018). These
approaches can be classified into two categories, computational and
experimental, which use available data and biochemical
experiments, respectively, to explore the potential of repurposing
existing drugs as novel cancer treatments (Luo et al., 2017;
Fernández-Torras et al., 2019). Indeed, successful DR is
contingent upon the integrated and synergistic use of both
approaches (Mottini et al., 2021; Palve et al., 2021).

4.1 Computational approaches

Data-driven computational approaches involve the systematic
analysis of data from different sources such as gene expression,
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chemical structure, genotype or proteomic data, or electronic health
records (EHRs), which lead to the establishment of hypotheses on
DR (Hurle et al., 2013). Carla Mottini et al. (2021) thoroughly
reviewed computer-aided DR strategies for cancer therapy, offering
examples of this approach in cancer studies within their article
(Mottini et al., 2021). Future research should improve advanced
computational tools, like machine learning and artificial intelligence,
to improve therapeutic efficacy and safety prediction (Prasad and
Kumar, 2021). Furthermore, computational methods can be used to
address current anticancer medications or radiation therapy issues
in addition to cancer treatment (Dalwadi et al., 2023). The most
commonly used computational approaches are discussed below.

4.1.1 Molecular docking
Molecular docking, a structure-based computational strategy,

predicts complementarity of binding sites between the ligand
(drug) and the receptor (target) (Hurle et al., 2013; Knapp, 2018;
Mottini et al., 2021; Palve et al., 2021). If prior knowledge is
available about a receptor target involved in cancer, multiple
drugs could be investigated against that specific target, or drug
libraries can be screened for a collection of target receptors to
identify new interactions suitable for repurposing (Honarparvar
et al., 2014; Nero et al., 2014). Dakshanamurthy and others
performed molecular fit computations on a list of 3,671 FDA-
approved drugs against 2,335 crystal structures of human
proteins. They experimentally validated that mebendazole, an
anti-parasitic agent, shows significant potential to bind to the
vascular endothelial growth factor receptor 2 (VEGFR2) and
effectively block angiogenesis (Dakshanamurthy et al., 2012).
Furthermore, it has been predicted that levosimendan, a heart
failure drug, could serve as a potential inhibitor of several kinases

including RIO Kinase 1 (RIOK1), through ligand-binding site
comparison and protein-ligand docking. Levosimendan shows
anti-cancer activity against various cancers by directly inhibiting
RIOK1 and RNA processing enzymes (Lim et al., 2019).
Similarly, Arulanandam CD et al. (2021) suggested
itraconazole as a better inhibitor of platelet-derived growth
factor receptor alpha (PDGFRA) compared to other antifungal
drugs for treating gastrointestinal stromal tumors (GISTs)
(Arulanandam et al., 2021).

4.1.2 Genome-wide association studies
Genome-Wide Association Studies (GWAS) aim to identify

variants associated with common genetic disorders, thereby
providing new insights into the biology of the disease. The novel
associations between genes and cancer through GWAS and
Phenome-Wide Association Studies (PheWAS) enable the
identification of new targets for existing drugs leading to the
repositioning of drugs (Zhang et al., 2015; Sud et al., 2017; Kim
et al., 2018). Grover et al. (2015) employed a bioinformatics strategy
to match gene targets for coronary artery disease (CAD) with drug
information collected from three different drug–target databases
(DrugBank, Therapeutic Target Database, and PharmGKB) to
identify potential therapeutics for repositioning toward treatment
of CAD (Grover et al., 2015). Another valuable resource for
medication indications, called Medication Indication Resource
(MEDI), can validate the plausibility of inferring novel drug
indications with clinical potential (Wei et al., 2013; Bejan et al.,
2015). Furthermore, a genome-wide positioning systems network
algorithm uncovered the antitumor activity of ouabain, an approved
drug for cardiac arrhythmia and heart failure, in lung
adenocarcinoma cells (Cheng et al., 2019).

FIGURE 2
The key stages of drug repurposing. The process of DR begins with the use of computational or experimental techniques to select candidate drugs.
Subsequently, these selected drugs are subjected to additional validation through potential evidence and additional experimental methods. Compounds
that successfully pass through this rigorous evaluation then advance to clinical trials to obtain the FDA approval. Upon approval, these drugs are
introduced to the market and their labeling is updated to reflect their new applications.
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GWAS results may pose challenges when applied to DR due to
several reasons. Firstly, GWAS signals in gene-rich loci, where
linkage disequilibrium commonly occur, can complicate the
identification of the associated genes and their specific variants.
Secondly, the direction of the gene variant’s effect may not be
immediately apparent, necessitating functional studies to
determine whether they act as activators or suppressors for
disease control (Sanseau et al., 2012). Moreover, GWAS results
may not provide detailed pathogenic information on genetic
diseases (Wang and Zhang, 2013). It is important to
acknowledge that understanding of the human genome is
continually evolving, and new genes may continue to be
discovered (Willyard, 2018). Therefore, careful consideration and
further research are necessary when leveraging GWAS data for
DR endeavors.

4.1.3 Signature or pathway matching
The signature matching method represents an innovative and

promising approach within the realm of DR, as it involves
comparing the distinct characteristics of a drug with those of other
drugs, disease or clinical phenotype (Hieronymus et al., 2006; Keiser
et al., 2009). The drug signatures can be derived from three different
sources of data including omics data, chemical structures and adverse
event profiles (Pushpakom et al., 2019). As a specific example, a study
employed an optimal approach including two novel benchmarking
standards, namely, area under the curve (AUC)-based standard and
Kolmogorov-Smirnov (KS) statistic-based standard for signature-based
DR and reported homoharringtonine (HHT) as a potential agent in the
treatment and prevention of LC (Yang et al., 2022). Furthermore,
various omics studies (transcriptomic, proteomic, or metabolomics) in
the field of cancer not only provide large-scale data for supporting DR
through applying advanced bioinformatics, but also expand our
knowledge of hallmarks of cancer at the molecular level (Fernandez-
Banet et al., 2016; Chen B. et al., 2020). Chemical structures serve as
another type of signature matching used in DR; where the comparison
of the chemical features of each drug with others helps identify possible
chemical similarities that could signify shared biological activity
(Pushpakom et al., 2019). A recent research employed this method
along with other conventional DR methods to create a multilayer
network algorithm. This algorithm was used to rank drugs that
possibly can be repurposed for various types of cancer, including GI
cancers and to explore new therapeutic possibilities for existing drugs
(Cheng et al., 2021).

The unique adverse event profile of a drug can serve as a proxy
for its related phenotypic effects, and drugs with similar side effects
may act on the same target protein or pathway (Dudley et al., 2011;
Cheng et al., 2021). In addition, if a drug’s phenotypic response
resembles that of a disease, it may indicate that the drug and disease
share pathways and physiological mechanisms (Pushpakom et al.,
2019). Pathway and network-based approaches have been broadly
used to identify drugs or drug targets with the potential for
repurposing (Smith et al., 2012). Moreover, despite some of the
targets identified by GWAS or other analytical networks appearing
potent for drug targets, many of these genes may not be ideal in
practical drug targeting applications. In such circumstances, a
pathway-based approach can provide insights into genes
upstream or downstream of the GWAS-associated target and
could be considered as potential repurposing opportunities

(Greene and Voight, 2016). In a recent study, the network-wide
association study (NetWAS) technique has been employed,
combining GWAS-identified genetic variant information with
tissue-specific functional networks to identify disease-relevant
genes more accurately than GWAS alone. Using NetWAS on the
concept of hypertension and incorporating drug–target data from
the DrugBank, Greene et al. (2015) observed an expansion in the
number of the top target genes for the anti-hypertensive drugs
compared to the GWAS (Greene et al., 2015). Additionally, pathway
analysis of gene expression data obtained from a wide range of
studies of human viral respiratory diseases identified 67 signaling
pathways which may play important roles in respiratory viral
infections (Smith et al., 2012). In summary, DR candidates can
be identified through construction of drug or disease networks using
gene expression patterns, protein interactions, disease pathology or
GWAS data along with the signature matching studies to
complement the network analysis approach (Iorio et al., 2010, 2013).

4.1.4 Real World Data
Real World Data (RWD) includes information from electronic

health records (EHRs) of patients, characterized by large and
complex datasets (Booth et al., 2019; Eichler et al., 2019). EHRs
store patient and population health information in digital format,
providing a wealth of data on patient outcomes (Miriovsky et al.,
2012; Luhn et al., 2019). While diagnostic and pathophysiological
data including experimental and drug prescribing data are
structured, a significant portion of EHR data, such as clinical
descriptions of patient symptoms and signs as well as imaging
data remains unstructured (Khozin et al., 2017; Booth et al.,
2019). Both structured and unstructured data from patients can
serve as valuable sources to identify consistent signals for drug
repurposing (Hurle et al., 2013; Low et al., 2017).

The retrospective clinical trial analysis is a commonly used
computational approach based on RWD, with data commonly
extracted from EHRs (Gray et al., 2019; Zheng et al., 2020).
Sildenafil is an interesting example of retrospective clinical
analysis which led to the repurposing of a candidate molecule
(Ashburn and Thor, 2004). A classical example of repurposing a
noncancer drug for cancer therapy through retrospective clinical
analysis is metformin, which has shown to reduce cancer mortality
in a dose-dependent manner (Sadeghi et al., 2012; Chaiteerakij et al.,
2016). Furthermore, Xu et al. (2015) conducted a clinical cohort
study using EHRs from Vanderbilt University Medical Center and
Mayo Clinic, confirming the favorable effects of metformin in cancer
survival including breast, colorectal, lung and prostate cancers in
independent populations (Xu et al., 2015). Other successful
examples of repurposing opportunities through retrospective
clinical and/or pharmacological analyses include raloxifene in
breast cancer, aspirin in CRC, propranolol in osteoporosis, and
valproate in acute myeloid leukemia and glioblastoma (Cavalla and
Singal, 2012; Happold et al., 2016; Lübbert et al., 2020).

4.2 Experimental approaches

4.2.1 Phenotypic screening
Phenotypic screening, a direct method of DR, involves

identifying compounds based on their effects in model systems
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without prior knowledge of candidate drug targets (Moffat et al.,
2014, 2017; Kim et al., 2019). This approach typically uses a wide
range of cell-based in vitro assays in a 96- or 384-well format (Sala
et al., 2010). Iljin and others (2009) have performed high-
throughput cell-based screening of a library including
4,910 drug-like small molecules against prostate cancer and non-
malignant prostate epithelial cell lines using proliferation as the
primary phenotypic criteria. They found an anticancer effect of
disulfiram, a medication used to treat alcohol abuse, which was
subsequently validated through genome-wide-gene expression
studies (Iljin et al., 2009). Moreover, whole animal screening
assays can be employed for DR which offer insights into efficient
anticancer drugs, as well as pharmacokinetic and organ-toxicity
potential results (Yadav et al., 2016; Baxendale et al., 2017). Cousin
et al. (2014) evaluated 39 FDA-approved medications using a
zebrafish model for tobacco dependence treatment and identified
compounds like apomorphine and topiramate that modulate the
behavioral effects of nicotine and ethanol in this model (Cousin
et al., 2014). Similarly, over 26,000 small molecules were evaluated
for their efficacy against leukemia using a genetically engineered
T-cell reporting zebrafish model and discovered the remarkable
activity of lenaldekar, against various hematologic neoplasms
(Clements and Traver, 2012; Ridges et al., 2012).

4.2.2 Intermolecular interactions
Proteomic techniques including affinity chromatography and

mass spectrometry reveal protein-protein interactions based on the
intermolecular force. These techniques have been used to identify
binding partners for various drugs, thus facilitating DR due to an
experimentally based pharmacological analysis (Brehmer et al.,
2005; Shantikumar et al., 2015). In this approach, drug
treatments are administered to cells or animals, followed by a
deep proteome analysis to identify protein changes (Savitski
et al., 2018). An early successful example of this technique
involves the validation of more than 20 cellular targets for the
epidermal growth factor receptor kinase inhibitor gefitinib using
mass spectrometry (Brehmer et al., 2005).

The Cellular Thermo Stability Assay (CETSA) has been
introduced as a method based on altered protein thermal
stabilization/destabilization in response to ligand binding which
can predict drug targets when combined with thermal proteome
profiling (Martinez Molina et al., 2013; Li J. et al., 2020; Mateus et al.,
2020; Perrin et al., 2020). Additionally, chemical genetic approaches
such as kinase drug discovery also rely on intermolecular forces and
can provide insights into the relationship between binding and drug
efficacy (Sloane et al., 2010; Cong et al., 2012; Wong et al., 2016).
These findings can be interpreted quickly into new clinical
applications or to improve drug resistance outcomes which are
near-inevitable phenotypic responses to protein kinase inhibitors for
the cancer treatment (Carter et al., 2005; Bago et al., 2016). Karaman
et al. (2008) used a competition binding assay in vitro to evaluate
38 protein kinase inhibitors against a panel of 317 pathologically
significant human protein kinases. Their analysis identified
3,175 binding interactions, revealing that some drugs such as
sorafenib and dasatinib showed higher affinity to other kinase
targets than their known target (Karaman et al., 2008). The
development of chemical-genetic approaches, particularly non-
kinase targets of small molecules planned to inhibit kinases is

becoming increasingly recognized (Munoz, 2017) resulting in
new repurposing opportunities for cancer treatment, such as the
use of anthelmintic drug niclosamide to treat Zika virus infection
(Xu et al., 2016) and the potential to treat drug-resistant pathogens
(Sun et al., 2016).

4.3 Experimental approaches to validate
repurposed drugs

In order to understand the mechanism of action of repurposed
drugs for cancer treatment, it is often essential to evaluate and
validate their effects within a comprehensive system that considers
safety, dosage and toxicity before advancing to clinical trials. This
evaluation can be accomplished using various models, which are
divided into two main categories: in vivo and in vitro models. These
models should be reproducible, cost-effective, and quickly
constructed (Würth et al., 2016).

4.3.1 In vitro studies
In in vitro tumor models, cancer cell lines are the predominant

choice, followed by primary cells, although these models may also
incorporate immune cells, stem cells, and stromal cells alongside
cancer cells (Martinez-Pacheco and O’Driscoll, 2021). When using
these cell types for detecting repositioning activity, in vitro assays
offer several advantages including the ability to examine multiple
substances with distinct mechanisms of action across a wide
concentration-effect range, depending on the throughput of the
experiment. Furthermore, these assays provide direct knowledge
about potential new disease settings and allow testing of different
drugs with novel mechanisms of action (Wilkinson and
Pritchard, 2015).

In vitro screening approaches have been used for medication and
DR in the various GI cancer types such as CRC, PC, GC and LC. A
deep understanding of cancer progression and treatment has
prompted the development of accurate in vitro tumor models
that better represent the physiological features of the tumor
microenvironment. Consequently, recent in vitro tumor models
have become increasingly complex, extending beyond monitoring
primary cell behaviors such as proliferation, invasion and
cytotoxicity. These advanced in vitro models recapitulate
important metastasis steps including angiogenesis, extracellular
matrix remodeling and tumor cell metabolism reprogramming
and dormancy (Wu and Swartz, 2014).

4.3.1.1 Two-dimensional and three-dimensional
cell cultures

Cell culture plates and Transwell-based models are widely
employed to assess viability, apoptosis, intra/extravasation and
matrix remodeling of cancer cells. Two-dimensional (2D) models
have been extensively used for drug screening and drug repurposing
(Hulkower and Herber, 2011; Yu et al., 2020; Tomi-Andrino et al.,
2022). In recent years, three-dimensional (3D) cell culture methods
have become popular as they replicate in vivo microenvironmental
providing data with greater predictive value for clinical outcomes.
These authentic 3D cell culture models using human cells can
overcome the limitations of mice models, which in addition to
their high cost and ethical implications, are not always capable of
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accurately mimicking human illnesses or capturing medication side
effects such as liver damage (Sivaraman et al., 2005). Moreover, by
simulating the cell culture environment, 3D cell cultures can
encourage specific cell activity, allowing drug discovery to target
cell behavior with greater precision, such as enhancing cellular
motility, promoting epithelial cell proliferation and
differentiation, inducing cell dormancy, supporting of stem cell-
like characteristics or mimicking desired microenvironment, like
metastatic niches (Valastyan and Weinberg, 2011). According to
their importance and applications in cancer research or DR studies,
3D cell culture models can be categorized into two major groups:
Spheroids and Organoids.

4.3.1.2 Spheroids
Spheroids are cell aggressions that grow in suspension or are

embedded in a three-dimensional matrix using three-dimensional
culture methods. Cancer cell spheroids represent avascular tumor
nodules, also known as micro-metastases and are widely used for
drug screening despite being more expensive and time-consuming
than 2D cell cultures. Spheroids also recapitulate interaction
between cells and matrix in the tumor microenvironment and
their size-dependent structure includes a necrotic central nucleus,
resembling tumors with poor angiogenesis. Moreover, tumor
spheroids offer valuable insights into how tumors respond to
candidate drugs and combination therapies which reduces the
need for animal testing and providing a more realistic
representation of the tumor microenvironment (El Harane
et al., 2023).

4.3.1.3 Organoids
Organoids are novel ex vivo tumor models composed of self-

organized three-dimensional multicellular tissue cultures derived
from stem cells, primary tissue specimens or cancer cell lines. These
models are capable of mimicking the in vivo organ (Simian and
Bissell, 2017). Patient-derived cancer organoids provide a promising
opportunity to predict drug efficiency and treatment response in GI
cancers. Furthermore, incorporating 3D cell culture technology with
primary patient-derived cancer cells, molecular characterization
data, or the establishment of GI organoid banks representing
molecular tumor subtypes could lead to preclinical assessment of
personalized drug targets to improve treatment outcomes by
reducing side effects in cancer therapy (Perrone and Zilbauer, 2021).

The first CRC organoid biobank was established in 2015 for drug
screening, enabling the study of gene-drug interactions to recognize
potential treatment response biomarkers and understand the
molecular basis of drug response (van de Wetering et al., 2015).
Notably, numerous studies have reported a significant overlap
between esophageal adenocarcinoma organoids and tumor
response to standard chemotherapy (Donohoe and Reynolds,
2017; Li et al., 2018) and a similar approach yielded comparable
outcomes using GC organoids (Verduin et al., 2021). These results
highlight the benefits and advantages of 3D ex vivo models in DR
and repositioned drug efficiency assessments.

4.3.2 In vivo studies of drug repurposing
Animal models offer a powerful tool to simulate physiological

conditions and complicated interactions, as well as the responses of
reactions of different cell types and tissues to chemicals (Ruggeri

et al., 2014). During the drug development process, in vivo testing
plays a crucial role as it allows the study of interactions between the
drug and both target and non-target cells.

Based on the premise of evolutionarily conserved pathogenetic
mechanisms, animal models such as zebrafish, mice, fruit flies,
worms and yeast have been used to give a comprehensive
understanding of the biological mechanisms underlying the effect
of drug administration. Xenograft models and genetically
engineered mouse cancer models were among the in vivo models
used in drug repurposing (Freires et al., 2017).

4.3.2.1 Xenograft tumors
The human tumor xenograft is a widely used in vivo model where

human cancer cells are transferred into immunocompromised (nude)
mice through either ectopic or orthotopic implantation. Although the
cell line-derived xenograft (CDX) model is considered as the gold-
standard model for cancer research and investigation of anti-tumor
therapies, patient-derived xenograft (PDX) tumors can also be used for
this purpose (Tentler et al., 2012).

Xenograft tumors are highly used as animal models in GI cancer
and DR research (Onaciu et al., 2020). In situGI cancer can be induced
by locally injecting of cell lines or implantation of tumor cells, while the
metastaticmodels are established by injection of the tumor cells through
the tail vein or into the specific organ (Morton and Houghton, 2007;
Tentler et al., 2012). For decades, athymic nude mice and mouse
xenograft models using human tumor cell lines have been used to
study tumor progression factors. In the DR approaches, the use of
xenograft tumors can be very helpful in assessing the accuracy of in vitro
study results and the effectiveness of drugs on cancer cells in safe doses
under in vivo situations. Doxycycline, a tetracycline-class antibiotic
commonly used to treat bacterial and parasitic infections, has
demonstrated to reduce tumor growth by ~80% in pancreatic tumor
xenografts (Son et al., 2009; Liu H. et al., 2020).

4.3.2.2 Genetically engineered mouse models
The Genetically Engineered Mouse Model (GEMM) is another

animal model for studying human cancer and conducting preclinical
study of repurposed drugs to target special gene-derived GI tumors.
Genetic technologies have been recently applied by an increasing
number of studies to introduce oncogenes into mouse embryonic or
somatic cells through tissue-specific promoters targeting the GI tract
and inducing GI cancers (Kersten et al., 2017). Transgenic, gene
knock-in, and gene knock-out techniques are used to modify the
genetic sequence of these mice in order to transfer, mutate, delete or
overexpress one or more genes associated with transformation or
malignancy. For instance, transgenic mice overexpressing KRAS
mutant genes can mimic pancreatic tumorigenesis. Indeed, while
general single-gene modified models may not fully represent the
entire process of GI tumorigenesis, it has been discovered that
physiological levels of KRAS G12D induce ductal lesions that
serve as putative precursors to invasive PC (Westphalen and
Olive, 2012). Additional genetic modifications, such as P53
mutation, can promote tumorigenesis and metastasis (Walrath
et al., 2010). Another gene that can be engineered to produce GI
cancer GEMM is carbonic anhydrase, present in the basolateral
membranes of gastrointestinal epithelial cells and Its overexpression
has been reported in many carcinomas including GC. Mice with null
mutations of the Car9 gene develop gastric hyperplasia in glandular
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epithelium after 1 month (Gut et al., 2002). Additionally, ApcMin/
Pten−/− mice are developed to study CRC (Stastna et al., 2019).

GEMM animals can be used to study the impact of a specific
gene on tumorigenesis, or to investigate whether a de novo/
repositioned drug acts through predicted pathways or genes to
control the disease (Richmond and Su, 2008). Kobayashi et al.
(2017) used mogp-TAg transgenic mice for DR to target the
mevalonate pathway as a key tumorigenesis pathway in ovarian
cancer (Kobayashi et al., 2017). Furthermore, the effect of
metformin cancer initiation and progression suppression was
studied using transgenic KPC mice (Chen K. et al., 2017). This
animal model was also employed to evaluate the efficiency of
repurposed histone deacetylase (HDAC) and mammalian target
of rapamycin (mTOR) inhibitors on PC treatment (Biermann
et al., 2022). Transgenic animals can be used to evaluate safe,
first-in-human (FIH) doses during preclinical studies in drug
development. For example, human-CYP3A4-expressing
transgenic (Cyp3aXAV) mouse serve as practical model to
evaluate the safe dosage and efficiency of CYP3A4-metabolized
small-molecule drugs (Damoiseaux et al., 2022). The application
of GEMM animal models can prove advantageous in specialized DR
studies and allows researchers to focus on specific
molecular pathways.

4.3.2.3 Chemically induced gastrointestinal tumors
Chemical agents can be used to induce GI cancers in mice,

potentially leading to mutations in relevant human cancer genes.
The most well-established chemically induced GC model is
produced by the administration of N-Methyl-N-nitrosourea
(MNU) (Tomita et al., 2011; Ji et al., 2020; Rabben et al., 2021b).
MNU is an N-nitroso compound mostly generated by anaerobic gut
bacteria in the presence of nitrates and nitrites (Sobko et al., 2005;
Zhuang et al., 2017). Furthermore, 1,2-dimethylhydrazine (DMH)
and its metabolite, azoxymethane (AOM), are the most commonly
used chemical compounds and carcinogens to induce CRC in mice.
It has also shown that intraperitoneal injection of azaserine in rats
induces metastatic pancreatic acinar cell carcinoma, although 10%
of animals develop tumors in other organs (Rosenberg et al., 2009).
Another method to produce a chemically induced PC model is
through topical application of benzopyrene which induces
adenocarcinoma (Kong et al., 2020). This group of animal
models is widely employed in DR studies for GI cancers. Kannen
et al. (2012) used C57BL/6 mice exposed to the carcinogen
N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) as a colonic
carcinogen mouse model to evaluate the antiproliferative effect of
fluoxetine, an antidepressant medicine, on colon cancer (Kannen
et al., 2012). In a similar study, the inhibitory effects of Liuwei
Dihuang Pill (LDP) were investigated on MNU-induced gastric
tumorigenesis in diabetic mice (Zhuang et al., 2017).

5 Repurposed drugs for gastrointestinal
cancers treatment

5.1 Colorectal cancer

Researchers in the field of Gl cancer treatment are exploring
innovative therapeutic strategies through drug repurposing, with an

extensive focus on leveraging existing medications for the
management of CRC. Among the studies of significance, Antona
et al. (2022) have recently showed that spiperone, an approved drug
for schizophrenia treatment, triggers apoptosis in CRC cells by
activating phospholipase C, disrupting intracellular calcium
balance, inducing irreversible endoplasmic reticulum stress,
causing lipid metabolism changes, and damaging the Golgi
apparatus (Antona et al., 2022). Furthermore, ten small
molecules/drugs were identified via bioinformatic techniques for
treating CRC, specifically targeting the upregulated Tissue Inhibitor
of Matrix Metalloproteinases-1 (TIMP1) gene; these included
established agents like formaldehyde and paclitaxel, as well as
promising new drug candidates (Leng et al., 2022). Another
study discovered that ebselen effectively inhibits Autophagy
related protease 4B (ATG4B) through oxidative modification.
This was based on the FDA-approved drug library, using
Fluorescence Resonance Energy Transfer (FRET)-based high-
throughput screening and gel-based analysis. The study
showcased the potential of ebselen as an anti-CRC agent by
influencing autophagy and tumor suppression (Xie et al., 2022).
Mao et al. (2023) developed an efficient method for identifying
repurposed drugs for CRC using organoid-based screening and
computational drug prediction. Out of 335 tested drugs,
34 showed anti-CRC effects, with distinct transcriptome patterns
including differentiation induction, growth inhibition, metabolism
inhibition, immune response promotion, and cell cycle inhibition.
Validation in patient-derived organoid-based xenograft (PDOX)
systems demonstrated the anticancer effectiveness of drugs like
fedratinib, trametinib, and bortezomib. (Mao et al., 2023). It has
been revealed that the antifungal agent oxiconazole induces anti-
tumor effects in CRC cells by inhibiting autophagy through
downregulation of peroxiredoxin-2 (PRDX2), leading to growth
suppression, and suggests its potential therapeutic use in
combination with oxaliplatin for CRC treatment (Shi J. et al.,
2022). Moreover, Dhakal et al. (2022) investigated the cytotoxic
effects of the anti-anginal drug perhexiline and its enantiomers on
CRC cells and demonstrated their ability to induce apoptosis and
reduce cell viability in both monolayers and spheroids, as well as
patient-derived organoids (Dhakal et al., 2022). Liñares-Blanco et al.
(2020) proposed abemaciclib, an inhibitor of the CDK4/6 protein, as
a promising option for the treatment of colon cancer (Liñares-
Blanco et al., 2020). Furthermore, mebendazole, an antihelminthic
medication used to treat gut worm infections, exhibited a cytotoxic
effect on the RKO and HCT-116 colon cancer cell lines.
Mebendazole was evaluated against a panel of kinases to
determine the mechanism of its cytotoxic effect, which indicated
significant inhibitory action against Abl and BRAF proteins.
Additionally, in a case study of a patient with resistant metastatic
colon cancer, twice-daily therapy with the normal antihelminthic
dose of mebendazole led to a substantial reduction in metastasis
(Nygren et al., 2013). A comprehensive investigation introduced
several promising repurposing drugs (crizotinib, arsenic trioxide,
vorinostat, dasatinib, estramustine, and tamibarotene) for CRC by
prioritizing candidate genes obtained from the GWAS data (Zhang
et al., 2015). Zhao P et al. (2022) highlighted the integration of
metabolomics and transcriptomics as a powerful approach to gain
insights into the antitumor mechanism of tadalafil, a
phosphodiesterase type 5 (PDE5) inhibitor, in patients with CRC
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(Zhao et al., 2022). The anti-cancer effect of niclosamide was
confirmed in nonobese diabetic/severe combined
immunodeficiency (NOD/SCID) mice implanted with human
CRC xenografts from patients with metastatic CRC and
remarkable results were obtained with a non-lethal dose of
200 mg/kg (Osada et al., 2011). Tioconazole, originally used to
treat vaginal yeast infections, was reported to enhance
chemotherapy efficacy in colorectal tumor xenografts (Liu et al.,
2018). Table 1 provides a comprehensive summary of various
repurposed drugs in CRC.

5.2 Pancreatic cancer

In the field of PC treatment research, recent developments in DR
have yielded promising strategies and novel candidates for
therapeutic intervention. Pham et al. (2022) have recently
introduced a deep learning framework that employs various
genome-wide chemical-induced gene expression datasets to
predict gene rankings in expression profiles induced by de novo
chemicals, based on their chemical structures. They used this model
for DR to identify potential treatments for PC from all existing drugs
in DrugBank, and proposed candidates including dipyridamole,
AZD-8055, linagliptin, and preladenant, which were subsequently
validated in vitro (Pham et al., 2022). A recent study established a
biobank of over 30 genetically distinct human pancreatic ductal
adenocarcinoma (PDAC) organoid lines, demonstrating their
correlation with the molecular and phenotypic heterogeneity
observed in primary PDAC tissue and in vivo drug responses.
Using a fully automated screening platform, this study conducted
a DR analysis covering 1,172 FDA-approved drugs. Among the in
vivo validated hits were several drugs currently approved for non-
cancer indications, including emetine and ouabain. These drugs
were found to specifically target PDAC organoids by disrupting their
response to hypoxia. Notably, a dose of 0.56 mg/kg/d of ouabain
significantly reduced PDAC xenograft growth in mice (Hirt et al.,
2022). Mugiyanto et al. (2022) used genomic data from the cBio
Cancer Genomics Portal to identify PC-associated and drug target
genes. Through functional annotations, they prioritized 318 PC risk
genes, of which 216 were druggable according to DrugBank. The
Connectivity Map (CMap) Touchstone analysis revealed
13 potential PC drugs, including midostaurin and fulvestrant,
which target PRKA and ESR1 respectively, as promising
candidates for PC treatment (Mugiyanto et al., 2022). Another
study investigated whether aspirin (ASA) and oseltamivir
phosphate (OP) treatment could enhance PC cell sensitivity to
gemcitabine-induced cytotoxicity and hinder chemoresistance
development. The combination of ASA and OP with gemcitabine
significantly disrupted PC cell viability, clonogenicity, ECM protein
expression, migration, and induced apoptosis in MiaPaCa-2 and
PANC-1 cells (Qorri et al., 2022). Several studies have recently
identified Meflin, a glycosylphosphatidylinositol-anchored
membrane molecule, as a functional maker of cancer-restraining
CAFs (rCAFs) in PDAC (Kobayashi et al., 2019, 2021; Mizutani
et al., 2019; Takahashi et al., 2021). Lida et al. conducted a screening
of nuclear receptor ligands and identified Am580, a synthetic
retinoid and RARα-selective agonist, as a compound that
upregulates Meflin expression in both human pancreatic stellate

cells (PSCs) and mouse mesenchymal stem cells (MSCs).
Furthermore, Increasing Meflin enhances tumor sensitivity to
chemotherapy in a PDAC xenograft model (Iida et al., 2022).
The phase I and II clinical trials are conducting to investigate the
efficacy of a combination of AM80 and gemcitabine and nab-
paclitaxel in patients with advanced PC (Mizutani et al., 2022).
Molecular docking technique confirmed that ZINC000001612996,
ZINC000052955754, ZINC000003978005, and
ZINC000006716957 could potentially act as small molecule drugs
and co-ligands for TRPC3 and TRPC7, both of which are part of the
Transient Receptor Potential Channels (TRPs)-related gene
signature in PDAC (Shi W. et al., 2022). Chen et al. (2020)
reported dose-dependent negative effects of albendazole, an
anthelmintic drug, on proliferation, migration and viability of the
human PC cell lines SW1990 and PANC-1. The cytotoxicity of
albendazole was further confirmed in vivo using a nude mouse
xenograft model, showing a significant reduction in tumor growth
(Chen H. et al., 2020). Table 2 presents details on various repurposed
drugs for PC.

5.3 Liver cancer

Recently, several innovative transcriptomics-based DR methods
were employed to uncover novel therapeutic candidates and
combinations for the treatment of hepatocellular carcinoma
(HCC or LC). Regan-Fendt K et al. (2020) showed that
fostamatinib and dasatinib could be effective for sorafenib-
resistant HCC (Regan-Fendt et al., 2020). Additionally, an
mRNA expression profile-based DR method revealed that TOP2A
has consistently unfavorable association with HCC patient survival
and successfully repositioned withaferin-a (WFA) and
mitoxantrone (MTX) through molecular docking studies as
potential inhibitors of HepG2 cell proliferation for HCC
treatment (Yuan et al., 2022). Tan et al. (2023) have screened a
compound library containing 419 FDA-approved drugs and
discovered that desloratadine, an antiallergic drug, inhibits
proliferation in HCC cell lines as well as CDX, patient-derived
organoid (PDO) and PDX. The study also identified N-myristoyl
transferase 1 (NMT1) as its target, linking high NMT1 and VILIP3
expression to advanced HCC stages and poor survival (Tan et al.,
2023). Furthermore, the combined effects of sorafenib, raloxifene,
and loratadine on LC cells were assessed, finding that these two- or
three-drug combinations significantly reduced metabolic activity,
increased apoptosis, and decreased colony formation compared to
single-drug treatments, suggesting the potential of the triple
combination as a promising approach for LC treatment
(Villarruel-Melquiades et al., 2023). We have summarized several
repurposed drugs for HCC in Table 3.

5.4 Gastric cancer

Zhang et al. (2022) identified 6-Thioguanine (6-TG) as a
potential therapeutic agent for GC by inducing ferroptosis
through inactivation of system xc−, inhibition of glutathione
(GSH) production, downregulation of GPX4, and elevation of
lipid reactive oxygen species (ROS) levels in MGC-803 and AGS
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cell lines, with in vivo data supporting its anti-tumor activity (Zhang
et al., 2022a). Furthermore, it has been shown that HC-056456, a
CatSper channel blocker, as a novel ferroptosis-inducing compound
inhibits GC cell growth by reducing GSH through the p53/
SLC7A11 pathway, leading to increased Fe2+ and lipid peroxides
in vitro and in vivo (Zhang et al., 2022b). In a comprehensive
bioinformatic analysis of highly differentially expressed genes in GC,
Hossain et al. (2023) found that CDH2, COL4A1, and COL5A are
associated with the survival of GC patients. They also identified
docetaxel, lanreotide, venetoclax, temsirolimus, and nilotinib as the
top six candidate drugs, targeting aforementioned proteins, for the
treatment of GC patients (Hossain et al., 2023). Nitazoxanide also
yielded favorable outcomes, as it exhibited activity across GC cell
lines tested (Ribeiro et al., 2023). In addition, Rabben et al. (2021a)
computationally predicted the repositioning of ivermectin for the
treatment of GC based on gene expression profiles of both human
and mouse models of GC. They further validated their in silico
prediction used humanGC cell linesMKN74 and KATO-III in vitro.
Transgenic insulin–gastrin (INS-GAS) mice were employed for
experimental validation of ivermectin in GC treatment (Rabben
et al., 2021a). Furthermore, in vivo and in vitro anti-tumor and
growth suppression effects of ivermectin were demonstrated on GC,
showing that ivermectin suppressed MKN1 cells growth through
yes-associated protein 1 (YAP1) downregulation (Nambara et al.,
2017). To identify drugs capable of inhibiting the DNA-binding
activity of the helicobacter pylori transcription factor HP104, a
combination of computational and in vitro methods led to the
discovery of three promising drugs, including temoporfin,
trientine, and tetraethylenepentamine, for potential antibacterial
applications (Antoniciello et al., 2022). Table 4 provides a
summary of available repurposed drugs in GC.

5.5 Other examples of drug repurposing in
gastrointestinal cancers

Surveillance for individuals at risk of GI cancers is essential for
early diagnosis and prognosis improvement, and in choosing long-
term chemoprotective drugs, approved molecules with well-known
long-term effects are preferred. Aspirin (acetylsalicylic acid),
introduced at the end of the 19th century, has been proposed for
various diseases, such as cardiovascular diseases, strokes (Brighton
et al., 2012; Dimitriadis et al., 2022; Gdovinova et al., 2022) and the
chronic treatment of Fabry Disease (Monticelli et al., 2022).
Specifically, aspirin has been shown to prevent CRC (Baron
et al., 2003; Benamouzig et al., 2012; Guirguis-Blake et al., 2022)
and PC (Streicher et al., 2014). Other non-steroid anti-inflammatory
molecules like celecoxib (Arber et al., 2006; Bertagnolli et al., 2006)
and sulindac (Long et al., 2020) have also been suggested for CRC.

Recent studies have highlighted the promising potential of
repurposing non-oncology drugs for future cancer therapy.
Examples include anticoagulant agents (warfarin (Rebelo et al.,
2021) and dalteparin (Agnelli et al., 2022)), anti-fungi
(itraconazole (Shen et al., 2021)), antidiabetic drugs (metformin
(Cunha Júnior et al., 2021) and linagliptin (Li Y. et al., 2020)),
antiparasitic (ivermectin (Nambara et al., 2017)), anthelminthic
(parbendazole (Son et al., 2020)), antibiotics (nitroxoline
(Mitrović and Kos, 2019), doxycycline (Ghasemi and Ghasemi,

2022), azithromycin (Qiao et al., 2018) and tigecycline
(ElHefnawi et al., 2022)).

Brefeldin A, originally used as a macrolide antibiotic, has shown
significant induction of autophagy in CRC cells both in vitro and in
vivo (Bei et al., 2022). It functions by provoking endoplasmic
reticulum stress (ER-stress) and upregulating Bip which decreases
Akt phosphorylation through increased Bip/Akt interaction leading
to autophagy induction in CRC cells (Zhou L. et al., 2019). In
addition, antifungal drug ketoconazole has been reported to induce
PINK1/Parkin-mediated mitophagy and accelerate apoptosis in
HCC cells via COX-2 downregulation (Chen Y. et al., 2019).

Genistein, originally prescribed for reducing symptoms of
menopause, osteoporosis, and obesity, has shown promising
effects in cancer therapy. Genistein has been reported to inhibit
proliferation, induce apoptosis and cell cycle arrest in G2 by
inhibiting the Wnt/β-catenin signaling pathway in CRC cells
(Oliveira et al., 2022). It also promotes apoptosis in HT29 CRC
cells by modulating the caspase-3 and p38 MAPK signaling
pathways (Shafiee et al., 2016). Furthermore, genistein inhibits
glycolysis and induces mitochondrial apoptosis through
downregulating of HIF-1α which leads to GLUT1 and
HK2 inactivation and apoptosis induction in drug-resistant HCC
cells (Li J. et al., 2017). Genistein modulates telomerase activity and
reduces tumorigenesis by hTERT downregulation as well as
modulation of Gli1 gene expression to weaken cancer stem-like
properties in GC cells (Jian-Hui et al., 2016). Genistein, which shows
promise as an anticancer drug candidate, is currently in phase II of
clinical trials (Cao et al., 2022; Chu et al., 2023).

Metformin is another successful repositioned drug for GI
cancers which is currently in phase II of the clinical trial.
Metformin reduces cell survival and tumorigenesis by lowering
serum insulin levels and downregulation of IGF-1 (Sarfstein
et al., 2013). Additionally, it induces G1-arrest via AMPK
activation and cyclin D1 downregulation (Wang Y. et al., 2018),
inhibits proliferation through mTOR signaling pathway regulation
regardless of AMPK dependency (Demaré et al., 2021). It has been
shown that metformin inhibits the progression of GC through the
inhabitation of HIF1α/PKM2 signaling (Chen G. et al., 2015).
Furthermore, it inactivates RAS/ERK and AKT/mTOR signaling
pathways and reduces proliferation in KRAS-derived tumors.
Metformin has been reported to selectively inhibit KRAS-driven
metastatic CRC by silencing MATE1 (Xie et al., 2020).

Several Studies have demonstrated that the combination of
repurposed drugs with cytotoxic drugs, radiotherapy or even the
combination of multiple repositioned drugs can exhibit synergistic
antitumor effects. A recent meta-analysis by Heer et al. (2022)
revealed that aspirin when co-administered with sulindac and
difluoromethylornithine (DFMO), an inhibitor of ornithine
decarboxylase used to treat facial hirsutism, showed significantly
more effective results in protecting against CRC adenomas (Heer
et al., 2022). The combination of bortezomib and chloroquine has
been shown to suppress proliferation and induce apoptosis in
human liver tumors, whether orthotopically or subcutaneously
xenografted in mice (Hui et al., 2012). In clinical research,
combining nelfinavir with a short course of hypofractionated
radiotherapy (SCHRT) showed increased sensitivity of CRC
tumors to radiotherapy (Meyn et al., 2016). In addition,
FOLFIRINOX, a chemotherapy regimen comprising leucovorin
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calcium (folinic acid), fluorouracil, irinotecan hydrochloride and
oxaliplatin, is used for the treatment of advanced PC. In a phase II
clinical trial, FOLFIRINOX is combined with losartan as
neoadjuvant therapy, followed by chemoradiotherapy, for locally
advanced PC (Murphy et al., 2019). Another successful example of
DR is a combination of metformin, digoxin and somatostatin, which
has shown significant suppression of PC cell proliferation in
clinically relevant animal models. Currently, this combination is
being evaluated in a clinical trial (Liu S.-H. et al., 2020). Tables 1–4
provide comprehensive information on various drugs that have been
successfully repurposed to treat GI cancers and approved for clinical
use by the FDA. Furthermore, we have prepared a Supplementary
Table S2, which presents a list of repurposed unapproved or
withdrawn drugs/natural components targeting GI-related cancers.

6 Challenges and future perspectives

Drug repurposing for cancer therapy is widely used to discover
new indications for existing compounds; However, only a few
repurposed drugs have been formally subjected to the clinical
treatment guidelines. Despite advantages such as anticancer
pharmacokinetic parameters, acceptable safety and tolerability in
humans, there is still a risk of late-phase clinical trial failure due to
competition with new drug development. The legal and regulatory
barriers such as patents issues and prescription charges must also be
addressed (Vickers, 2017; Breckenridge and Jacob, 2019;
Pushpakom et al., 2019).

The financial factors significantly influence the clinical
development and approval of repurposing drugs, as private
sector organizations prioritize higher returns due to
intellectual property rights (Vickers, 2017). Most registered
clinical trials listed in the Repurposing Drugs in Oncology
(ReDo) project are sponsored by Universities or Hospitals
(67%), research institutes or non-profit organizations (28%),
and only a small percentage by pharmaceutical companies
(Pantziarka et al., 2018). Patent considerations for off-patent
drugs can pose significant barriers to DR, requiring credible and
statistically strong evidence for a new indication and legislative
efforts to address this issue (Pushpakom et al., 2019).

Physicians prescribe drugs based on scientific evidence from
clinical trials, and both generic and repurposed drugs should be used
when suitable. Nevertheless, the pharmaceutical industry can exert
substantial investments on drug promotion, physician marketing
and consumer advertising. A clear example is thalidomide, originally
used as a sedative or antiemetic, which has been repurposed for
multiple myeloma. Despite phase III clinical trials showing no
survival advantage for the combination of melphalan-prednisone-
lenalidomide over melphalan-prednisone-thalidomide (Stewart
et al., 2015; Zweegman et al., 2016) lenalidomide became the
standard treatment approach, even with a higher estimated cost
than thalidomide. Thus, underfunding for clinical trials in oncology
and prescribing rejection bias remain significant challenges for
cancer drug repurposing.

Another challenge lies in the genetic diversity of individuals
and the complex nature of disease (Pritchard et al., 2017). While
there are many common pathways involved in cancer
development, differences in pathways and genes exist among

subgroups and individuals. This genetic diversity results in
varying side effects and treatment responses to routine drugs
and therapies.

Moreover, current GI cancer therapies may be ineffective for
specific patients or cancer types due to inadequate drug targeting or
inefficient drug interactions (Apicella et al., 2017). In rectal cancer,
personalized DR based on gene expression signatures and reverse
drug-induced gene expression profiles has shown promising results.
For instance, Carvalho et al. (2021) identified potential
topoisomerase II inhibitors like doxorubicin, teniposide,
idarubicin, mitoxantrone and epirubicin for CRC therapy, leading
to a significant reversal of rectal cancer gene expression signatures
(Carvalho et al., 2021). Given the significant differences in drug
efficacy among individuals due to gene profiles and tumor
heterogeneity, it becomes crucial to focus on DR based on
tumor/subject molecular profiles to reduce inefficiencies in cancer
treatment (Li and Jones, 2012).

While drug repurposing offers various benefits compared to
the conventional de novo approach, it may not always lead to
success due to lack of efficacy or toxicity issues. Bevacizumab,
initially developed to treat CRC, was determined to be a strong
candidate to treat other kinds of cancer such as colon, rectal,
brain, lung, and kidney through drug repositioning. However, it
failed in phase III trials despite positive results (Kim and Oh,
2018). These failed drug candidates in clinical trials still represent
an affluent resource for repositioning, as they are well studied
pharmacokinetically and clinically. Personalized genomics
studies focusing on patient and disease heterogeneities may
reveal that many of these failures were tested in inappropriate
subject groups, making them practical options for future
personalized medicine approaches, particularly for subjects
with limited treatment options.

7 Conclusion

Drug repurposing is increasingly considered by both
academia and the pharmaceutical industry as a cost and time-
saving alternative to de novo drug development. Repurposing
non-oncology drugs in cancer therapy provides a promising
therapeutic opportunity, especially for patients with rare
cancers, advanced diseases, or chemo-resistant tumors. In the
present review, we have explored the potential of DR approaches,
with a particular focus on their application in GI cancers.
Repurposed drugs can target known pathways and key
molecular targets in cancer biology due to their established
functional mechanisms. DR has received attention owing to its
potential to enhance treatment effectiveness and ability to
overwhelm resistance to standard chemotherapy as well as
improve therapy outcomes in tumors with limited response to
conventional treatments. Additionally, when repurposed drugs
are used in combination with routine oncology drugs, they offer a
unique opportunity to target multiple pathways and molecular
targets in cancer cells, going beyond the scope of traditional
chemotherapy drugs and modulating diverse cancer-relevant
pathways. However, it should be noted that the interaction of
repurposed drugs with standard cancer drugs may pose
challenges during the clinical trials.
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The repositioning of drugs to treat GI cancers presents an
attractive option given the increasing number of new cases,
annual deaths, and the challenges in treating certain tumors.
This review outlines various DR approaches that can be used to
improve the efficiency of existing GI therapies. However, further
clinical studies are needed to determine their potential for
clinical adoption.
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