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Cardiovascular diseases represent a significant worldwide problem, jeopardizing
individuals’ physical andmental wellbeing aswell as their quality of life as a result of
their widespread incidence and fatality. With the aging society, the occurrence of
Cardiovascular diseases is progressively rising each year. However, although drugs
developed for treating Cardiovascular diseases have clear targets and proven
efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe,
effective, and practical treatment options is crucial. Scutellarin is the primary
constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to
establish a theoretical foundation for the creation and use of secure,
productive, and logical medications for Scutellarin in curing heart-related
illnesses. Additionally, the examination and analysis of the signal pathway and
its associatedmechanismswith regard to the employment of SCU in treating heart
diseases will impart innovative resolving concepts for the treatment and
prevention of Cardiovascular diseases.
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1 Introduction

Population aging is a major problem facing mankind on a global scale. It is expected that
by 2030, the global population aged 65 and above will account for one-fifth of the total
population. At the same time, aging is an independent risk factor for cardiovascular disease
(CVD). This will lead to an exponential increase in the prevalence of CVD (Jaiswal and
Libby, 2020; Rudnicka et al., 2020). CVD poses a serious threat to individuals’ physical and
emotional health and quality of life because of its high morbidity and mortality. Currently,
the drugs used in the prevention and treatment of CVD have clear targets and certain
efficacy, but there is also the problem of a single target and certain toxic side effects (Liau
et al., 2019; Lin et al., 2020). Therefore, it is crucial to investigate more potent and safer
pharmaceuticals for managing CVD.

Scutellarin (SCU) is the main active substance in the flavonoids of the Erigeron flower. In
the last few years, the distinct significance of SCU in CVD has garnered significant attention.
Despite the multiple pharmacological effects of SCU, researchers worldwide are still
exploring its mechanism of action. Therefore, the objective of this paper is to analyze
the effects of SCU on signal pathways related to CVDs and drug metabolism. The goal is to
provide a reference for future applications of SCU in preventing and treating CVDs.
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2 Scutellarin

Erigeron breviscapus (Vant.) Hand-Mazz (EBHM) is a botanical
herb frequently employed in traditional Chinese medicine in the
Yunnan, Hunan, and Guizhou provinces of China. Based on
“Yunnan Materia Medica,” EBHM can increase blood flow,
eliminate stagnant blood, unblock meridians, and alleviate pain.
Based on the pharmacological effects of EBHM, researchers have
developed a series of drugs, such as Erigeron breviscapus injection,
Erigeron Capsules, Erigeron breviscapus granules, etc. These
medications are frequently utilized to manage cardiovascular and
cerebrovascular illnesses due to their capacity to dilate blood vessels,
enhance microcirculation, inhibit platelet aggregation, decrease lipid
peroxides, increase fibrinolytic activity, and reduce blood viscosity
(Gao et al., 2017; Ma et al., 2023).

Active component SCU is taken out of EBHM. The wide range
of pharmacological properties that SCU contains, including the
ability to treat diseases and have protective benefits on the body,
have been shown by contemporary pharmacological investigations.
Its anti-tumor, glaucoma-improving, anti-depressive, and
osteoporosis-preventive qualities are a few of these functions (Lu
et al., 2021; Zhu et al., 2021; Chen et al., 2022a; Teng et al., 2022).
Multiple benefits of SCU on cardiovascular illnesses include anti-
myocardial fibrosis, protection of vascular endothelial function,
attenuation of myocardial injury, and improvement of cardiac
function (Xu et al., 2020; Duan et al., 2021; Li et al., 2023b; Sun
et al., 2023). The numerous cardiovascular protective effects of SCU
have been found to be directly related to multiple signal pathways
and multiple mechanisms of action. By digging deeper into the
mechanism of action of drugs, we can discover the real reason
behind their magical effects. Increasing research on signal pathways
and mechanisms of action has facilitated the development of SCU
drugs and guidance for future clinical applications. The US Food and
Drug Administration (FDA) has certified SCU as Generally
Recognized As Safe (GRAS). Being a BCS Class IV drug, its
lower bioavailability affects its efficacy, thus limiting its use to
some extent. The bioavailability of SCU after oral administration
was very low at 10.67% ± 4.78%, indicating that only a small
proportion of SCU can be taken up and used by the body. The
reasons for the low bioavailability of SCU after oral administration
include low water solubility, unstable chemical properties, intestinal
absorption, first-pass effect in the intestine, and first-pass effect in
the liver (Wang and Ma, 2018). These factors result in the rapid
breakdown and metabolism of SCU in the gut and liver, which
reduces its effective concentration in the body and further attenuates
the therapeutic effect.

With thousands of years in its development and application,
Chinese medicine is widely used in people’s health. The selection of
Chinese medicines comes from natural plants, animals, and
minerals. This natural selection makes traditional Chinese
medicine have multi-target therapeutic characteristics and can
comprehensively regulate all aspects of the human body, thereby
improving patients’ clinical symptoms. Compared with chemical
drugs, Chinese medicines have fewer toxic side effects and are safer
and more reliable. Traditional Chinese medicine offers a clear
benefit in the treatment of many ailments, and its therapeutic
effect has been demonstrated in medical practice. Many of these
natural compounds such as naringenin, apigenin, quercetin,

ginsenosides, and cinnamaldehyde have shown extraordinary
effects on cardiovascular system diseases (Patel et al., 2018; Fan
et al., 2020; Heidary Moghaddam et al., 2020; Lu et al., 2022; Thomas
et al., 2023).

3 Cardiovascular disease-related
signal pathways

Under various pathological conditions of the cardiovascular
system, as protective events decrease, eventually, regardless of the
underlying cause, end-stage cardiac disease will produce the same
pathological features of ventricular wall thinning, ventricular dilation,
and a sharp increase in interstitial fibrosis. This phenomenon suggests
that intracellular signal pathways triggered by different stressors
converge on some common targets. The heart is composed of
heterogeneous cell groups. The responses of various types of cells
to different stimuli are inseparable from the mediation of complex but
coordinated signal pathways and the mutual influence of cellular
mechanisms, thereby forming multiple physiological responses and
pathological processes (Frangogiannis, 2019; Zhang et al., 2022). It can
be achieved to develop novel targets and therapeutic approaches for
managing cardiovascular illnesses by examining the impact of SCU on
various signal pathways.

3.1 TGF-β1 signal pathway

Transforming growth factor (TGF) is a cytokine with numerous
functions that regulates and takes part in a variety of biological and
pathological events in the heart. Saljic et al. (2022), Gu and Liang,
(2023), Liang et al. (2022), Ren et al. (2023), Alex et al. (2023), Dong
et al. (2023). To protect the heart, the TGF-β signaling system
controls apoptosis, autophagy, and antifibrotic activities (Deng et al.,
2019; Shen et al., 2020a; Liang et al., 2022). Of these, the most in-
depth studies have been conducted on the effects of TGF-β1 on
myocardial fibrosis (Garlapati et al., 2023).

In rats with myocardial infarction induced by ligation of
coronary arteries, Pan et al. (2011) found that SCU prevented the
multiplication of cardiac fibroblasts (CFs) and the production of
collagen, ultimately reducing interstitial fibrosis by decreasing the
expression of FN1 and TGF-β1. It is inferred that SCU may exert its
effect on improving the impaired cardiac function in infarcted rats
through the TGF-β1 signal pathway. In a different series of Ang II-
induced myocardial fibrosis experiments in rats, it was discovered
that SCU not only prevented Ang II-induced CFs’ growth and
production of collagen as well as downregulated their expression
of FN1 and TGF-β1, but also prevented the phosphorylation of both
ERK1/2 and p38-MAPK. By controlling the TGF-β1/MAPK signal
system, SCU can prevent the formation and progression of cardiac
fibrosis. In a study on doxorubicin (DOX)-induced chronic
cardiotoxicity, Sun et al. (2023) discovered that SCU inhibited
TGF-β1 protein expression and increased pSmad2 levels,
reducing the accumulation of collagen and the area of heart
fibrosis. Thus, SCU can exert cardioprotective effects through the
TGF-β1/Smad2 pathway. In conclusion, SCU can exhibit beneficial
effects on the circulatory system by acting on both the traditional
and non-classical signal pathways of TGF-β1 (Figure 1).
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3.2 PI3K/AKT/mTOR signal pathway

The PI3K/AKT/mTOR signal system is a crucial mechanism for
controlling cell growth, proliferation, migration, and death and can
be crucial for controlling lipid and glucose metabolism (Suber et al.,
2018; Senoo et al., 2021; Xiao et al., 2022; Sun et al., 2023). The
development of heart-related illnesses is significantly influenced by
abnormalities in lipid and glucose metabolism, which are separate
risk factors for the cardiovascular system. The PI3K/AKT signal
pathway is the primary target of drugs being developed and
approved for type II diabetes treatment (Aierken et al., 2022; Fan
et al., 2023b). The PI3K/AKT signal system, a key component of the
insulin route, controls liver glycogen production, gluconeogenesis,
and lipid synthesis to control both glucose balance and lipid
synthesis (Huang et al., 2018b; Petersen and Shulman, 2018).

In the cytotoxicity experiment, Zhou et al. discovered that SCU
increased the expression of p-AKT, p-mTOR, and p62 while down-
regulating the expression of Beclin 1 and LC3-II. This resulted in a
reduction in the rate of cell death and a restoration of cell viability
(Zhou et al., 2022b). In this work, it was shown that SCU might
protect cells by inhibiting the autophagy process via the PI3K/AKT
signal pathway. In a different study, Fan et al. (2017) discovered that

SCU increased the expression of the proteins Nrf2, HO-1, PI3K,
AKT, and NQO1 in rat livers with non-alcoholic fatty liver disease to
reduce oxidative damage and enhance lipid metabolism. It was
deduced that PI3K/AKT phosphorylation and consequent
Nrf2 transfer were necessary for SCU’s anti-hyperlipidemic
action. Xu et al. (2021) found in diabetic cardiomyopathy (DCM)
mice, SCU improved cardiac function by preventing the decline of
p-AKT and increasing the subsequent Nrf2 translocation with HO-1
protein expression in diabetic mouse cardiomyocytes. It can be
inferred that the PI3K/AKT/mTOR signal pathway played a role in
how protective SCU was for cardiomyocytes. Fu et al. (2019) found
in an apoptosis-inducing assay in human aortic endothelial cells that
SCU increased the cell viability of post-injury human aortic
endothelial cells by elevating the levels of PI3K, P-AKT, and
P-FOXO3A and that PI3K inhibitors could attenuate
this promotion.

Numerous inflammatory processes are mediated by the
NLRP3 inflammasome (NLRP3), which is activated by mTOR
signal (Dai et al., 2019; Yang et al., 2019; Marín-Aguilar et al.,
2020; Ye et al., 2020; Chen et al., 2021). Xu et al. (2020) found that
SCU exerted a role in inhibiting NLRP3 activation and thus
attenuating the inflammatory response by increasing AKT

FIGURE 1
Schematic diagram of the mechanism of SCU regulation of the TGF-β signal pathway. TGF-β signal pathway is divided into classical Smad and non-
canonical part. SCU attenuates the expression of TGFβ-1 and inhibits the phosphorylation of p38-MAPK and ERK in the non-classical pathway. ERK:
extracellular regulated protein kinases; GRB2:the growth factor receptor-bound protein-2; IKK:IκB kinase; JNK: c-Jun N-terminal kinase; LIMK:LIM-
kinases; MEK: mitogen-activated protein kinase kinase; MMK3: medicago MAP kinase 3; Ras: rat sarcoma; Raf: rapidly accelerated fibrosarcoma;
RHO: Rho-associated protein kinase; ROCK:Rho kinase; SHC: the adaptor protein SHC; SOS:Son Of Sevenless; S6K: S6 kinase; TRAF:TNF
receptorassociated factor.
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phosphorylation and inhibiting mTORC1 activity in experiments in
which acute myocardial I/R injury induced H9c2 damage.
Furthermore, this study found that SCU-mediated inhibition of
mTORC1 and activation of NLRP3 could be abolished by gene
silencing of AKT by siRNA. In conclusion, SCU has the ability to
protect the cardiovascular system by activating the PI3K/AKT/
mTOR signal pathway (Figure 2).

3.3 Nrf2/Keap/ARE signal pathway

Regarding redox homeostasis, DNA repair, iron homeostasis,
cell proliferation, and other processes, nuclear factor erythroid 2-
related factor 2 (Nrf2) is among the most active activators of
transcription in the Cap ‘n ‘Collar family. One of the most vital
cellular routes is the Nrf2/Keap/ARE signal pathway. This
mechanism reduces oxidative stress and eliminates excess ROS to
maintain redox equilibrium in vivo (Chen, 2022).

By promoting the expression of Nrf2, NQO-1, and HO-1 and
suppressing the expression of Keap1 mRNA in the hearts of diabetic
mice, Huo et al.’s research in a mouse model of type 2 diabetes
revealed that SCU plays an essential part in reducing oxidative
damage and the severity of type 2 diabetes-induced cardiac
complications (Huo et al., 2021). SCU significantly elevated the

expression of the proteins Nrf2 and HO-1 and reduced oxidative
damage in mice with STZ-induced DCM, according to Xu et al.’s
findings (Xu et al., 2021). It suggests that SCU may exert
cardioprotective effects against diabetic injury through the Nrf2/
Keap/ARE signal pathway. Fan et al. (2017) in an experiment to
induce hyperlipidaemia in rats, found that SCU attenuated oxidative
damage by increasing the expression of Nrf2, HO-1, PI3K, and AKT
proteins, thereby improving serum and liver lipid metabolism levels.
This suggests that through the Nrf2/Keap/ARE signal pathway, SCU
can contribute to improved lipid metabolism and anti-
hyperlipidemia (Figure 3).

3.4 NOTCH signal pathway

NOTCH signal is an event that regulates differentiation,
proliferation, and apoptosis through cell-to-cell interactions. In
the growth, maturation, and restoration of the heart, NOTCH
signal is crucial (Zhou et al., 2022a).

Zhou et al. (2014) found in an experimental model of
myocardial fibrosis in rats that SCU inhibited the development of
myocardial fibrosis by reversing the induction of increased a smooth
muscle actin expression and decreased CD31, Notch1, Jagged1, and
Hes1 expression. It suggests that SCU can exert cardioprotective

FIGURE 2
Schematic representation of themechanism by which SCU regulates the PI3K/AKT/mTOR signal pathway to attenuate inflammation, apoptosis, and
oxidative responses. CD36: the scavenger receptor B2; IL-1β: Interleukin-1beta; LC3: light chain 3; NQO1: NAD(P)H:quinone oxidoreductase 1; ox-LDL:
oxidized low-density lipoprotein; PIP3: phosphatidylinositol 3,4,5-trisphosphate.

Frontiers in Pharmacology frontiersin.org04

Zhang et al. 10.3389/fphar.2023.1329969

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1329969


effects against myocardial fibrosis through the NOTCH
pathway (Figure 4).

3.5 eNOS/cGMP/PKG signal pathway

In recent years, the eNOS/cGMP/PKG signal pathway has been
considered an important target for therapies such as regulating
blood pressure, attenuating IR injury, and delaying heart failure
(Anwar et al., 2017; Kolijn et al., 2021; Park et al., 2022).
Additionally, the eNOS/cGMP/PKG signal route is crucial for
controlling blood pressure and vascular endothelial function
(Zhang et al., 2023).

Li et al. (2015) found in an experimental model of myocardial
ischemia-reperfusion (MIR)in rats that SCU was able to exert an anti-
MIR injury effect by increasing the levels of p-VASP Ser239 in rat
cardiac tissue and serum. p-VASP Ser239 is a marker of PKG
activation. Therefore, the protective effect of SCU against MIR
injury is related to the PKG pathway. They also performed human
cardiac microvascular endothelial cells injury experiments. It was
discovered that SCU might have a positive impact on hypoxia
reoxygenation (HR)-injured endothelial cells by reversing the
decrease in PKG-I, PKG-I phosphorylation, and PKG-I mRNA
after HR injury and, concurrently, raising p-VASP Ser239 and the

ratio of p-VASP Ser239 to total VASP. Chen et al. (2015) found that
SCU exerted endothelium-dependent relaxation and attenuated
endothelial damage by increasing pVASP protein levels in HR-
induced endothelial dysfunction in isolated rat CA. This
experiment demonstrated that SCU can perform vascular
endothelial protection through the PKG pathway. In conclusion,
SCU can protect the cardiovascular system by activating the
eNOS/cGMP/PKG signal pathway (Figure 5).

3.6 PINK1/Parkin signal pathway

The PINK1/Parkin signal pathway is closely related to
“mitophagy" (Wang et al., 2021a). An important part of the
metabolism of heart energy is played by mitochondria.
However, too much ROS generation brought on by
mitochondrial malfunction destroys cardiomyocytes and
causes a number of cardiovascular disorders. The injured
mitochondria in this situation need to be removed. Mitophagy
is crucial for preserving heart homeostasis. Cardiac homeostasis
is inseparable from mitochondrial autophagy, which is
inseparable from the PINK1/Parkin signal pathway.

Xi et al. (2021) found in human umbilical vein endothelial cells
(HUVECs) injury experiments that SCU reduced the expression of

FIGURE 3
Schematic mechanism of SCU regulation of Nrf2/Keap/ARE signal pathway. SCU upregulates Nrf2, NQO-1, and HO-1 mRNA expression and
downregulates Keap1 mRNA expression to alleviate oxidative stress. Keap1:Recombinant Kelch Like ECH Associated Protein 1; ROS: reactive
oxygen species.
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P62 and apoptotic proteins Cyt. C, cleaved caspase3 by elevating the
High glucose-induced reduced levels of PINK1. Meanwhile, SCU
promoted the expression of PINK1, Parkin, and Mitofusin2. Thus,
SCU exerts a cell viability-enhancing and vascular endothelial
protective effect on HUVECs by activating autophagy and
attenuating apoptotic pathways. This study confirmed that SCU
exerts a protective effect on vascular endothelium through the
PINK1/Parkin signal pathway (Figure 6).

3.7 JAK2/STAT3 signal pathway

The JAK/STAT signal pathways involve biological functions such
as cell apoptosis, cell cycle, and stem cell homeostasis. The JAK2/
STAT3 pathway is one of the JAK/STAT pathways (Verhoeven et al.,
2020; Xin et al., 2020). Previous studies have demonstrated that the
JAK2/STAT3 pathway can potentially alleviate oxidative stress,
apoptosis, and other mechanisms that contribute to mitigating
myocardial IR injury (Mahdiani et al., 2022).

Wang et al. (2016) found that SCU increased the expression of
Bcl2, VEGF, MMP2, MMP9, and SOD, attenuated the expression of
Bax and caspase-3 and the level of MDA through the JAK/

STAT3 signal pathway and exerted cardioprotective effects in the
experiments on I/R-injured H9c2 (Figure 7).

3.8 CaMKII signal pathway

In the cardiovascular system, calcium signal is central to
cardiac physiology and is closely related to the contraction and
diastole of cardiac tissue and endovascular myocytes (Nattel
et al., 2020; Chen et al., 2022b). Dysregulated calcium signals
can lead to abnormal blood pressure, cardiac hypertrophy, heart
failure, and other diseases. (Beckendorf et al., 2018; Basu et al.,
2019; Luczak et al., 2020).

Earlier, Pan and others found that SCU exerted endothelium-
independent vasorelaxation by inhibiting extracellular calcium
inward flow in isolated rat aortas in experiments in which
noradrenaline bitartrate induced aortic constriction in rats
and that this effect was independent of vdcs (Pan et al., 2008).
Subsequently, Pan et al. (2010) found that SCU exerted its anti-
cardiac hypertrophic influence by inhibiting the increase of
intracellular calcium and calcineurin and inhibiting the
expression of calcineurin in experiments with phenylephrine-

FIGURE 4
Schematic diagram of the regulatory mechanism of SCU on NOTCH signal pathway. SCU blocks the inhibitory effects of harmful factors on the
pathway and increases the expression of CD31, Notch1, Jagged1, and Hes1. ADAM10: transmembrane endopeptidase ADAM10; CD31: platelet/
endothelial cell adhesionmolecule-1; CSL (CBF1, Suppressor of Hairless, Lag-1) transcription factor; MAML:mastermind-like transcriptional coactivators;
NICD: Notch intracellular domain; a-sma:α smooth muscle actin.
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induced hypertrophy of neonatal rat cardiomyocytes, and a
model of pressure overload-induced cardiac hypertrophy in
mice. In further AB mouse experiments, SCU inhibited
phosphorylated CaMKII that was elevated after AB treatment.
However, phosphorylated CaMKII is the active form of CaMKII.
Thus, the team demonstrated, by means of a progressive research
approach, that SCU can exert significant anti-cardiac
hypertrophic effects by inhibiting the Ca2+-ediated CaMKII
signal pathway (Figure 8).

3.9 TLR4/MyD88/NF-κB signal pathway

The classical TLR4/MyD88/NF-κB signal route is involved in
activating processes such as inflammatory responses, oxidative
stress, and immune regulation in the organism (Shen et al.,
2020b; Guo et al., 2021; Liu et al., 2022). In the cardiac system,
the TLR4/Myd88/NF-κB pathway has a regulatory role in
hypertension and a protective effect on the heart (Kim et al.,
2020; Yang et al., 2020). By reducing oxidative stress,
inflammation, and apoptosis, the TLR4/NF-κB signal pathway
may reduce hyperglycemia and diabetes-induced cardiomyopathy
(Yao et al., 2021).

In a rat model of hypertension, Chen et al. (2013) discovered
that SCU could have tissue-protective and antihypertensive effects
by upregulating Mcl1 and downregulating inflammatory and
apoptotic factors like TLR4, NF-κB, p65, TNF-α, IL-1β, IL-18,
Bax, and cleaved-caspase-3 p17. In addition, Huo and others
found that SCU inhibited the increase of cardiac inflammatory
markers in diabetic mice, such as TLR4, MyD88, NF-κB, and IL-
6, through the TLR4/MyD88/NF-κB signal pathway, as well as
inhibited the increase in the protein distribution of NF-κB and
TNF-α and the decrease in the protein distribution of IKKβ in the
diabetic cardiac immunohistochemical sections in their experiments
on the type 2 diabetes mellitus model (Huo et al., 2021). SCU
reduces the heart damage caused by type 2 diabetes by activating this
signal route. The above studies demonstrated that SCU acts on the
TLR4/MyD88/NF-κB signal pathway to exert antihypertensive and
antidiabetic effects (Figure 9).

3.10 cGAS-STING signal pathway

The cGAS-STING signal pathway was originally recognized for
its role in immune defense due to its immune recognition of
cytoplasmic DNA (Zhang et al., 2020b). As an emerging hot

FIGURE 5
Schematic representation of SCU regulation of eNOS/cGMP/PKG signal pathway. SCU exerts its protective effect on damaged cells mainly by
activating PKG. CN: Calcineurin; GPCRs: G protein-coupled receptors; GSK3-β: glycogen synthase kinase-3β; GTP: guanosine triphosphate; NFAT:
nuclear factor of activated T cells; NO: Nitric oxide; NOS: NO synthase; NPR: Neuropeptide receptor; PDE: Phosphodiesterase; PGC: Peroxisome
proliferator-activated receptor-γ coactivator; sGC: soluble guanylate cyclase; TRPC: Transient Receptor Potential Canonical; VEGF: vascular
endothelial-derived growth factor; β3-AR: β3-adrenergic receptor.
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pathway in recent years, it can have a considerable impact on the
cardiovascular system (Wang et al., 2020; Oduro et al., 2022; Luo
et al., 2023). Some of these studies have found that the cGAS-STING
signal pathway may be a critical therapeutic target for improving the
prognosis of myocardial infarction and ischaemic reperfusion injury
(Rech et al., 2022; Lv et al., 2023).

Li et al. (2023b). found that intraperitoneal injection of SCU
attenuated I/R-induced apoptosis of cardiomyocytes in mice
while improving I/R-induced diminished cardiac function in
an in vivo experiment in mice with cardiac I/R injury.
Moreover, SCU reduced the expression of cGAS, STING, and
cleaved caspase3 in I/R injury-induced cardiac tissues while
increasing the Bcl2/Bax ratio. This experiment suggests that
the effect of SCU in improving cardiac function in mice may
be related to the cGAS-STING signal pathway. Then, in an
in vitro experiment of H/R-induced H9c2 cell injury, Li et al.
found that H/R led to apoptosis of H9c2 cells while increasing
the expression levels of cGAS, STING, and cleaved caspase3
and decreasing the Bcl2/Bax ratio. This phenomenon can
be reversed by SCU and cGAS inhibitors. Thus, this study
suggests that SCU inhibits myocardial apoptosis induced by
activation of the cGAS-STING signal pathway, thereby
exerting a cardioprotective effect.

4 Mechanism of action of SCU on CVD

4.1 Suppression of the
inflammatory reaction

Atherosclerosis, diabetic cardiomyopathy, myocardial infarction,
and myocardial ischemia-reperfusion injury are only a few examples
of cardiovascular illnesses influenced by inflammatory reactions
(Chistiakov et al., 2017; Fredman and MacNamara, 2021; Goswami
et al., 2021; Avagimyan et al., 2022). As the population ages and living
standards improve, physiopathological factors such as aging,
hyperglycemia, and hyperlipidemia exacerbate the development of an
inflammatory response in the cardiovascular system, ultimately leading
to heart failure (Chistiakov et al., 2017; Goldfine and Shoelson, 2017;
Adamo et al., 2020). To prevent and treat CVD, it is crucial to effectively
reduce the inflammatory response. According to a few studies, SCU has
cardioprotective properties by reducing inflammatory reactions.

Huo et al. (2021) found that SCU could attenuate cardiac
histopathological changes by decreasing high fat diet/streptozotocin
(HFD/STZ)-induced upregulation of TLR4,Myd88, NF-κB, IL- 6, and
TNF-α and by increasing HFD/STZ-induced downregulation of IkBβ
mRNA expression in a mouse model of type 2 diabetes mellitus. It
suggests that SCU may exert cardioprotective effects by reducing

FIGURE 6
Schematic diagram of the regulatory mechanism of SCU on PINK1/Parkin signal pathway. SCU increases PINK1 levels and promotes the expression
of PINK1, Parkin, and Mitofusin2 to attenuate high glucose-induced cellular injury.
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cellular damage by inhibiting inflammatory responses. In another
study, SCU could exert an inhibitory effect on the activation of
NLRP3 through activation of AKT and inhibition of mTORC1,
which in turn exerted a cardioprotective effect (Xu et al., 2020). In
addition, Huang et al. found in isoproterenol (ISO)-induced
myocardial infarction in rats that SCU could play a role in
attenuating cardiac injury by decreasing the expression of
myocardial inflammatory cytokines, such as gelatinase-associated
lipid transport protein, NF-κB, IL-1β, and IL-6, in neutrophils
induced by ISO(Huang et al., 2018a). In other cases, Xu et al.
(2021) found in streptozotocin (STZ)-induced DCM in small mice
that SCU attenuatedmyocardial damage in diabeticmice by inhibiting
the activation of NLRP3, the release of proinflammatory cytokines,
and the nuclear translocation of NF-κB. In summary, SCU can exert
cardioprotective effects by suppressing the inflammatory response.

4.2 Mitigation of oxidative stress

Cardiovascular illnesses like hypertension, atherosclerosis, and
other ischemic heart diseases are influenced by oxidative stress
(Guzik and Touyz, 2017; Kibel et al., 2020). Moreover, excessive
oxidative stress accelerates the rate of cardiovascular system aging as
the body ages (Kibel et al., 2020). Oxidative stress is also inextricably

linked to hyperlipidemia, diabetes, and metabolism-related cardiac
complications (Zhang et al., 2020a; Fuller et al., 2020; Tao et al.,
2021). Therefore, modulation of oxidative stress is essential to
mitigate CVD. Some studies have found that SCU can exert
cardiovascular protection through antioxidant responses (Table 1).

4.3 Regulation of apoptosis

Apoptosis, also known as programmed cell death, can mediate
many cardiac pathologies such as heart failure, myocardial
infarction, ischaemia-reperfusion injury, diabetic cardiomyopathy,
and vascular endothelial injury (Cheng et al., 2020; Li et al., 2021;
Liao et al., 2022; Liu et al., 2023). Promoting apoptosis exacerbates
CVD, whereas limiting apoptosis exerts a cardioprotective effect.
Recent research has revealed that SCU affects the apoptotic process,
which could lead to the development of novel therapies for the
treatment of connected diseases (Table 2).

4.4 Vascular endothelial protection

Endothelial cells make up the vascular endothelium. The
regulation of vasodilatory tone and angiogenesis are two

FIGURE 7
Schematic representation of SCU attenuating I/R damage-induced oxidative stress and apoptosis by enhancing the JAK2/STAT3 pro-survival signal
pathway. CK: Creatine kinase; EGCG: epigallocatechin-3-gallate; MDA: Malondialdehyde; MMP2: matrix metallopeptidase 2; MMP9: matrix
metallopeptidase 9.

Frontiers in Pharmacology frontiersin.org09

Zhang et al. 10.3389/fphar.2023.1329969

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1329969


functions that endothelial cells do (Alvandi and Bischoff, 2021;
Trimm and Red-Horse, 2023). As a result, endothelial function
plays a key role in the development of numerous illnesses,
including hypertension, atherosclerosis, and myocardial
infarction (Dikalova et al., 2020; Luo et al., 2022; Fan et al.,
2023a). Some studies have found that SCU can protect vascular
endothelial cells through different mechanisms and thereby exert
cardiovascular protection (Table 3).

4.5 Anti-cardiac hypertrophy and fibrosis

Prolonged stress overload or noxious stimuli induce changes in
the heart, such as cardiomyocyte hypertrophy and interstitial
fibrosis, which macroscopically manifest as cardiac hypertrophy.
Although cardiac hypertrophy is a physiological and pathological
adaptive response, continued pathological stimulation can cause
cardiac remodeling, leading to arrhythmias and heart failure
(Marian et al., 2020; Fan et al., 2023a). Recent investigations have
revealed that SCU has anti-myocardial hypertrophic and fibrotic
properties (Table 4).

4.6 Regulation of glucose metabolism and
lipid metabolism

Hyperglycaemia and hyperlipidemia are independent risk
factors for CVD. The microvascular, macrovascular, and
myocardial tissues of the human body will be harmed by long-
term hyperglycemia, which will also hasten the development of
cardiovascular disorders such as atherosclerosis, acute myocardial
infarction, diabetic cardiomyopathy, and heart failure (Withaar
et al., 2021; Paolisso et al., 2022; Rampin et al., 2022; Wei et al.,
2022; Li et al., 2023a). Atherosclerosis is known to be facilitated
by hyperlipidemia. However, it has been discovered recently
that serum lipids can directly harm cardiac tissues by inducing
oxidative stress, inflammatory reactions, and other processes
that result in ventricular dysfunction and electrophysiological
alterations (Castillo et al., 2018; Choi et al., 2021; Mohammadi-
Shemirani et al., 2022). Therefore, reducing blood lipids
and glucose levels is crucial to preventing the onset of
cardiovascular illnesses. Numerous research conducted recently
have supported the regulating effects of SCU on cholesterol and
glucose metabolism (Table 5).

FIGURE 8
Schematic representation of the mechanism of SCU inhibition of Ca2+-mediated CaMKII signal pathway against cardiac hypertrophy. CREB: cAMP
responsive element binding protein; HDAC4 (histone deacetylase 4; HSF: hepatocyte-stimulating factors; IkB: Inhibitor-kB; MEF2: myocyte Enhancer
Factor 2.
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5 Improvement of bioavailability

Despite having a wide range of pharmacological actions
and positive clinical therapeutic outcomes, SCU’s limited
bioavailability still restricts its applications. Therefore, improving
the bioavailability of SCU has become a hot research topic. A carrier
substrate for a drug delivery system called a drug-encapsulated
carrier is inserted into a matrix to create a tiny capsule that
shields the active ingredient from the environment. The drug’s
aqueous solubility, stability, and in vivo circulation half-life are
all improved by this encapsulating technique. Some materials
with good biodegradability, biocompatibility, and non-toxicity
were selected as carriers for SCUs, such as nanoparticles,
polymer micelles, liposomes, etc. (Table 6). The selection and
application of these materials can improve the bioavailability of
SCUs and further exert positive pharmacological effects.

Yang et al. (2022) found that SCU-loaded poly (lactic-
hydroxyglycolic acid) (PLGA) nanoparticles (NPs) improved the
bioavailability and therapeutic effect of SCU. Compared with free
SCU, it prolongs the in vitro release spectrum and blood circulation
duration of SCU, increases SCU levels in ischemic brain tissue, and
significantly reduces cerebral infarction volume. In another study,
nanoliposomal baicalin (S-UNL-E) was found to promote SCU-

enabled modulation of bone metabolism, with high encapsulation
rate and stability of S-UNL-E, as well as more effective promotion of
osteogenic differentiation and bone formation compared to
SCU(Lee et al., 2016; Minhua et al., 2022). In addition, it has
been found that the encapsulated drug SCU:ε -PL-CD enhances
the inhibition of tumor cell growth and tissue protection by
SCU(Liao et al., 2020). Wang et al. (2021b) designed and
synthesized a triglyceride-mimicking prodrug of SCU and
demonstrated that it can effectively improve the bioavailability of
SCU. By definition, prodrugs are derivatives or precursors of
therapeutically active molecules. It can be biotransformed in the
body through spontaneous processes, such as hydrolytic
degradation or biocatalytic mechanisms, ultimately releasing
active molecules and ultimately exerting medicinal effects (Zhou
et al., 2022c). With the continuous development of molecular
biology, active substances such as chitosan and cyclodextrins are
also used as biocarriers to improve the therapeutic effect of SCU(Liu
and Ho, 2017b; Liao et al., 2020). Administering SCU-encapsulated
drugs at specific sites not only improves bioavailability but also
provides better targeting of action. By delivering unique SCU-loaded
HP-b-CD/chitosan nanoparticles (CD/CS-SCU-NPs) to the brain
through the nose and mouth, LIU et al. boosted the amount of SCU
accumulating there (Liu and Ho, 2017b).

FIGURE 9
Schematic representation of the mechanism by which SCU inhibits the TLR4/Myd88/NF-κB signal pathway to attenuate the inflammatory response
in the heart. AP-1: activator protein-1; CD14: co-receptor for toll-like receptors; IRAK1: interleukin-1 receptor-associated kinase 1; IκB: inhibitor-kB; IRF3:
Interferon regulatory factor 3; IRF7: interferon regulatory factor 7; MAL:myD88-adapter-like; MD2: myeloid differentiation protein 2; MKK: mitogen-
activated protein kinase kinase; TAB2: TGF-β-activated kinase 1 binding protein 2; TAB3: TGF-β-activated kinase 1 binding protein 3; TAK1: TGF-β-
activated kinase 1; TBK1: the TANK-binding kinase 1; TRAM: TLR4 recruits TRIF-related adaptor molecule; TRIF: Toll/IL-1R domain-containing adaptor-
inducing IFN-β; UBCI3: E2 ubiquitin conjugating enzyme; UEVIA:E2 ubiquitin conjugating enzyme.
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TABLE 1 Summary of experiments on the alleviation of oxidative stress by SCU.

Experimental model Mechanism Effect Ref

db/db mice Promots the Nrf2/HO-1 signal pathway Reduces oxidative stress response, exerts
hypoglycemic effect

Liu et al.
(2019)

non-alcoholic fatty liver disease rats Promotes PI3K/AKT signal pathway, promotes Nrf2 nuclear
translocation, increases HO-1, NQO1 expression

Reduces oxidative stress, lowers blood lipids Fan et al.
(2017)

HFD/STZ-induced type 2 diabetic
mice

Promots the Nrf2/Keap1 signal pathway Reduces oxidative stress and resists type 2 diabetes-
induced cardiac damage

Huo et al.
(2021)

H2O2-injured HUVECs Reduces ROS and promotes SOD1 and Nox4 mRNA expression Reduces oxidative stress, protects vascular
endothelium

Mo et al.
(2018)

HFD diet male rats Increases SOD and NO and decreases MDA Alleviates oxidative stress, reduces serum TC, TG
and LDL-C, and resists atherosclerosis

Mo et al.
(2018)

DOX-induced cytotoxicity of H9c2,
CFs and HUVECs

Reduces ROS and MDA, increases SOD activity Reduces oxidative stress, protects heart tissue Zhou et al.
(2022b)

DOX-induced cardiotoxicity in male
rats

Reduces LDH activity and MDA Reduces cTnT concentration, increases LVEF and
LVFS, and reverses cardiac tissue damage

Sun et al.
(2017)

ISO induced myocardial infarction in
rats

Increases SOD activity, CAT activity, GSH, decreases MDA,
iNOS

Reduces oxidative stress and reduces myocardial
infarction

Huang et al.
(2018a)

I/R-induced damage to H9C2 JAK2/STAT3 signal pathway, reduces SOD and increases MDA Reduces oxidative stress and protects against
myocardial I/R injury

Wang et al.
(2016)

STZ-induced DCM in mice Increases SOD activity, CAT activity, GSH Px activity, reduces
MDA and ROS, and activates Nrf2/HO-1 pathway

Alleviates oxidative stress, reduces cardiac damage
and fibrosis

Xu et al.
(2021)

CAT,catalase; cTnT, cardiac troponin-T; GSH, glutathione; LDH, lactate dehydrogenase; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening.

TABLE 2 Summary of experiments on SCU regulation of apoptosis.

Experimental model Mechanism Effect Ref

HFD rats, AngII-induced human aortic endothelial
cells apoptosis

Hippo-FOXO3A and the PI3K/AKT signal pathway Inhibits endothelial cell apoptosis and resists
atherosclerosis

Fu et al. (2019)

HFD/STZ-induced type 2 diabetes in mice Downregulates the expression of Bax, Cyt-c, Caspase-
9, Caspase-3 and Parp 1 genes, and upregulates the
expression of Bcl-2 gene

Inhibits cardiomyocyte apoptosis Huo et al.
(2021)

High glucose-induced injury in HUVECs Increases Bcl-2, reduces Bax, promotes Cyt-C and
Caspase-3 expression

Inhibits endothelial cell apoptosis Xi et al. (2021)

Acute myocardial ischemia-reperfusion -induced
injury of H9c2 cells

Increases Beclin-1 protein and upregulates LC3B II/I
ratio

Inhibits cardiomyocyte apoptosis and
promotes autophagy

Xu et al. (2020)

DOX-induced damage to H9c2 cells, CFs and
HUVECs

Reduces Bax, p53, downregulates Bax/Bcl-2 ratio,
inhibits expression of caspase 3 pro-apoptotic
proteins, and promotes expression of Bcl-2 anti-
apoptotic proteins

Inhibits apoptosis Zhou et al.
(2022b)

High-fat, high-sugar diet-induced type 2 diabetic
cardiomyopathy

Inhibits the activity and expression of caspase-3,
caspase-8, caspase-9 and caspase-12, inhibits the
mRNA and protein expression of Bax and Cyt-C, and
promotes the mRNA and expression of Bcl- 2

Inhibits cardiomyocyte apoptosis Su et al. (2022)

ISO-induced myocardial infarction in rats Inhibits the expression of Bax, P53, Caspase-3,
Caspase-9 and Cyt-C

Inhibits cardiomyocyte apoptosis Huang et al.
(2018a)

I/R-induced H9C2 injury Promotes JAK2/STAT3 pro-survival signal, increases
STAT3, and inhibits Bcl2, VEGF, MMP2 and
MMP9 expression

Inhibits cardiomyocyte apoptosis Wang et al.
(2016)

DOX-induced chronic cardiotoxicity in rats Inhibites Bax, p53, cleavedcaspase3 expression,
downregulates Bax/Bcl2 and cleaved caspase3/
caspase3 ratio

Inhibits cardiomyocyte apoptosis Sun et al.
(2023)

Cyt-c, cytochrome c; FOXO3A, Forkhead box class O3A; HG, high glucose; LC3B, light chain 3B.
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6 Discussion

In clinical practice, it is easy to find some problems with
conventional drugs for treating CVDs, such as a single
therapeutic target that cannot intervene in the disease from a
comprehensive perspective. There are some toxic side effects of
certain drugs, such as gastrointestinal discomfort, loss of vision,
headache, liver damage, renal damage, dry cough, angioedema, etc.,
and even some drugs will increase the risk of developing cancer (Lin
et al., 2020; Wilkerson and Winters, 2022). Nowadays, with the
gradual increase in the understanding of the ingredients extracted
from herbs and diets, the miraculous effects of these ingredients are
increasingly being recognized.

SCU is the primary active substance in the flavonoid
composition of Calendula officinalis, which has sound
therapeutic effects on CVDs. SCU can intervene in
cardiovascular system diseases through multiple signal pathways,

including the TGF-β1/MAPK signal pathway, PI3K/AKT/mTOR
signal pathway, Nrf2/Keap/ARE signal pathway, NOTCH signal
pathway, etc. Among them, PI3K/AKT/mTOR, NOTCH, cGAS-
STING, and CaMKII signal pathways have been the hot research
pathways in the cardiovascular field in the last 5 years. SCU has the
benefit of being a multi-target treatment and can protect various
heart-related cell types, including cardiomyocytes, vascular
endothelial cells, and fibroblasts. However, the study of multiple
signal pathways in SCU is still in its infancy, and there are still
problems, such as insufficiently comprehensive animal and human
models, insufficiently in-depth study of pathway mechanisms, and
insufficient clarity of signal relationships and interactions between
pathways. Therefore, the types of disease models should be
improved to expand the experimental scope and depth of
research. SCU exerts protective effects against CVD by inhibiting
inflammatory responses, alleviating oxidative stress, regulating
apoptosis, protecting the vascular endothelium, resisting cardiac

TABLE 3 Summary of experiments with SCU to protect the vascular endothelium.

Experimental model Mechanism Effect Ref

MIR rats PKG signal pathway Enhances vascular endothelial relaxation and reduces
myocardial infarction area

Li et al.
(2015)

HR-induced injury of human cardiac
microvascular endothelial cells

PKG signal pathway Enhances endothelial cell viability and exerts vascular
endothelial protective effects

Li et al.
(2015)

HR-induced damage to human human cardiac
microvascular endothelial cells

Promotes the expression of HSPD1, CCT6A
and EIF6

Enhances endothelial cell viability and exerts vascular
endothelial protective effects

Shi et al.
(2015)

HR-induced endothelial dysfunction in rats PKG signal pathway Dilates coronary arteries vessels and repairs damage to the
vascular endothelium

Chen et al.
(2015)

High glucose-induced injury of HUVECs PINK1/Parkin signal pathway Enhances mitophagy, increases HUVEC cell vitality, and
reduces vascular endothelial cell damage

Xi et al.
(2021)

H2O2-induced damage to HUVECs Reduces ROS and promotes the mRNA
expression of SOD1 and Nox4

Reduces oxidative stress and exerts protective effect on
vascular endothelium

Mo et al.
(2018)

I/R-induced cardiac injury in mices cGAS-STING signal pathway Improves cardiac function and attenuates apoptosis Li et al.
(2023b)

H/R-induced damage to H9c2 cells cGAS-STING signal pathway Mitigates apoptosis Li et al.
(2023b)

CCT6A, chaperonin containing TCP1 subunit 6A isoform; EIF6, p27BBP protein; HSPD1, heat shock 60 kDa protein 1.

TABLE 4 Experimental summary of SCU against cardiac hypertrophy and fibrosis.

Experimental model Mechanism Effect Ref

phenylephrine-induced hypertrophy in
H9c2 and AC16 cardiomyocytes

Reduces TRAF2, NF-κB, p65, inhibits TRAF2, IκBα
phosphorylation

Inhibits cardiomyocyte hypertrophy and resists
cardiac hypertrophy

Shi et al.
(2022)

Cardiac hypertrophy induced by PE or aortic
banding

CaMKII signal pathway Inhibits cardiomyocyte hypertrophy and resists
cardiac hypertrophy

Pan et al.
(2010)

MI rats Inhibits FN1 increase and TGF-β1 expression Reduces interstitial fibrosis and improves
impaired cardiac function in infarcted rats

Pan et al.
(2011)

AngII-induced proliferation of CFs Inhibits the upregulation of FN1 and TGF-β1 and the
phosphorylation of p38 MAPK and ERK1/2

Inhibits CF proliferation and collagen production,
resists myocardial fibrosis

Pan et al.
(2011)

ISO-induced myocardial fibrosis in rats NOTCH signal pathway Reduces myocardial fibrosis Zhou et al.
(2014)

DOX-induced chronic cardiotoxicity in rats TGF-β1 signal pathway Reduces myocardial fibrosis Sun et al.
(2023)

FN1, Fibronectin 1.
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hypertrophy and fibrosis, and regulating glucose metabolism and
lipid metabolism. However, some studies still need to be improved,
such as the lack of relevant experiments to prove the exact
mechanism of action of SCU on the regulation of lipid
metabolism. Few studies have been done on the treatment and
mechanism of action of SCU for cardiovascular system
complications, including whether it can treat hypertensive renal
damage, fundus changes brought on by hypertension, arrhythmia
brought on by heart failure, heart failure coupled with
hypoperfusion, etc. In addition, aging is an essential pathological
factor that accelerates the development of cardiovascular disease,
while population aging is a social problem shared by many countries
around the world. Therefore, there is a need for research to explore
the link between aging and heart disease to deal with heart disease
aggravated or triggered as a result of aging. One study found that

SCU can interact with SIRT6(Zhao et al., 2020). SIRT6, an
important NAD-dependent enzyme, is vital in the regulation of
both aging and heart disease (Guo et al., 2022; Nadeeshani et al.,
2022). This suggests that SCU will have great potential for research
and development in treating aging-related heart disease.

Recent studies have demonstrated the effectiveness of herbal
compounds, including ginsenosides, curcumin, and
cinnamaldehyde, in treating conditions like atherosclerosis,
arrhythmia, and heart failure (Li et al., 2020; Luo et al., 2020;
Sarhene et al., 2021; Lu et al., 2022). Research on these drugs is
more comprehensive and in-depth, and studies on signal pathways
and targets of action can be drawn upon to learn from further SCU
studies. In addition, in clinical practice, it is often the case that the
interactions of different herbal medicines are exploited to ingest
multiple herbal ingredients at the same time. Different drug

TABLE 5 Experiments on SCU regulation of glucose metabolism and lipid metabolism.

Experimental model Mechanism Effect Ref

Db/db mices Nrf2/HO-1 signal pathway Increases HbA1c, insulin and pyruvate levels, improves
glucose intolerance, and inhibits blood sugar elevation

Liu et al.
(2019)

HFD/STZ-induced type 2 diabetes in
mice

Inhibits FBG increase lowers blood sugar Huo et al.
(2021)

HFD/STZ-induced type 2 diabetes in
mice

- Inhibits the increase of serum TC, TG and LDL and the
decrease of serum HDL

Huo et al.
(2021)

Non-alcoholic fatty liver disease rats Promotes PI3K/AKT signal pathway, promotes
Nrf2 nuclear translocation, HO-1 and NQO1 expression

Reduces TC, HDL-C and LDL-C levels Fan et al.
(2017)

HFD rats - Inhibits the increase in TC, TG and LDL-C levels, inhibits
the decrease in HDL-C levels

Fu et al.
(2019)

HDF male rats Reduces SOD and NO, increases MDA Reduces serum TC, TG and LDL-C, increases serum
HDL-C

Mo et al.
(2018)

Modeled adipogenesis in vitro in
preadipocytes (3T3-L1)

Upregulates the expression of PPARα, downregulates the
expression of PPARγ and C/EBPα

Reduces adipocyte differentiation and resists adipogenesis Lu et al.
(2013)

C/EBPα, The transcription factor CCAAT/enhancer binding protein α; EBPα, enhancer-binding protein alpha; HbA1c, Hemoglobin A1c; PPARα, Peroxisome proliferator-activated receptor α;
PPARγ, Peroxisome proliferator-activated receptor gamma.

TABLE 6 Parameters to improve SCU bioavailability.

Formulation Carrier Average
diamete(nm)

Polymer
dispersion index

Zeta
potential

Entrapment
efficiency (%)

Application Ref

nanoparticle PLGA 187.89 ± 3.42 0.077 ± 0.031 −6.99 ±
1.75 mV

63.63 ± 4.41 Anticerebral
ischemia

Yang et al.
(2022)

Liposome S-UNL-E 156.67 ± 1.76 - −28.77 ±
0.66 mv

- Bone Builder Minhua et al.
(2022)

polymer ε-PL-CD 200 - 8mv - Antitumor Liao et al.
(2020)

nanoparticle Chitosan 200 0.5 25 mV 70 - Liu and Ho
(2017a)

nanoparticle chitosan 182 ± 11 - 16.5 ± 3.1 mv - Antidiabetic Wang et al.
(2017a)

Liposome CLN 181.0 - 23.8 mV 72.31 ± 1.96 Antiophthalmic
disease

Wang et al.
(2017b)

nanoparticles bovine serum
albumin

283.4 - +17.95 mV 64.46 - Wei et al.
(2014)

PLGA, poly lactic-co-glycolic acid; S-UNL-E, scutellarin loaded on ultradeformable nanoliposome scutellarin EDTMP; ε-PL-CD, a novel b-cyclodextrin pendant polymer; CLN, characterize a

cationic lipid nanoparticle.
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components may interact with each other to affect absorption
efficiency. It has been found that the herbal constituents of
Schisandra chinensis can promote the absorption and
metabolism of ginsenoside, thus promoting the effects of
ginsenoside (Liang et al., 2014). Additionally, Borneol can
increase Geniposide’s bioavailability and targeting, while Rhein
can increase Baicalin’s bioavailability by Inhibiting bcrp-mediated
Baicalin Efflux Transport (Xu et al., 2014; Zhang et al., 2020c).
Whether other drug components have an effect on the absorption
and metabolism of SCU is likewise worth exploring and
investigating.

Due to low bioavailability, the clinical application of SCU has been
greatly limited. Although the development of drug encapsulation
materials and carriers can effectively improve the bioavailability of
SCU, there are still some problems, such as low drug loading capacity
and poor targeting of the cardiovascular system. Therefore,
developmental and experimental research in this area needs to be
strengthened in the future. It is worth mentioning that a recent new
study prepared poly (lactic-co-glycolic acid) nanoparticles (NPs) co-
delivered with SCU and paeoniflorin (PAE) by an emulsification
method. This method improved encapsulation efficiency and drug
loading capacity, reduced nanoparticle size, better achieved
therapeutic targets, improved cardiac function, and reduced
cardiomyocyte apoptosis in rats (Yang et al., 2023). It is easy to
draw some inspiration from this study. While focusing on the
development of encapsulation materials, researchers can take
advantage of drug-drug interactions to improve bioavailability and
drug targeting.

In summary, SCU can modulate multiple signal pathways
against heart disease and is a natural compound that combines
antioxidant, anti-inflammatory, anti-apoptotic, and
cardioprotective activities. Numerous experimental investigations
have supported the effectiveness of SCU’s multi-targeted treatment
of cardiovascular illnesses, indicating that its future application is
promising. However, current research on SCU on CVDs has
limitations, and the problems of low bioavailability need to be
overcome. Based on the therapeutic efficacy, developmental

potential, and research challenges of SCU, more systematic
studies are needed to explore SCU to make them a
cardiovascular drug with wide clinical application as early
as possible.
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Nomenclature

AKT protein kinase B

ARE anti-oxidant response elements

BAD bcl-2 agonist of cell death

Bax BCL-2-associated X protein

Bcl-2 B cell lymphoma-2

cGMP cyclic guanosine monophosphate

CaMKII the multifunctional Ca2+ and calmodulin-dependent protein kinase II

CVDs cardiovascular diseases

CFs cardiac fibroblasts

DCM diabetic cardiomyopathy

DOX doxorubicin

EBHM Erigeron breviscapus (Vant.) Hand-Mazz

HO-1 heme oxygenase-1

HFD high fat diet

HR hypoxia reoxygenation

HUVECs human umbilical vein endothelial cells

I/R ischemia-reperfusion

ISO isoprenaline

MAPK mitogen-activated protein kinases

MIR myocardial ischemia-reperfusion

mTOR mammalian target of rapamycin

MyD88 the adaptor protein myeloid differentiation primary response 88

NF-κB nuclear factor kappa-B

Nrf2 nuclear factor erythroid 2-related factor 2

Parkin parkin RBR E3 ubiquitin-protein ligase

PINK1 PTEN-induced kinase 1

PI3K phosphatidylinositol 3-kinase

p38 the p38 group of MAP kinases

SCU scutellarin

SMAD the Smad transcription factors

STAT signal transducer and activator of transcription

STZ streptozotocin

Tlr4 toll-like receptor 4

TGF-β transforming growth factor ß

TNF-α tumour necrosis factor a
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