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Cholesterol and its metabolites have important biological functions.
Cholesterol is able to maintain the physical properties of cell membrane,
play an important role in cellular signaling, and cellular cholesterol levels
reflect the dynamic balance between biosynthesis, uptake, efflux and
esterification. Cholesterol metabolism participates in bile acid production
and steroid hormone biosynthesis. Increasing evidence suggests a strict link
between cholesterol homeostasis and tumors. Cholesterol metabolism in
tumor cells is reprogrammed to differ significantly from normal cells, and
disturbances of cholesterol balance also induce tumorigenesis and
progression. Preclinical and clinical studies have shown that controlling
cholesterol metabolism suppresses tumor growth, suggesting that targeting
cholesterol metabolismmay provide new possibilities for tumor therapy. In this
review, we summarized the metabolic pathways of cholesterol in normal and
tumor cells and reviewed the pre-clinical and clinical progression of novel
tumor therapeutic strategy with the drugs targeting different stages of
cholesterol metabolism from bench to bedside.
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1 Introduction

Cholesterol is a ubiquitous sterol present in vertebrates with multiple biological
functions. Cholesterol is an essential lipid component of the mammalian cell membrane
that can maintain membrane integrity and mobility and form membrane microstructures
(Cerqueira et al., 2016). In addition to serving as a membrane structural and functional
component, cholesterol produces various oxysterol through enzymatic and non-enzymatic
pathways. Cholesterol also represents a precursor of bile acid, and its oxidative effect allows
for the biosynthesis of steroid hormones in the steroid-producing tissues (Luu et al., 2016).
Cholesterol metabolism homeostasis is maintained by a complex network that regulates
cholesterol biosynthesis, uptake, efflux, and storage (Giacomini et al., 2021). In addition,
cholesterol also interacts with a variety of proteins, including receptors, channels and
enzymes, which are thought to regulate protein stability, localization and activity (Hulce
et al., 2013).
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Tumor cells are highly proliferative and therefore rely on
cholesterol to meet substantially increased nutrient needs for
membrane synthesis and support their uncontrolled growth,
thereby promoting tumorigenesis and progression (Riscal et al.,
2019). Indeed, cholesterol, cholesterol derivatives and cholesterol
synthesis intermediates can regulate tumor cell proliferation,
motility, stemness and drug resistance (Kopecka et al., 2020a).
Given these important functions of cholesterol metabolism in
cancer, drugs targeting cholesterol metabolism and tumor treatment
strategies have become a hot topic in the field of tumor research and
have made significant progress in recent years. In this review, we
introduce the metabolic pathways of cholesterol in normal and cancer
cells, its role in the tumor therapy, and the latest progress in therapeutic
drugs targeting different stages of cholesterol metabolism.

2 Overview of the cholesterol
metabolism in normal cells

Cholesterol metabolism including biosynthesis, uptake, efflux
and storage is a complex and important process under normal
physiological conditions. In brief, cholesterol biosynthesis starts
with acetyl-coA and involves synergy of more than 20 enzymes,
most of them on the membrane of the endoplasmic reticulum (ER)
(Luo et al., 2020). Several steps are tightly regulated throughout the
process, and some intermediates produced during the process can be
transferred and used as precursors for the biosynthesis of other
compounds (Cerqueira et al., 2016; Luo et al., 2020). The
biosynthesis cascade of cholesterol occurs in almost every
mammalian cell, especially liver synthesis accounts for about 50%
of the total cholesterol biosynthesis (Luo et al., 2020).

Cholesterol uptake consists of NPC1L1 (Niemann–Pick C1-like-
1) protein-mediated absorption from the intestinal lumen and
LDLR-mediated subsequent absorption from the blood (Luo
et al., 2020). NPC1L1 is a glycosylated, multi-spanning
membrane protein specifically expressed on the apical surface of
enterocytes and the membrane of bile canaliculi of human
hepatocytes (Altmann et al., 2004). It is a key mediator of
cholesterol uptake and controls cholesterol uptake in enterocytes
through clathrin-mediated endocytosis (Luo et al., 2020). The
human NPC1L1 gene is activated by SREBP2 and is upregulated
by hepatocyte nuclear factor 4α (HNF4α) (Iwayanagi et al., 2008).

Although almost all mammalian cells can produce cholesterol,
only hepatocytes, adrenal cells, and gonad cells are able to catabolize
cholesterol. Thus, excess cholesterol of peripheral tissues is
converted to cholesterol esters stored in lipid droplets or moved
to the liver that can be converted to bile acids and excreted into the
digestive system (Ouimet et al., 2019). Mechanistically, four
members of the ATP binding cassette (ABC) transporter
superfamily: ABC subfamily A member 1 (ABCA1), ABC
subfamily G (ABCG) members 1, 5, and 8 regulate cholesterol
efflux in a cell-type-specific manner. ABCA1 is widely expressed
throughout the body and its main receptor mediating cholesterol
efflux is lipid-free apolipoprotein A-I (apoA-I) (Rosenson et al.,
2012) and produces HDL particles. ABCG1 is most abundant in
macrophages, lower in hepatocytes, and absent in enterocytes
(Kennedy et al., 2005). However, ABCG5 and ABCG8 are nearly
exclusively expressed at the apical surface of enterocytes and

hepatocytes, forming a heterodimer mediating the excretion of
cholesterol into the bile and intestinal lumen (Graf et al., 2003).

As mentioned above, excess intracellular cholesterol is usually
converted to cholesterol esters, which is an important means to
prevent free cholesterol accumulation in cells. The formation of
cholesterol esters is mediated by acyl coenzyme A cholesterol
acetyltransferase (ACAT) (Petan et al., 2018). To date, two ACAT
isoenzymes have been reported in mammals, including ACAT1 and
ACAT2. ACAT1 is widely expressed throughout the body and is most
abundant in macrophages, epithelial cells and steroid hormone-
producing cells, indicating its involvement in maintaining
cholesterol homeostasis, while ACAT2 is mainly expressed in
enterocytes and also in hepatocytes, suggesting that it contributes
to lipoprotein biosynthesis and assembly (Luo et al., 2020).

The molecular mechanism of cholesterol metabolism is strictly
regulated to maintain cholesterol homeostasis, not only satisfy cell
growth and proliferation with enough cholesterol, but also avoid
excessive cholesterol accumulation. Cholesterol homeostasis is mainly
regulated by 2 families of transcription factors: the sterol regulatory
element binding proteins (SREBPs) and the liver X receptors (LXRs)
(Luo et al., 2020). SREBP1mainly regulates the genes involved in fatty
acid (FA) synthesis, while SREBP2 controls the gene of the cholesterol
biosynthesis pathway (Horton et al., 2003). When the cholesterol
content is present in endoplasmic reticulum (ER) is low,
SREBP2 activates the transcription and expression of the
cholesterol biosynthetic enzymes HMGCR, increases the expression
of the NPC1L1 and LDLR genes (Luo et al., 2020) to increase the de
novo cholesterol synthesis (Nohturfft and Zhang, 2009; Cai et al.,
2019). When cholesterol content in endoplasmic reticulum (ER) is
high, the activation of SREBP2 and cholesterol synthesis are blocked.
Moreover, LXRs promotes activation of genes associated with bile acid
generation (CYP7A1), cholesterol excretion (ABCG5, ABCG8), and
reverse cholesterol transport (ABCA1, ABCG1) (Giacomini et al.,
2021), ultimately promoting the elimination of the excess of cellular
cholesterol.

Although cholesterol is essential for membrane fluidity and
structural maintenance, signaling regulation, and energy storage,
most mammalian cells cannot directly process cholesterol through
the catalytic reaction, but may modify their steroid skeleton, which
further generate oxysterols eventually and bile acid via cholesterol
efflux ultimately upon the content of cholesterol is overload (Luu et al.,
2016; Riscal et al., 2019). Oxysterols are oxidized forms of cholesterol,
which present at extremely low concentrations in human (van Reyk
et al., 2006). Oxysterols regulate cellular cholesterol homeostasis by
inhibiting SREBP and activating LXR.Moreover, oxysterols are widely
involved in post-transcriptional regulation of cholesterol homeostasis
by changing enzyme stability and/or activity (e.g., promoting
HMGCR degradation, affecting the activity of several cholesterol
biosynthetic enzymes, etc.) (Luu et al., 2016).

3 Reprogrammed cholesterol
metabolism in tumor cells

Cholesterol is generally beneficial for cancer growth and
development, it promotes migration and invasion, inhibits
apoptosis through activating oncogenic signaling pathways
(Figure 1).
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3.1 Cholesterol biosynthesis is enhanced in
tumor cells

Tumor cells require excess cholesterol and intermediates of the
cholesterol biosynthesis pathway to maintain cell proliferation,
possibly related to the substantial cholesterol require for
membrane synthesis (Cruz et al., 2013). Increased endogenous
cholesterol synthesis and high cholesterol exposure both favor
cancer progression (Kopecka et al., 2020b). Interestingly,
intracellular cholesterol levels cause more cancer burden than
systemic serum cholesterol, suggesting that abnormalities in
cholesterol biosynthesis are strongly associated with
tumorigenesis (Sorrentino et al., 2014; Kuzu et al., 2016).

Several enzymes such as SREBP2, HMGCR, SQS, OSC, and
SQLE which are involved in cholesterol synthesis are significantly
upregulated in liver cancer mouse model (Liang et al., 2018).
SREBP2 and its downstream targets, including mevalonate-
pathway enzymes, are significantly upregulated in glioblastoma
(Lewis et al., 2015). HMGCR is overexpressed in prostate cancer,
gastric cancer and colon cancer (Giacomini et al., 2021). Squalene
synthase (SQS) is enhanced in lung cancer patients, induces
cholesterol biosynthesis, which in turn maintains the enrichment
of tumor necrosis factor receptor 1 (TNFR1) in lipid rafts to

promote lung cancer metastasis (Yang et al., 2014). Inhibition of
SQS reduces the levels of lipid raft-associated cholesterol, inhibits
prostate cancer cell proliferation, and induces apoptotic
(Brusselmans et al., 2007). The level of squalene cycloxidase
(SQLE) is enhanced in breast cancer, lung cancer and colorectal
cancer, and promotes cancer cell migration and invasion, whichmay
be related to regulating the sterol components of lipid rafts as well
(Giacomini et al., 2021). In metastatic mouse models of colorectal
and pancreatic cancer, lanosterol synthase (LSS) promotes tumor
neovascularization and metastasis (Maione et al., 2015). Oxide
squalene cyclase (OSC) inhibitors hinder endothelial cell
migration and promote apoptosis, which inhibits tumor
angiogenesis and dissemination to the distance (Liang et al.,
2014). In addition, enhanced expression of cholesterol synthesis
genes is associated with poor survival in sarcoma, acute myeloid
leukemia and melanoma patients, but in lower grade glioma it was
associated with good survival (Kuzu et al., 2016). The latest research
has revealed that activated cholesterol biosynthesis programs
promotes triple-negative breast cancer progression (Cai et al.,
2019) and increased cholesterol synthesis is associated with poor
patient prognosis (Ehmsen et al., 2019).

Mechanistically, cholesterol biosynthesis has complex links with
the signaling pathways and factors that regulate tumors. Several

FIGURE 1
Reprogrammed cholesterol metabolism and indicated drug targets in tumor cells. Cholesterol metabolism and homeostasis regulation in cancer
cells. Boxes of different colors indicate targeted therapeutic drugs and drug targets for each stage of cholesterol metabolism.
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oncogenic signals such as PI3K/AKT/mTOR, RTK/RAS, and
TP53 have been shown to modulate cholesterol synthesis in
cancer cells (Kuzu et al., 2016). For example, constitutive
activation of PI3K/AKT signaling increases intracellular
cholesterol levels through SREBP-1 activation, resulting in de
novo cholesterol biosynthesis and LDL receptor (LDLR)
expression, thereby enhancing exogenous cholesterol import in
prostate cancer (Guo et al., 2011). On the other hand, cholesterol
biosynthesis also has a critical role in maintaining cancer stem cells
by activating signaling pathways of sonic hedgehog, Notch and
receptor tyrosine kinases (Kim, 2019). Thus, targeting the
cholesterol generation and mevalonate pathway represents a
promising choice for tumor therapy.

3.2 Cholesterol uptake is enhanced in tumor
cells

Increasing cholesterol uptake appears to be more efficient
strategy compared to de novo cholesterol synthesis for cancer
cells. It is reported that NPC1L1 promotes colon carcinogenesis
by inducing cholesterol absorption and increasing plasma
cholesterol levels (He et al., 2015). NPC1L1 knockdown reduces
colitis-associated tumorigenesis, which may be associated with
downregulation of β-catenin, p-c-Jun and p-ERK (He et al.,
2015). One of the extracellular loops of NPC1L1 is the binding
site of ezetimibe, thus providing support for targeted cholesterol
uptake (Weinglass et al., 2008). Besides, it has been found that some
anaplastic large cell lymphoma cells are completely dependent on
cholesterol uptake to acquire cholesterol, due to the absence of
SQLE. These cancer cells actively upregulate LDLR, which takes up
exogenous cholesterol as an alternative strategy to support
proliferation (Garcia-Bermudez et al., 2019). Indeed, LDLRs
levels are increased in glioblastoma, leukemia, pancreatic and
lung cancers (Huang et al., 2016; Gallagher et al., 2017) and
LDLRs promotes epithelial-to-mesenchymal transition (EMT),
increases the secretion of metalloproteinase MMP-9 and activates
Wnt/β-catenin signaling pathway (Campion et al., 2020). However,
the level of LDLR is decreased in human advanced prostate cancer.
The roles of hypercholesterolemia in tumors are still controversial:
elevated serum cholesterol level is positively correlated with the
recurrence rate of prostate cancer (Allott et al., 2014). But it is also
reported that high serum cholesterol levels increased the anti-tumor
functions of natural killer cells and reduced the growth of liver
tumors in mice (Pelton et al., 2014). Collectively, while cholesterol
uptake is one of the sources for cancer cells to obtain cholesterol,
how cancer cells coordinate the balance between cholesterol
biosynthesis and uptake and whether it is altered with tumor
progression remains to be further elucidated.

3.3 Cholesterol efflux is dysregulated in
tumor cells

Deficiency of ABCA1, a main receptor mediating cholesterol
efflux, increases mitochondrial cholesterol, inhibits release of
mitochondrial cell death-promoting molecules, and thus
facilitates cancer cell survival (Smith and Land, 2012; Kuzu et al.,

2016). It has been demonstrated that ABCA1 can promote cell
metastasis by regulating cholesterol levels, and patients with high
ABCA1 expression had shorter times to metastasis in breast cancer
(Aguirre-Portoles et al., 2018). PPARα and PPARγ activation
promotes LXR-mediated ABCA1 expression, and PPARα blocks
cholesterol biosynthesis by inhibiting sterol regulatory element
binding protein 2 (SREBP-2) activity (Grabacka and Reiss, 2008).
Thus, targeting PPARα appears to be an effective strategy to regulate
cholesterol content. Indeed, the antitumor effect of fenofibrate (an
agonist of PPARα) has been demonstrated (Giacomini et al., 2021).

3.4 Cholesterol esterification is enhanced in
tumor cells

As mentioned above, cells are able to avoid excessive cholesterol
accumulation through the cholesterol esterification pathway.
Usually, cholesterol esterification reduces the amount of
intracellular free cholesterol, protects tumor cells from their toxic
effects, and reduces the amount of free cholesterol that can maintain
SREBP-induced cholesterol biosynthesis and uptake (Chang et al.,
2006). However, it is also reported that reducing cholesterol
esterification was able to inhibit the growth and invasion of
hepatoma carcinoma cells in a mouse xenograft model (Geng
et al., 2016), suggesting that the function of cholesterol
esterification depends on tumor types. Cholesteryl esters (CE), a
common signature in cancer, is usually stored in lipid droplets that
serve as a reservoir for neutral lipids such as triacylglycerols. The
accumulation of CE can be converted by tumor cells into cholesterol
utilization, as demonstrated by high expression of ACAT1 and
cholesterol ester metabolizing enzyme lysosomal acid lipase
(LAL) in tumor tissues. In fact, the accumulation of CE
promotes proliferation and invasive capacity of breast cancer,
and promotes the occurrence and metastatic potential of
glioblastoma, prostate and pancreatic cancer (de Gonzalo-Calvo
et al., 2015; Petan et al., 2018). CE accumulation is driven by loss of
PTEN and consequent activation of PI3K/AKT/mTOR pathway that
induces the expression of SREBP and LDLR, thereby promoting
ACAT1-mediated cholesterol storage in lipid droplets (Yue et al.,
2014). In glioblastomas, inhibition of ACAT1 inhibits adipogenesis
and tumor growth (Geng et al., 2016). Consistently,
ACAT1 overexpression was confirmed in many cancers,
including hepatocellular carcinoma, castration-resistant prostate
cancer, and pancreatic cancer (Giacomini et al., 2021). Therefore,
targeted enhanced cholesterol esterification seems to be a promising
therapeutic strategy. In fact, it has been shown that targeting
ACAT1 has an anticancer potential (Yue et al., 2014).

3.5 Abnormal regulation of cholesterol
homeostasis in tumor cells

As mentioned above, SREBP2 and LXR are essential for
maintaining cholesterol homeostasis. SREBP promotes cancer cell
growth, migration, and colony generation in esophageal squamous
cell carcinoma (Zhong et al., 2019). SREBP and its downstream
genes are significantly upregulated and promote cell survival and
tumor growth in the hypoxic and nutrient-restricted tumor
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microenvironment (Lewis et al., 2015). SREBP2 has also been shown
to bind to mutant p53 and activate the expression of the mevalonate
pathway in breast cancer cells (Freed-Pastor et al., 2012). Moreover,
it is proved that RORγ (a nuclear receptor) promotes the
recruitment of SREBP2, and activates the cholesterol biosynthesis
(Cai et al., 2019). Thus, the SREBP and RORγ can serve as good
targets for tumor therapy. In addition to SREBP, LXR is also an
important driver of carcinogenesis. LXR inverse agonists and LXR
agonists were shown to inhibit the proliferation and colony
formation, and induce apoptosis in clear cell renal cell carcinoma
(ccRCC) cells, but had no cytotoxic effect on normal renal tubular
epithelial cells. Therefore, LXR may be a safe therapeutic target for
ccRCC (Wu et al., 2019).

3.6 Oxysterols have multifunctional role in
cancer cells

Oxysterols are involved in various cancers (Kuzu et al., 2016).
Side-chain oxidation of cholesterol generates 22-hydrocholesterol
(22-HC), 24-hydroxycholesterol (24-HC), 25-hydroxycholesterol
(25-HC) and 27-hydroxycholesterol (27-HC), and oxidation
occurring on the backbone generates 7α/β-hydroxycholesterol (7α-
HC/7β-HC), 7-ketocholesterol (7-KC) and 5, 6α/β-epoxycholesterol
(5, 6α -EC/5, 6β-EC). 22-HC is a high-affinity LXR ligand that induces
ABCA1 expression, leading to cellular cholesterol efflux. 25-HC is a
side-chain oxysterol that inhibits cholesterol biosynthesis by
inhibiting SREBP (Riscal et al., 2019). Certain oxysterols have
anticancer effects. In Jurkat T-cell lymphoma cells, 24-HC induces
apoptosis through a mechanism involving 24-HC esters and lipid
droplet accumulation (Yamanaka et al., 2014). 22-HC, 24-HC, 7α-
HC/7β-HC and 5, 6α -EC/5, and 6β-EC all act as agonists of LXR to
inhibit proliferation in breast cancer, ovarian cancer and prostate
cancer through inducing G1 cell cycle arrest or apoptosis (Lin et al.,
2013; Riscal et al., 2019; de Medina et al., 2021). Thus, oxysterols with
cytotoxic activity may be potential therapeutic agents for cancer.
However, 27-HC acts as an estrogen receptor (ER) agonist in breast
cancer, which stimulates tumor growth and metastasis in multiple
breast cancer models (McDonnell et al., 2014). A recent study
demonstrated that chronic exposure of cancer cells to 27-HC,
which likely models the situation in patients with
hypercholesterolemia/dyslipidemia, resulted in the emergence of
cells exhibiting increased tumorigenic and metastatic capacity (Liu
et al., 2021). Intriguingly, the metabolites of 5, 6-epoxycholesterol (5,
6-EC) have opposing properties in breast cancer oncogenesis. In
normal breast tissue, the metabolite dendrogenin A (DDA)
displays tumour-suppressive properties. Yet in breast cancer, 5, 6-
EC is metabolized to oncosterone (6-oxo-cholestan-3, 6-diol,
cholestan-3, 6-diol-6-one, and OCDO), acting as an
oncometabolite and tumor promoter in breast cancer. Therefore,
blocking oncosterone biosynthesis or neutralizing oncosterone
receptors may be a new pharmacological target for the treatment
of breast cancer (de Medina et al., 2021).

Besides the tumor cells, oxysterols can also influence the tumor
microenvironment. Immune cells expressing “generic” oxysterol
receptors, such as LXR, and specific receptors in immune cells,
such as G protein-coupled receptor 183 (GPR183), can recognize
different oxysterols (Willinger, 2019). Baek et al. (2017)

demonstrated that 27-HC increases the number and activity of
polymorphonuclear neutrophils (PMN) and γδT cells, and
reduces the cytotoxic CD8+ T cell population. In addition,
oxysterol promotes tumor growth by inhibiting dendritic cell
(DC) migration to lymphoid and by promoting the recruitment
of protumor neutrophils in the tumor microenvironment (Raccosta
et al., 2013).

4 Targeting cholesterol in tumor
therapy

4.1 Targeting cholesterol biosynthesis

4.1.1 Targeting HMGCR
As cholesterol metabolism has important functions in cancer

progression, targeting cholesterol metabolism has been shown to be
a viable antitumor strategy (Table 1). As previously described,
HMGCR is one of the rate-limiting enzymes for the cholesterol-
producing mevalonate pathway, so targeting HMGCR may be a
good strategy for tumor therapy (Nielsen et al., 2012; Gu et al., 2019;
Di Bello et al., 2020). Statins are the most common pharmacological
inhibitors of HMGCR. Numerous epidemiological analyses suggest
statins can reduce the incidence of certain tumors, but these
conclusions are not consistent (Kuzu et al., 2016). One study
suggests an association between statin and a slight reduction in
cancer-related mortality for 13 different cancer types (Nielsen et al.,
2012). However, there are also many epidemiological studies suggest
no association between statin and cancer (Kuzu et al., 2016). Statins
can enhance the effects of chemotherapeutic agents such as cisplatin,
anthracyclines, paclitaxel, 5-fluorouracil, etoposide and malfaran
(Osmak, 2012). The efficacy of reducing side effects and drug
resistance has also been proved (Terzi et al., 2019; Feng et al.,
2020). Currently, the efficacy of statins has been carried out in both
basic studies and clinical trials to evaluate monotherapy and
therapies in combination with other chemotherapeutic agents.

While inhibiting cholesterol biosynthesis, statins also inhibit the
synthesis of multiple other metabolites. By blocking the MVP
pathway, statins halt isoprenoid synthesis, such as GGPP and
FPP for GTPase-proteins essential for cancer cells (Takai et al.,
2001), which explains the pharmacological effects of statins in
antitumor effects (Takai et al., 2001; Buhaescu and Izzedine,
2007; Kidera et al., 2010). Moreover, the antitumor effects of
statins may also be related to non-MVP-mediated mechanisms
(Okubo et al., 2020).

Since statins have been approved for the treatment of
hypercholesterolemia and are one of the most widely used
pharmaceutical agents in the world. Thus, their repositioning in
the field of oncology is translated more easily and quickly to the
clinic. From the first clinical trial of lovastatin combined with
cytarabine started in 2001, how statins work and benefit in
cancers therapy has been widely evaluated over these 2 decades.
When “statins | cancer” are taken as the search term, 223 clinical
trials have been found on ClinicalTrial.gov, including 54 phase I
studies, 101 phase II studies, 24 phase III studies and 12 phase IV
studies from 2005 to 2023. Based on the types of diseases, studies for
clinical oncology treatment-related trials were included in the
analysis (Table 2).
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Of the 15 studies with results released, 5 suggested positive anti-
tumor outcomes, including simvastatin: 1 (1/2), pravastatin: 2 (2/7),
fluvastatin: 2 (2/2) in NSCLC, breast cancer, prostate cancer,
leukemia and HCC.

A phase II study has been carried out to evaluate the efficacy
and safety of gefitinib plus simvastatin in patients with advanced
non-small cell lung cancer (NSCLC). The result pointed out that
there is no superiority of GS (gefitinib plus simvastatin) to G
(gefitinib only) was demonstrated in the unselected NSCLC
population. But GS showed a higher response rate (RR) and
longer progression-free survival (PFS) compared with G alone in
patients with wild-type EGFR non-adenocarcinomas (Han J.-Y.
et al., 2011). Several studies of simvastatin combination
treatment in small cell lung cancer (SCLC) are ongoing.
Another study tested the effects of simvastatin on the
pharmacokinetics of anastrozole, a potent non-steroidal
aromatase inhibitor (AI) that holds promise for breast cancer
prevention, on patients with hormone receptor-positive breast

cancer suggested that simvastatin is not likely to compromise the
activity of anastrozole (Bao et al., 2012). While, a study of
simvastatin in patients at higher risk of developing a hormone
non-responsive (ER-) breast cancer was carried out in 2011
(NCT01500577). This study included 150 women with a
history of estrogen receptor negative ductal intraepithelial
neoplasia or lobular intraepithelial neoplasia or atypical
hyperplasia, or unaffected subjects carrying a mutation of
BRCA1 or with a probability of mutation >10% (according to
BRCAPRO) (Lazzeroni et al., 2012) to evaluate the
chemoprevention activity of simvastatin compared with
nimesulide. And the result of this trial has not yet been released.

A study of breast cancer patients with a 3–6 weeks fluvastatin
treatment before surgery suggested measurable biologic changes by
reducing tumor proliferation and increasing apoptotic activity in
high-grade, stage 0/1 breast cancer (Garwood et al., 2010)
(NCT00416403). A phase II study in prostate cancer patients
shows that short-term (4–12 weeks) fluvastatin treatment at a

TABLE 1 Anti-cancer therapies that target cholesterol metabolism.

Therapeutic class Mechanism Cancer type References

Targeting
cholesterol
biosynthesis

Stains Simvastatin Atorvastatin
Lovastatin Pravastatin
Rosuvastatin Fluvastatin
Pitavastatin

Competitive
inhibitors of
HMGCR

Colorectal, Prostate, Breast, Lung cancer,
multiple myeloma, melanoma and other
cancers

Nielsen et al. (2012), Osmak. (2012),
Fatehi Hassanabad. (2019), Gu et al.
(2019), Terzi et al. (2019), Chen YH et al.
(2020), Di Bello et al. (2020), Feng et al.
(2020), Lubtow et al. (2020), Okubo et al.
(2020)

Zaragonic acids Inhibitor of squalene
synthase

RMA lymphoma and Lewis lung
carcinoma models

Brusselmans et al. (2007), Lanterna et al.
(2016)

TAK-475 Inhibitor of squalene
synthase (FDFT1)

Pancreatic ductal adenocarcinoma model Biancur et al. (2021)

NB-598 Inhibitor of squalene
epoxidase

SCLC lines Mahoney et al. (2019)

R048-8071 Inhibitor of OSC HCT116 CRC, HPAF-II pancreatic
adenocarcinoma models and breast cancer
lines

Liang et al. (2014), Maione et al. (2015)

Targeting
cholesterol
uptake

ezetimibe Selective block of
NPC1L1

Breast cancer Pelton et al. (2014)

Targeting
cholesterol efflux

fenofibrate PPARα agonists Leukemia, Lymphoma, Multiple Myeloma,
endometrial cancer, prostate cancer, breast
cancer, oral cancer, pancreatic cancerand
and other cancers

Luo et al. (2019), Sun et al. (2019), You
et al. (2019), Chen L et al. (2020), Di
Bello et al. (2020)

Targeting
cholesterol
storage

Avasimibe Inhibitor of ACAT1 Human PC3 prostate cancer, MIA-PaCa2
pancreatic cancer, A549 lung cancer, and
HCT116 colon cancer lines

Pal et al. (2013), Lee et al. (2015), Lee
et al. (2018), Li et al. (2018)

Targeting
cholesterol
regulation

Fatostatin specific inhibitor of
SREBP

Prostate cancer, ER-positive breast cancer Li et al. (2014), Li et al. (2015), Gao et al.
(2018), Liu et al. (2020), Yao et al. (2020)

dipyridamole inhibit the cleavage of
SREBP2

multiple myeloma Pandyra et al. (2014)

T0901317 LXR agonists Breast, lung, prostate cancer and Leukemia Pommier et al. (2010), El Roz et al.
(2012), Flaveny et al. (2015), Villa et al.
(2016), Tavazoie et al. (2018), Lou et al.
(2019), Brendolan and Russo. (2022)

GW3965 Leukemia

DDA (Dendrogenin A) LXR partial agonist Leukemia

RGX-104 LXRβ agonist Advanced solid tumors and lymphomas

SR9243 LXR inverse agonist Colorectal, lung, prostate cancer models
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cholesterol-lowering dose before radical prostatectomy can increase
the percentage of apoptotic prostate cancer cells in the tumor
relative to baseline (Longo et al., 2020) (NCT01992042).

A positive result for high dose pravastatin combined with
cytarabine and idarubicin in relapsed AML patients’ therapy was
reported in 2014 (Advani et al., 2014) (NCT00840177). The

TABLE 2 Clinical trials of statins in cancer.

Drug Cancer type Condition Phase Combination strategy References

Simvastatin Breast Cancer II Anastrozole Bao et al. (2012)

with dyslipidemia II -

prevention II - Lazzeroni et al. (2012)

ER-positive/metastatic II Fulvestrant, Metformin

metastatic II HER2-targeted therapy

Prostate Cancer II Metformin

I Ezetimibe Wang et al. (2022)

Colorectal Cancer metastatic II FOLFIRI (irinotecan, 5-FU, leucovorin)

advanced/metastatic II Cetuximab/Panitumumab/Bevacizumab

Lung cancer SCLC II Irinotecan/Albumin Paclitaxel/Irinotecan,
Cisplatin

NSCLC II gefitinib Han J Y et al. (2011)

Atorvastatin Breast cancer II Letrozole

triple negative II Zoledronate

early stage III -

Prostate Cancer II Celecoxib

prevent recurrence II - Jeong et al. (2021)

Glioblastoma multiforme II Temozolomide Altwairgi et al. (2021)

Hepatocellular
Carcinoma (HCC)

prevent recurrence II Metformin

advanced II Sorafenib

Colorectal Cancer prevention II -

pancreatic cancer metastatic I Ezetimibe, Evolocumab

Lovastatin Ovarian cancer refractory/relapsed II Paclitaxel

Breast Cancer prevention II - Vinayak et al. (2013)

Melanoma II Interferon alfa-2b

precancerous lesions II - Linden et al. (2014)

Pravastatin HCC advanced II/III Sorafenib Jouve et al. (2019), Riaño et al. (2020),
Blanc et al. (2021)

Leukemia prevent recurrence II Cytarabine/Idarubicin Advani et al. (2014), Shadman et al. (2015)

relapsed/refractory I/II Cyclosporine, Mitoxantrone
Hydrochloride, Etoposide

Chen et al. (2013)

Lung Cancer SCLC III Etoposide, Cisplatin/Carboplatin Seckl et al. (2017)

Rosuvastatin Endometrial Carcinoma Stage I II Megestrol Acetate

Colorectal Cancer prevent recurrence/
advanced

II/III -

Fluvastatin Breast Cancer II - Garwood et al. (2010)

Prostate Cancer II - Longo et al. (2020)

Pitavastatin Breast Cancer II/III -
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recurrence rate has decreased from 75% to 5.5% after the combined
treatment, which shows the efficacy of this combined therapy. While
another study had been ceased due to the combined drugs did not
meet the predefined efficacy criteria for success (Shadman et al.,
2015) (NCT01831232).

As for HCC, there are three phase II studies aim to bring out the
efficacy of sorafenib combined with statins to select better arms for
further clinical trials in patients with advanced hepatocellular
carcinoma (HCC), as sorafenib is the preferred drug in the
palliative treatment [NCT01418729 (Riaño et al., 2020),
NCT01357486 (Blanc et al., 2021), NCT01075555 (Jouve et al.,
2019)]. All these three studies showed that adding pravastatin to
sorafenib did not improve overall survival (OS) in patients with
advanced HCC. However, one of the studies suggested the
combination of sorafenib and pravastatin prolonging the time to
progression (TTP) of patients with advancedHCC (Blanc et al., 2021).

Despite of the positive outcome of multiple types of Statins drugs
in clinical trials mentioned above, there are still some unsatisfactory
results. The included studies related to atorvastatin and lovastatin did
not suggest a positive outcome. For example, atorvastatin has been
evaluated in the prevention of the recurrence of prostate cancer, which
has shown that there was no association with a lower risk of disease
recurrence compared with placebo (Jeong et al., 2021). While
glioblastoma patients treated with atorvastatin in combination with
radiotherapy and temozolomide did not show an improvement in
progression-free survival (Altwairgi et al., 2021). In addition,
evaluation of lovastatin as a prevention drug for its use in the
treatment of women at increased risk of breast cancer
demonstrated no significant biomarker modulation
(NCT00285857) (Vinayak et al., 2013). Besides, there is a study of
lovastatin in melanoma, which did not show beneficial changes of
lovastatin for precancerous lesions (Linden et al., 2014)
(NCT00462280). Some studies had been terminated due to the
toxicity of drug combination (Chen et al., 2013) (NCT01342887).
There are also trials being recruited or underway, and for those
without positive results, longer observation periods and larger sample
sizes are needed to determine the therapeutic effects of statins on
various types of tumors. Besides, for trials with poor outcomes,
distinguishing more subgroups, such as gene polymorphism and
smoking (Han J.-Y. et al., 2011; Han J. Y. et al., 2011). May lead
tomeaningful conclusions.Moreover, the safety of statins still needs to
be given enough attention when used in combination with
chemotherapeutic drugs, and individual differences in drug use for
cancer patients also need to be considered.

4.1.2 Targeting squalene synthase
Squalene protects cancer cells from ferroptotic cell death,

providing a growth advantage under conditions of oxidative
stress produced by high proliferative rates and in tumor
xenografts (Garcia-Bermudez et al., 2019). It has been
experimentally demonstrated that Zaragozionic acid, a
pharmacological inhibitor of Squalene synthase (SQS), can lead
to growth arrest and induction of cytotoxicity in prostate cancer
cells (Brusselmans et al., 2007). In addition, using TAK-475, a potent
inhibitor of squalene synthase (Fdft1), researcher evaluated the
efficacy and tolerability of TAK-475 in a mouse transplant model
of pancreatic ductal adenocarcinoma (PDA) and showed
significantly reduced tumor growth (Biancur et al., 2021).

4.1.3 Targeting SQLE
A recent study showed that increased squalene production due

to the loss of squalene epoxidase (SQLE) in cholesterol nutrient-
deficient cells prevents oxidative cell death (Garcia-Bermudez et al.,
2019). Mahoney et al. (2019) demonstrated that small cell lung
cancer (SCLC) lines display sensitivity to NB-598, a known inhibitor
of squalene epoxidase (SQLE). In addition, terbinafine (TB) is an
antifungal agent that inhibits squalene epoxidase and has been
shown to inhibit tumor growth and angiogenesis (Chien et al.,
2012), by the mechanism that TB suppresses in vitro and in vivo
proliferation of various tumor cells, including oral, colon and liver
cancer via inhibiting DNA synthesis and activating apoptosis, which
is related to the p53-dependent signaling pathway (Lee et al., 2003).

4.1.4 Targeting OSC
Oxide squalene cyclase (OSC) is the enzyme that catalyzes the

conversion of a 2,3-monoepoxy squalene to a lanosterol. Since
lanosterol is a precursor to cholesterol, inhibition of OSC leads
to reduced cholesterol synthesis, experimental evidence has
demonstrated anti-antitumor effects of OSC inhibitors in human
glioblastoma and brain-derived endothelial cells and enhanced
antitumor effects in combination with statins (Staedler et al.,
2012). Ro 48–8071, an OSC inhibitor, shows anti-tumor effect
(Maione et al., 2015), and more importantly, it synergizes with 5-
fluorouracil, thus eliciting an enhanced anti-tumor outcome.

4.2 Targeting cholesterol uptake

Administration of a low-cholesterol diet or ezetimibe (an
inhibitor of NPC1L1) reduces tumor growth by reducing
cholesterol levels (Pelton et al., 2014). In addition, it has been
demonstrated that the use of leelamine (a lysosomotropic
compound, intercellular cholesterol transport inhibitor)
suppresses autophagic flux and induces cholesterol accumulation
in lysosomal/endosomal cell compartments, disrupts lysosomal cell
compartments, and induces cancer cell death (Kuzu et al., 2014).
High dietary cholesterol can bypass the need to enhance endogenous
cholesterol synthesis, thus accelerate the development of liver
cancer. Moreover, major cholesterol metabolites, such as 27HC,
25HC, 22HC, and 6-oxocholsterol-3β, 5α-diol, can promote
tumorigenesis (Nelson, 2018; Riscal et al., 2019). Furthermore, to
maintain systemic cholesterol homeostasis and reduce ATP
depletion of de novo cholesterol biosynthesis, some cancer cells
alter mevalonate pathway enzyme expression and deregulate
cholesterol influx/efflux genes, such as VLDLR, LDLR, SR-B1 and
ABCA1, which in turn may lead to cancer cell resistance to statins
(Riscal et al., 2019). Therefore, combining a low cholesterol diet or
the use of cholesterol absorption inhibitors (such as ezetimibe) with
anticancer drugs may be a promising strategy for clinical treatment
of tumors.

Vytorin®, a combination drug which contains ezetimibe (10 mg)
and simvastatin (40 mg), was used in an early phase I study to
determine whether cholesterol-lowering therapy could slow the
growth of prostate cancer (NCT02534376). The result shows that
Ki-67 staining decreased in normal prostate tissue and low-grade
prostate cancers and there was no significant change in Ki-67
staining in high-grade prostate cancers. This suggests that
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cholesterol-lowering therapy may decrease growth in both benign
prostate that produces voiding symptoms in older men and low-
grade prostate cancer (Wang et al., 2022). An ongoing Phase I trial
will evaluate a PCSK9-inhibitors (evolocumab) in combination with
atorvastatin and ezetimibe in patients with metastatic pancreatic
cancer undergoing standard chemotherapy (NCT04862260).

4.3 Targeting cholesterol efflux

Synthetic bette agonists (including fenofibrate) have been used
as lipid-lowering therapeutic agents. In addition to the lipid-
lowering effects, drugs targeting PPARα also have therapeutic
effects in cancer. In fact, Luo et al. (2019) found that intestinal
depletion of PPARα promotes colon carcinogenesis by increasing
DNMT1-mediated p21 methylation and PRMT6-mediated
methylation of p27. While using fenofibrate activated PPAR and
inhibited colon carcinogenesis (Luo et al., 2019). It has been shown
that fenofibrate inhibition of cell proliferation simultaneously
suppresses the expression of key enzymes in fatty acid
metabolism and induces human hepatoma Hep3B cells apoptosis
(You et al., 2019). In addition, it has been demonstrated that
fenofibrate has anti-cancer effects in endometrial cancer, prostate
cancer, triple negative breast cancer, oral cancer and pancreatic
cancer (Sun et al., 2019; Chen L et al., 2020). Chen L et al. (2020)
demonstrated that fenofibrate could induce mitochondrial
reprogramming through activation of the AMPK pathway and
inhibition of the HK2 pathway, inhibiting gastric cancer cell
proliferation and promoting apoptotic through the PPARα
pathway. Therefore, targeting PPARα may be an effective cancer
treatment and has been tested in clinical trials. When “fenofibrate/
bezafibrate | cancer” are taken as the search term, 18 clinical trials
have been found on ClinicalTrial.gov, including a phase I study,
6 phase II studies, 5 phase III studies from 2006 to 2023 (Table 3).

A phase II trial of a multi-agent oral antiangiogenic regimen in
children with recurrent or progressive cancer had been carried out in
2006 (NCT00357500). “5-drug” regimen, including celecoxib,
cyclophosphamide, etoposide, thalidomide, and fenofibrate, was
evaluated in patients with eight diseases. Of 97 patients,
24 patients completed 27 weeks of therapy without progression.
As a result, the combination of drugs had shown clinical benefits in
patients with low-grade glioma and ependymoma (Robison et al.,
2014). And the mitochondrial inhibitory function of fenofibrate was

tested in a clinical phase II study in patients with multiple myeloma
(NCT01965834).

Of the three included studies, one trial on fenofibrate had results
and suggested a positive clinical oncology effect. For now, there are
fewer clinical trials of fibrates for oncology treatment. More clinical
studies can be conducted to confirm the effectiveness of fibrates in
the future.

4.4 Targeting cholesterol storage

High expression of ACAT1 is related to cell proliferation rates,
tumor formation and metastasis, and cell resistance (Giacomini
et al., 2021). Indeed, treatment of breast cancer cells with ACAT-1
inhibitors resulted in reduced cell proliferation and migration and
reduced tumor growth through regulation of cholesterol metabolism
(Antalis et al., 2010; Shim et al., 2018). Avasimin, a systemically
injectable nanoformulation containing the ACAT-1 inhibitor
avasimibe has been developed, which has been used in clinical
trials for the treatment of atherosclerosis and shows good human
safety (Pal et al., 2013; Lee et al., 2015). The formulation was tested in
different human cancer cell lines showing that avasimin reduces
lipid droplet accumulation in prostate cancer cells and reduces
cellular activity in a variety of tumor cell lines (Lee et al., 2015).
ACAT-1 was overexpressed in MIA PaCa-2 human pancreatic
cancer cells compared to normal cells, and treatment of cells
with avasimibe or knockdown of the ACAT-1 gene results in a
block of cholesterol esterification, and a decrease in cell invasion and
migration. This may be because ACAT-1 inhibition impairs Wnt/β-
catenin signaling, thereby overcoming cancer cell metastasis (Lee
et al., 2018). The combination of gemcitabine and avasimbe showed
synergistic effects in vitro and may overcome gemcitabine resistance
for pancreatic ductal adenocarcinoma treatment (Li et al., 2018).

4.5 Targeting cholesterol regulation

4.5.1 Targeting SREBP
Fatostatin, a specific inhibitor binds the SREBP-cleavage

activating protein (SCAP) to block cholesterol biosynthesis, is
able to inhibit tumor growth in vivo in a mouse prostate cancer
experiment (Li et al., 2014). In endometrial cancer, Fatostatin
reduces cancer cell viability and tumor growth in xenografted

TABLE 3 Clinical trials of fibrate in cancer.

Drug Cancer type Phase Combined drug

Fenofibrate Central Nervous System Tumor, Pediatric II Celecoxib Cyclophosphamide Etoposide Thalidomide Robison et al. (2014)

Leukemia

Lymphoma

Neuroblastoma

Sarcoma

Multiple Myeloma II -

Bezafibrate Myelodysplastic Syndromes (MDS) II Sodium Valproate Medroxyprogesterone
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mice and improves their survival rate (Gao et al., 2018). It has also
been demonstrated that Fatostatin inhibit the growth and
proliferation of human endometrial cancer cells, alter its cell
cycle and induce apoptotic (Yao et al., 2020). Furthermore,
Fatostatin can induce ER degradation by polyubiquitination of
K48 junctions, a key mechanism for tamoxifen to inhibit PI3K-
AKT-mTOR signaling in breast cancer, and has a synergistic effect
with tamoxifen in reducing cell proliferation in vitro and in vivo
tumor growth in breast cancer, indicating that Fatostatin may have
promising clinical use for ER-positive breast cancer patients (Liu
et al., 2020). In addition, the combination of Fatostatin and
docetaxel resulted in greater proliferation inhibition and
apoptosis induction compared with single agent treatment in PCa
cells in vitro an,d in vivo, especially those with mutant p53s (Li et al.,
2015). Of note, dipyridamole was also shown to inhibit the cleavage
of SREBP2. The statin–dipyridamole combination was synergistic
and induced apoptosis in multiple myeloma and AML cell lines and
primary patient samples, whereas normal peripheral blood
mononuclear cells were not affected (Pandyra et al., 2014).

4.5.2 Targeting RORγ
The RORγwas identified as an important driver of the cholesterol

biosynthesis program. RORγ inhibition would counteract the statin-
induced SREBP2-dependent feedback regulation and reduce the
tumor cholesterol biosynthesis rate without affecting the host
cholesterol homeostasis (Cai et al., 2019). Indeed, ROR inhibitors
cooperate with statins to kill TNBC (triple-negative breast cancer)
cells, and in addition, ROR-selective antagonists are very effective
manifested by leading tumor regression and blocking metastasis in
multiple TNBC models (Cai et al., 2019).

4.5.3 Targeting LXR
LXR can be activated by endogenous ligands, such as oxysterol or

by agonists. In MCF-7 breast cancer cells, treatment with two LXR
agonists (TO901317 and 22 (R) -hydroxycholesterol) can inhibit
MCF-7 cells proliferation and induce their apoptosis (El Roz et al.,
2012). In prostate cancer, the AKT survival pathway was
downregulated by treatment with the LXR agonist T0901317,
thereby inducing the apoptotic of LNCaP PCa cells in xenograft
nude mice and cell cultures (Pommier et al., 2010). Furthermore, it
has been demonstrated that the combination treatment of
T0901317 and anticancer drug gefitinib exhibits synergistic effects
in lung cancer models, inhibiting lung cancer migration and invasion
in vivo and in vitro, which may be through inhibition of ERK/MAPK
signaling pathway (Lou et al., 2019). In hematopoietic malignancies,
the agonists of LXR (T0901317, GW3965 and DDA) can induce
apoptosis or lethal autophagy in leukemic cells (Brendolan and Russo,
2022). The treatment of primary acute myeloid leukemia (AML)
samples with dendrogenin A (DDA), a modulator of LXR, that is, a
partial LXR agonist, induces lethal autophagy in vitro and in vivo (de
Medina et al., 2021; Brendolan and Russo, 2022). Meanwhile,
exogenous 27-Hydroxycholesterol induces apoptosis in leukemic
cells (HL60, KG1α, and K562 cells) through the accumulation of
reactive oxygen species (ROS) (Woo et al., 2022). In addition, because
LXR is a transcription factor towards to different targets including
genes associated with glycolysis and lipogenesis, targeting this
receptor may be a promising approach for cancer therapy.
Interestingly, a reverse agonist SR9243 was designed, and

SR9243 inhibits LXR activation by enhancing LXR-corepressor
recruitment (Flaveny et al., 2015). It has been demonstrated that
SR9243 can induce apoptosis in leukemic cells. In contrast, as was
previously described, the activation of LXR by different agonists has
also been shown to reduce cancer cell survival by promoting
cholesterol efflux, especially in glioblastoma (Villa et al., 2016).

Very recently, the latest trial was just posted on Clinicaltrials
(ClinicalTrials.gov) on 23 January 2023 which is initiated in 2016
(ClinicalTrials.gov Identifier: NCT02922764). This is a phase I, dose
escalation and expansion study of RGX-104, an oral small molecule
targeting the LXR. By depleting both myeloid-derived suppressor
cells (MDSCs) and tumor blood vessels, it exerts its anti-tumor
activity (Tavazoie et al., 2018). This trial will evaluate single agents or
combinations in patients with advanced solid tumors and
lymphomas. Combinations include nivolumab, ipilimumab,
docetaxel, or pembrolizumab plus carboplatin/pemetrexed. In the
expansion stage, the study will provide further characterization of
the safety, efficacy, PK, and pharmacodynamics. Immunological
activity and biomarkers of LXR target activation will also be
evaluated.

The statins, as well as ezetimibe and fibrates mentioned in the
above clinical trials, are all approved in the blood cholesterol
guideline, which demonstrate their safety and feasibility for
oncology treatment (Grundy et al., 2019). In the last 3 years,
there were 29 ongoing phase II or III clinical trials for oncology
treatment with statins alone or in combination with other drugs,
13 of which were first posted in these 3 years. Other targeted drugs
related to cholesterol metabolism are also gaining attention. These
trials focus on the prevention of cholesterol metabolism-related
drugs in patients at high risk for cancer, the treatment of further
disease progression, and the prevention of recurrence in cancer
patients, and are primarily focused on breast, prostate, small cell
lung, intestinal and uterine cancers. Furthermore, other trials
focusing on the prevention and treatment of side effects of
chemotherapy and radiotherapy for tumors, such as heart failure,
hearing loss (Fernandez et al., 2021), and metabolic syndrome,
which are not selected for analysis but show the promise of this
class of drugs in oncology treatment.

5 Conclusion and perspectives

Cholesterol is one of the important nutrients for normal
physiological function, the latest Dietary Guidelines for
Americans and Chinese removed the restriction for dietary
cholesterol. However, we should think calmly about dietary
cholesterol and health. Restricted dietary cholesterol intake in
people at high risk of cardiovascular disease is recommended in
many guidelines. In addition, dietary cholesterol is just one aspect of
a healthy diet. Population health is closely related to the overall
dietary pattern. We should not only pay attention to a separate
aspect of the food, but also consider the interactive effects of multiple
foods. Besides, Current dietary guidelines limit saturated fatty acids
to 10% of total energy, and dietary cholesterol intake is generally not
too high if people meet this requirement.

Cholesterol is normally linked to cardiovascular diseases.
Recently, there has been extensive evidence demonstrating that
cardiovascular disease and cancer are intertwined. Firstly,
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cardiovascular disease and cancer share several common risk factors,
including diabetes, dyslipidemia, cachexia, and an impaired immune
response. Secondly, Anticancer therapies can induce CVD via
several mechanisms, including direct cardiotoxicity, effects on the
vasculature, and perturbations to cardiovascular and immune
homeostasis (Curigliano et al., 2012; Karlstaedt et al., 2022).
Thirdly, patients with cardiovascular disease have higher cancer
risk compared with individuals from the general population (a
concept referred to as reverse cardio-oncology) (Aboumsallem
et al., 2020; Karlstaedt et al., 2022; Koelwyn et al., 2022).

In this review, it is evident that cholesterol metabolism is critical
for cancer progression and targeted drugs including statins and
fibrates are widely used in clinical trials (Huang et al., 2020; Xu et al.,
2020). However, there are still a number of outstanding questions in
the field need to be further addressed. Firstly, in cholesterol
metabolism targeted therapy, the maintenance of cholesterol
homeostasis is more important than just lowers the level of
cholesterol. Secondly, the accurate metabolic subtypes of cancers
should be established for better applying metabolic therapy. Thirdly,
it is not so clear that the effect of cholesterol metabolism on immune
microenvironment which also plays the key roles upon tumor
therapy. So far, the efficacy of targeted cholesterol metabolism
therapy largely depends on cancer types and all targeted drugs
are not used as first-line drugs but used in combination with other
therapy. Besides directly targeting cholesterol metabolism, bile acid,
the main product of cholesterol transformation, directly affects the
intestinal microflora, and the microecology is closely related to the
occurrence and prognosis of cancers. Therefore, we should also
focus on the microecology of intestinal microflora while detecting
cholesterol levels inside and outside tumor cells. Nevertheless, all
these progressions from bench to bed make targeting cholesterol
metabolism therapy a fascinating field to work in, and targeted
therapy which is more effectively, safely, precisely and
comprehensively should be further investigated.
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