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Introduction: In causal inference, the correct formulation of the scientific
question of interest is a crucial step. The purpose of this study was to apply
causal inference principles to external control analysis using observational data
and illustrate the process to define the estimand attributes.

Methods: This study compared long-term survival outcomes of a pooled set of
three previously reported randomized phase 3 trials studying patients with
metastatic non-small cell lung cancer receiving front-line chemotherapy and
similar patients treated with front-line chemotherapy as part of routine clinical
care. Causal inference frameworks were applied to define the estimand aligned
with the research question and select the estimator to estimate the estimand
of interest.

Results: The estimand attributes of the ideal trial were defined using the estimand
framework. The target trial framework was used to address specific issues in
defining the estimand attributes using observational data from a nationwide
electronic health record-derived de-identified database. The two frameworks
combined allow to clearly define the estimand and the aligned estimator while
accounting for key baseline confounders, index date, and receipt of subsequent
therapies. The hazard ratio estimate (point estimate with 95% confidence interval)
comparing the randomized clinical trial pooled control arm with the external
control was close to 1, which is indicative of similar survival between the
two arms.

Discussion: The proposed combined framework provides clarity on the causal
contrast of interest and the estimator to adopt, and thus facilitates design and
interpretation of the analyses.

KEYWORDS

causal inference, estimand framework, target trial emulation framework, external
control, oncology, real-world data

OPEN ACCESS

EDITED BY

Dalia M. Dawoud,
National Institute for Health and Care
Excellence, United Kingdom

REVIEWED BY

Michelle Casey,
Pfizer, United States
Enrico Capobianco,
Jackson Laboratory, United States

*CORRESPONDENCE

Letizia Polito,
letizia.polito@roche.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 16 May 2023
ACCEPTED 11 January 2024
PUBLISHED 26 January 2024

CITATION

Polito L, Liang Q, Pal N, Mpofu P, Sawas A,
Humblet O, Rufibach K and Heinzmann D
(2024), Applying the estimand and target trial
frameworks to external control analyses using
observational data: a case study in the solid
tumor setting.
Front. Pharmacol. 15:1223858.
doi: 10.3389/fphar.2024.1223858

COPYRIGHT

© 2024 Polito, Liang, Pal, Mpofu, Sawas,
Humblet, Rufibach and Heinzmann. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 26 January 2024
DOI 10.3389/fphar.2024.1223858

https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1223858&domain=pdf&date_stamp=2024-01-26
mailto:letizia.polito@roche.com
mailto:letizia.polito@roche.com
https://doi.org/10.3389/fphar.2024.1223858
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1223858


1 Introduction

Several causal inference frameworks, including the estimand
framework (EF), target trial emulation framework (TTF), and PICO
framework, exist to help define a precise scientific question for
comparative assessments in clinical research and development
(Goetghebeur et al., 2020). There are overlapping but
complementary elements in these frameworks, suggesting the
potential for a combined application; however, this presents
challenges to investigators as there are limited practical examples
and guidance for the combined application of the frameworks.

The EF has increasingly been adopted by health authorities and
pharmaceutical companies since its initial publication in August 2017
(Food and Drug Administration, 2021). The EF enables researchers to
specify a precise scientific question by using five attributes that define
the estimand (i.e., the treatment effect of interest or the “what to
estimate”). These five interrelated attributes are population, treatment,
variable of interest (endpoint), intercurrent event handling, and the
summary measure. An intercurrent event is an event occurring after
treatment initiation that affects either the interpretation or the
existence of the measurements associated with the endpoint. For
example, if performing a comparative assessment on overall survival
(OS) between two different treatments, candidates for intercurrent
events include, among others, early discontinuation of treatment or
treatment switching after disease progression. In general, the
definition of the estimand comes first and is derived from the
scientific objective of the trial or study. Together with
considerations about missing data, the framework then informs the
choice of the estimator. The addendum acknowledges that usually an
iterative process will be necessary to reach an estimand that is
clinically relevant for decision making and for which a reliable
estimate can be computed. If it is not possible to develop an
appropriate trial design or to derive an adequately reliable estimate
for a particular estimand, an alternative estimand, trial design, or
method of analysis may need to be considered. However, practical
examples in the literature describing such an iterative process to
redefine an initial target estimand, while also considering aspects of
identifiability (and hence the estimator) are limited.While the focus of
the ICH E9 addendum is on randomized clinical trials (RCTs), the
principles are also applicable whenever estimating a treatment effect
(i.e., non-randomized studies). However, estimation of a causal effect
from observational data, compared to RCT data, often has additional
challenges. Namely, observational data is more often incomplete,
heterogeneous, and subject to different types of measurement
errors and biases (e.g., selection bias, bias due to baseline
confounding, and the ability to correctly define the index date for
comparison) (Liu and Panagiotakos, 2023).

The TTF is another causal framework that can be used to specify
the scientific question more precisely in a comparative assessment
(Hernán and Robins, 2016). TTF complements the EF by addressing
gaps related to the analysis of observational data and applies design
principles of an RCT to the specific setting of a non-randomized
comparative assessment (Hernán et al., 2008; Cain et al., 2016;
Hernán and Robins, 2016; Petito et al., 2020). TTF entails defining a
hypothetical randomized trial to address a precise scientific question
and then further specifying how it can be emulated
(i.e., approximated) by non-randomized data. The essential
components of a target trial protocol are eligibility criteria,

treatment strategies, treatment assignment, start/end of follow-up,
outcomes, causal contrasts, and the analysis approach (estimator)
(Hernán and Robins, 2016). The framework can also be utilized
when a combination of clinical trial and observational data are used,
for example, to contextualize a single-arm clinical trial with
observational data (Thomas et al., 2021). Combining the EF and
the TTF provides a structured approach to enhance the scientific
rigor for causal inference for observational and/or non-randomized
data. Together they bring more transparency to the causal estimand,
which supports specifying the attributes of the estimand and the
assumptions made to draw causal conclusions.

Another framework that aims to define the precise scientific
question includes the PICO framework (Schardt et al., 2007),
traditionally used in epidemiology for observational studies. The
EF and TTF extend the PICO framework, with the former adding
intercurrent events and ensuring that the population-level summary
measure is made explicit, and the latter adding the causal contrast,
assignment procedures, and the start/end of follow-up. By explicitly
calling out these key elements, the treatment effect can be
adequately defined.

An important goal in pharmacoepidemiology is to assess
whether observational data (including electronic health record
[EHR]-derived data) can emulate (and thus supplement or
replace, e.g., for regulatory decision-making) the control arm of a
RCT, while acknowledging that there are differences between
clinical trial and routine clinical settings, at baseline and post-
baseline, that may have an impact on the outcome independently
from the treatment received. In this study we jointly apply the EF
and TTF to perform a comparative effectiveness assessment in
patients with non-small cell lung cancer (NSCLC) using data
from a set of pooled control arms of three RCTs as well as EHR-
derived de-identified observational data (West et al., 2019; Jotte
et al., 2020; Nishio et al., 2021). The objective of our case study was to
determine whether there is a difference in OS between patients with
metastatic NSCLC receiving front-line chemotherapy in pivotal
trials versus patients with metastatic NSCLC who received front-
line chemotherapy as part of routine care, had patients not received a
subsequent therapy. This case study aims to illustrate the application
of the EF to observational data, and the benefits of complementing
the EF with the TTF to account for specific challenges in
observational data that are not directly addressed by the EF (and
vice versa, as the handling of intercurrent events is not explicitly
addressed in the TTF). The iterative process (as indicated in the EF)
to arrive at the final scientific question is illustrated in the Methods
section. In sum, the present study provides insights into where the
two frameworks are complementary and provides a practical
example of their joint application.

2 Materials and methods

2.1 Applying the frameworks to the
research question

Before discussing details of the joint application of the EF and
TTF to define the final scientific question, we want to provide
insights and stepwise practical guidance on the iterative process
outlined in the EF to arrive at the final question:
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TABLE 1 EF/TTF attributes based on the scientific research question.

Scientific research question

Would there be a difference in OS between patients with metastatic NSCLC receiving front-line chemotherapy (control
arms) in IMpower trials (130, 131 and 132) vs. patients with metastatic NSCLC who received front-line chemotherapy as
part of routine care, had patients not received a subsequent therapy?

EF/TTF Attributes Target trial Emulation of the target trial Assumptions

Target population/
Eligibility criteria

Metastatic squamous and non-squamous
NSCLC patients, 18 years of age or older, with
ECOG PS 0,1 and with adequate
hematological and end-organ function. The
population is defined through the common I/
E criteria of IMpower130, 131 and 132
(limited to those criteria applicable
retrospectively to observational data). To
align the I/E criteria of the 3 trials, and to
reflect the targeted population treated with 1L
chemotherapy, patients with a sensitizing
mutation in the EGFR gene or an ALK fusion
oncogene were excluded

Same as the target trial for the RCT arm, with
some assumptions for the OC arm

Observational data does not perfectly emulate
the trial I/E criteria. We attempt to define the
study cohort that best approximates the target
population by including additional rules

• Time window for the eligibility assessment
(ECOG PS, lab values, biomarker)

• How to handle missing values (ECOG PS, lab
values, biomarker)

○ Excluding patients with missing value may
introduce selection bias

• Rules to account for difference between trial
structured visits and routine clinical care

○ E.g., Patients with structured activity
within 90 days of advanced diagnosis

Treatment/Treatment
strategies

The investigational arm (pooled trial control
arms) and the OC arm received the following
chemotherapies

Same as the target trial with some assumptions
for both arms

Assumption on treatment:
• For this study we assume equivalence of
nab-paclitaxel and paclitaxel. However,
the two molecules are known to have
different safety profiles. The decision to
include paclitaxel was to limit treatment
assignment bias since nab-paclitaxel is not
the standard of care in the real world while
it was adopted in IMpower trials

Patients with non-squamous NSCLC

-Pemetrexed + cisplatin/carboplatin

-nab-paclitaxel/paclitaxel + carboplatin*

Patients with squamous NSCLC

-nab-paclitaxel/paclitaxel + carboplatin*

The investigational arm received care
according to the trial protocol, whereas the
comparator arm received care according to
routine clinical practice

Endpoint/Outcomes OS Same as the target trial None. The validity of the rwOS from Flatiron
Health has been demonstrated (Zhang et al.,
2021) against clinical trial OS as the gold
standard to capture death occurrence. For this
reason, in this study we refer to OS and not to
rwOS for routine clinical practice

Intercurrent events (IE)
and strategy/Causal
contrast

IE: Receipt of any subsequent cancer therapy Same as the target trial None

Strategy: hypothetical

Causal contrast: Per-protocol effect of
adhering to treatment after initiation. Receipt
of any subsequent cancer therapy is a
deviation from the study protocol.

Population-level
summary/analysis plan

HR with 95% CI Same as the target trial None

Assignment procedures Participants were randomly assigned to one of
the two treatment settings

Randomization is emulated by weighting
observations for the inverse probability of
treatment setting assignment following some
assumptions

Clinical assumptions

Treatment setting assignment was assumed to
be conditional on the following baseline
covariates

• Age, gender, race, metastatic tumor type
(de novo Stage IV/recurrent disease), time
from initial diagnosis to index date,

(Continued on following page)
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Step 1: determine the comparison of interest.

Step 2: develop the scientific question.

Step 3: discuss the implications of estimating the estimand aligned
with the scientific question, thinking in terms of estimand attributes,
including potential intercurrent events and the consequences of
different strategies used to handle them.

Step 4: refine the scientific question if needed and iterate Steps
3–4 until the question is clear enough to leave no ambiguity about
the estimand.

Applying these steps, we were interested in comparing the
treatment effect of the same front-line treatment given in a
clinical trial versus in the clinical practice when subsequent
treatments would be similar. We started with the scientific

question: “Is there a difference in OS between patients with
metastatic NSCLC receiving front-line chemotherapy in pivotal
trials versus patients with metastatic NSCLC who received front-
line chemotherapy as part of routine care?” EHR-derived
observational data from routine clinical practice suggests a larger
heterogeneity in subsequent second-line cancer treatments as
compared to the clinical trial setting (Signorovitch et al., 2022).
This difference in the range of potential subsequent therapies may
introduce complexities in estimating causal treatment effects for
longer-term outcomes such as OS and ultimately complicate
interpretations. Therefore, the initial research question has been
iterated to: “Is there a difference in OS between patients with
metastatic NSCLC receiving front-line chemotherapy in pivotal
trials versus patients with metastatic NSCLC who received front-
line chemotherapy as part of routine care, had patients not received a
subsequent therapy?” Hence, instead of considering the entire

TABLE 1 (Continued) EF/TTF attributes based on the scientific research question.

Scientific research question

Would there be a difference in OS between patients with metastatic NSCLC receiving front-line chemotherapy (control
arms) in IMpower trials (130, 131 and 132) vs. patients with metastatic NSCLC who received front-line chemotherapy as
part of routine care, had patients not received a subsequent therapy?

EF/TTF Attributes Target trial Emulation of the target trial Assumptions

smoking history, histology, and treatment
type

Statistical assumptions

Statistical assumptions include consistency,
conditional exchangeability, positivity and
correct model specification. These are explained
in the text

Start/end follow-up Start of follow-up occurs at the time when the
treatment is assigned (i.e., when eligibility is
met)
End of follow-up is reported in
Supplementary Table 1

Same as target trial. To emulate the start of
follow up for the OC arm, some assumptions
are needed. To emulate the end of follow up
we truncated the follow-up time at Month
21 because there were few patients remaining
in the RCT arm after Month 21

For the OC arm, the actual start of follow-up
occurs at the time when the treatment is
initiated (dose 1 cycle 1)

The risk of comparing different time zero is to
introduce immortal time bias. This cannot be
quantified. The primary estimate is unbiased if
the following assumptions are met.

Assumptions in the OC

• There are no reasons for a patient to not
initiate treatment other than death once
assigned to treatment

• Death is unlikely to have occurred in
between assignment and start of
treatment because we assume

○ The time between assignment and start of
therapy is short

○mNSCLC is a disease with no rapid course
in first line

No assumption for RCT. We verified that

• All patients assigned to treatment started
treatment

• Median time between assignment and
start of therapy was 2 days

Notes: 1L, first-line therapy; ALK, anaplastic lymphoma kinase; CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; I/E, inclusion and exclusion; mNSCLC,

metastatic non-small cell lung cancer; NSCLC, non-small cell lung cancer; OC, observational comparator; OS, overall survival; RCT, randomized clinical trials; rwOS, real-world overall survival.
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treatment strategy (front-line and subsequent therapy) which is
complicated by heterogeneity in subsequent therapies among
clinical trial and clinical practice settings, the iteration resulted in
the scientific question of treatment effect of the front-line regimens.

Now we focus on jointly applying the EF and TTF to the final
scientific question. Table 1 displays the EF/TTF attributes that define
the estimand aligned with the scientific research question. We define
the hypothetical target trial structured according to the EF and the
study that attempts to emulate it, leveraging elements from the EF
and TTF. The average treatment effect on the treated (ATT) is the
estimand of primary interest. This is the treatment effect difference
of using front-line chemotherapy in a clinical trial versus in clinical
practice, where the target population is defined by the population of
the three clinical trials.

2.2 Data source

2.2.1 Clinical trial data
Individual patient-level data (IPD) were used from Roche-

sponsored phase III, open-label randomized clinical trials
IMpower130 (ClinicalTrials.gov identifier: NCT02367781), 131
(ClinicalTrials.gov identifier: NCT02367794), and 132
(ClinicalTrials.gov identifier: NCT02657434). Methods and
primary findings have been previously reported (West et al.,
2019; Jotte et al., 2020; Nishio et al., 2021). These three trials
included patients who were chemotherapy-naive and had stage
IV NSCLC. OS was the primary endpoint for the three trials. To
address the objective of the present study, only the IPD from the
control arms were used. The control arms received platinum-based
chemotherapy as follows:

• IMpower130 included patients with non-squamous NSCLC
treated with carboplatin plus nab-paclitaxel

• IMpower131 included patients with squamous NSCLC treated
with carboplatin plus nab-paclitaxel

• IMpower132 included patients with non-squamous NSCLC
treated with carboplatin or cisplatin plus pemetrexed

As these three clinical trial control arms had similar settings in
terms of disease, therapy, and inclusion/exclusion criteria and had
similar survival outcomes such as median survival time
(Supplementary Figure S1), they were pooled together to increase
the sample size and are collectively referred to as the RCT arm in
this study.

2.2.2 Observational data
The observational comparator (OC) arm of this study was

developed using the nationwide (US-based) Flatiron Health
EHR-derived de-identified database. This longitudinal database
is comprised of patient-level structured (e.g., laboratory values
and prescribed treatments) and unstructured data (e.g.,
biomarker reports) curated from technology-enabled chart
abstraction from physicians’ notes and other documents
(Birnbaum et al., 2020; Ma et al., 2020). During the study
period, the de-identified data originated from approximately
280 cancer clinics (approximately 800 sites of care, primarily
community-based cancer centers). The studies involving human

participants were reviewed and approved by the IRB of WCG IRB
and included a waiver of informed consent.

2.3 Cohort selection/study sample

The OC cohort was selected to align, as closely as possible, to the
eligibility (inclusion/exclusion) criteria of the three clinical trials,
which reflected the eligibility criteria of the target trial (Table 1 and
Supplementary Table S2). This deliberate selection allowed us to
define a pooled sample of one common target population. To be
eligible for entry into the de-identified database, the patient’s EHR
must include >1 visit to a community oncology clinic and have
confirmation of an advanced NSCLC diagnosis and histological
subtype (squamous vs. non-squamous histology) through a review
of unstructured data (i.e., clinical notes, radiology reports, or
pathology reports). A front-line therapy start date for advanced
or metastatic NSCLC on or after 16 April 2015, and on or before
31 May 2017, to match the clinical trials’ start and end dates of
enrollment was also required. Patients with an Eastern Cooperative
Oncology Group performance status (ECOG PS) of 0, 1, or
unknown were included. Patients had to have received at least
one administration of the regimens of interest (i.e., carboplatin
plus paclitaxel/nab-paclitaxel, carboplatin, or cisplatin plus
pemetrexed). Patients who had potentially incomplete historical
treatment data (i.e., >90-day gap between advanced diagnosis
and structured activity in the EHR), therapy within 6 months
before the start of front-line therapy for advanced-stage disease,
receipt of a clinical study drug, or multiple primary tumors were
excluded. Patients with missing information or known to have a
sensitizingmutation in the epidermal growth factor receptor (EGFR)
gene or anaplastic lymphoma kinase (ALK) fusion oncogene were
excluded. All patients were followed until 18 July 2019. Detailed
inclusion/exclusion criteria were included in
Supplementary Table S2.

2.4 Statistical analyses

We applied the following estimation approach to target the ATT
estimand with attributes as specified in Table 1. First, the inverse
probability of treatment weighting (IPTW) method was used to
balance baseline patient characteristics between the RCT arm and
the OC arm. A multiple logistic regression model was used to
estimate propensity scores (PS) that are defined as probabilities
of being assigned to the RCT arm conditional on all confounders
that were selected based on clinical experts’ knowledge and
availability of the relevant variables. Because we target the ATT
as described above, patients from clinical trials were given a weight
of one. In contrast, patients’ weights from the OC cohort were
defined as the ratio of the estimated PS to one minus the estimated
PS (i.e., odds of being treated in the clinical setting). We refer to
these weights as IPTW-ATT weights. Before and after IPTW-ATT
weighting, differences in baseline characteristics were assessed
through standardized mean and proportion differences (SMD)
(Table 2; Figure 1). Patient characteristics were considered
statistically different if SMD ≥0.10 (Austin and Stuart, 2015). In
addition, we examined the propensity score distribution to ensure a
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reasonable overlap between the two cohorts. The weighted
population was used in the subsequent analyses.

Secondly, the inverse probability of censoring weighting (IPCW)
method was used to handle informative censoring introduced by
censoring patients upon the occurrence of the intercurrent event of
interest, i.e., receipt of any subsequent cancer therapy, as per the
hypothetical strategy of handling intercurrent events (Table 1). We
artificially censored patients at the time of receipt of first second-line
treatment and used the IPCW method to estimate weights for the
follow-up information for the remaining patients using both
baseline and time-varying variables, which are likely to impact
treatment switching based on clinical experts’ knowledge to
adjust for any potential confounding created by the artificial
censoring. Specifically, we fit a Cox model for each arm that was
used to estimate the probability of not being censored by time (t)
given baseline and time-varying covariates (listed in Table 2) for the
specific group. The IPCWweights are calculated as the inverse of the
conditional probability of not being censored. We truncated the
follow-up time at Month 21 because there were few patients
remaining in the RCT arm after Month 21 and thus, the
positivity assumption was unlikely to hold. This approach was
adopted to emulate the end of follow-up of the target trial
(Table 1). Then, to reduce variance of the weighted estimator, we

calculated the stabilized IPCW weight (Austin and Stuart, 2015),
which is the probability of not being censored conditional on
selected baseline covariates, divided by the probability of not
being censored, conditional on both baseline and time-varying
covariates. The mean, standard deviation, minimum, and
maximum estimated weights were used to inspect the robustness
of the estimator. Estimated weights with the mean far from one—or
very extreme values—are indicative of non-positivity or
misspecification of the weight model (Hernán and Robins, 2006).

The treatment effects were estimated using weighted survival
analysis methods. Hazard ratio (HR) and 95% CI were adopted for
the population-level summary (Table 1). Specifically, we estimated
the HR, using an IPTW-ATT-IPCW weighted Cox proportional
hazard model and the 95% CI for the HR using the bootstrap
approach (Schaubel and Wei, 2011). We also used the IPTW-ATT-
IPCW weighted Kaplan-Meier method to compute OS function
estimates and weighted log-rank test to compare across groups.
Hence, the double weighting estimation approach targets the ATT
estimand with attributes of the EF and TTF as specified in Table 1.

Missing values for covariates with a missing rate less than 30%
were imputed using median (for age and time from initial diagnosis
to index date) or mode (smoking history). Covariates with more
than 30% of values missing (i.e., ECOG PS) were not imputed and

TABLE 2 Baseline characteristics.

Variable Categories RCT arm, N = 849 OC arm, N = 3340 SMD

Age group (years), n (%) <65 435 (51.2) 1222 (36.6) 0.42

≥65 and <75 322 (37.9) 1268 (38.0)

≥75 92 (10.8) 850 (25.4)

Gender, n (%) Female 248 (29.2) 1457 (43.6) 0.30

Race, n (%) Asian 105 (12.4) 46 (1.4) 0.75

White 699 (82.3) 2373 (71.0)

Other 45 (5.3) 921 (27.6)

ECOG PS, n (%) 0 314 (37.0) 714 (21.4) 0.05a

1 532 (62.7) 1179 (35.3)

Unknown 2 (0.2) 1447 (43.3)

Tumor diagnosis type, n (%) De novo Stage IV 706 (83.2) 2118 (63.4) 0.46

Recurrent disease 143 (16.8) 1221 (36.6)

Smoking history, n (%) No 69 (8.1) 257 (7.7) 0.02

Yes 780 (91.9) 3070 (91.9)

Unknown 0 (0.0) 13 (0.4)

Histology, n (%) Non-squamous 509 (60.0) 2278 (68.2) 0.17

Squamous 340 (40.0) 1062 (31.8)

Time from initial diagnosis to index date (months), median [IQR] 1.41 [0.92, 2.89] 1.25 [0.79, 2.27] 0.15

Treatment, n (%) Carboplatin + Pacli/Nab-pacli 568 (66.9) 1877 (56.2) 0.22

Platinum + Pemetrexed 281 (33.1) 1463 (43.8)

Notes: ECOG PS, eastern cooperative group performance status; OC, observational comparator; RCT, randomized clinical trial; SMD, standardized mean and proportion differences.
aThe “unknown” category was not considered for SMD, calculation.
bECOG PS, variable was not included in the propensity score model because of the high proportion of missing values.
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excluded from the IPWmodels. We performed a sensitivity analysis
by analyzing the whole follow-up period for RCT and OC arms
instead of truncating them at Month 21. Also, to evaluate to what
extent our estimation methods remove the potential bias on OS due
to baseline confounders and intercurrent events, we performed the
traditional IPTW-only method that adjusts for baseline
characteristics but not intercurrent events in terms of Kaplan-
Meier (K-M) estimate and HR, and compared it to our proposed
method. To follow the structure of the EF, we consider this IPTW-
ATT-only estimation as a supplementary analysis because it
estimates an estimand different from our target estimand.

No formal hypothesis testing was conducted, and thus, no
statistical significance was explicitly assessed.

R (3.6.1) was used for the analyses.

3 Results

3.1 Cohort characteristics

A total of 849 patients were in the RCT arm and 3,340 patients were
in the OC arm (refer to Supplementary Table S3 for the OC cohort
attrition table). Demographic and clinical characteristics of the study
sample at baseline are presented in Table 2 (and in Supplementary
Table S4 stratified by RCT). Statistically significant differences between
the RCT and OC arms were observed in age, gender, race, ECOG PS,

FIGURE 1
Covariate balance after IPTW-ATT.

TABLE 3 Characteristics of intercurrent events.

RCT OC

Number of patients 849 3340

Median (95% CI) follow-up time, months 26.5 (19.9–28.8) 35.6 (29.4–43)

Switch to subsequent therapy (any), n (%) 449 (52.9%) 1881 (56.3%)

Median (IQR) time to switch (among patients who switched), months 6.24 (4.27–9.69) 5.45 (3.12–9.43)

Number of patients who switched prior to 6 months/Number of patients who ever switched, n (%) 207/449 (46.1) 1049/1881 (55.8)

Notes: CI, confidence interval; IQR, interquartile range; OC, observational comparator; RCT, randomized clinical trial.
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tumor diagnosis type (de novo Stage IV/recurrent disease), histology,
time from initial diagnosis to index date, and treatment type. Patients in
the OC armwere older, with a higher percentage of females, races other

than White and Asian, recurrent disease and non-squamous histology,
shorter time from initial diagnosis to index date, and less frequently
treated with carboplatin plus paclitaxel/nab-paclitaxel.

TABLE 4 Baseline and clinical characteristics among patients who switched treatment and who did not switch treatment.

Variable Category, n (%) RCT OC

Patients who
switched
treatment

Patients who did
not switch
treatment

Patients who
switched
treatment

Patients who did
not switch
treatment

N = 449 (52.9%) N = 400 (47.1%) N = 1881 (56.3%) N = 1459 (43.7%)

Age <65 227 (50.6) 207 (51.9) 708 (37.6) 514 (35.2)

65–75 179 (39.9) 143 (35.8) 717 (38.1) 551 (37.8)

≥75 43 (9.6) 49 (12.3) 456 (24.2) 394 (27.0)

Histology Non-squamous 251 (55.9) 258 (64.5) 1287 (68.4) 991 (67.9)

Squamous 198 (44.1) 142 (35.5) 594 (31.6) 468 (32.1)

Treatment Carboplatin + Pacli/Nab-pacli 287 (63.9) 281 (58.5) 1034 (55.0) 843 (57.8)

Platinum + Pemetrexed 162 (36.1) 119 (41.5) 847 (45.0) 616 (42.2)

Progression during
the follow-upa

Yes 390 (86.9) 230 (57.5) 1360 (72.3) 397 (27.2)

No 59 (13.1) 170 (42.5) 521 (27.7) 1062 (72.8)

Notes: OC, observational comparator; RCT, randomized clinical trial.
aFollow-up is up to switch or, in absence of switch until last activity before study end date (end date for the specific data source).

FIGURE 2
IPTW-ATT-IPCW weighted Kaplan-Meier curves.
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The percentage of patients who switched to subsequent
antineoplastic treatment, i.e., the intercurrent event of interest,
was higher in the OC arm compared to the RCT arm (56.3% vs.
52.9%; Table 3) during the whole follow-up period. Among patients
who switched, the median time to treatment switch was shorter in
the OC arm compared to the RCT arm (5.45 vs. 6.24 months; 55.8%
vs. 46.1% switched in the first 6 months). Differences in pre-
specified confounders for treatment switching including age,
histology, treatment type, and progression were observed.
Specifically, we saw a higher percentage of switching among
patients with progression events during the follow-up period in
both RCT and OC arms (Table 4).

3.2 Main analyses

A logistic regression model was fitted to account for imbalances
between the RCT and OC arms on baseline characteristics and
estimate the PS. Then IPTW-ATT weights were calculated using the
PS estimated from the logistic model and we excluded a small
percentage of patients (0.4%) with extreme weights (weight >10) in
the OC arm to avoid undesirable variability in estimates due to
extremely large weights (Potter and Zheng, 2015). Supplementary
Figure S2 shows the distribution of the PSs in the OC and RCT arms,
which served as the basis to compute the IPTW-ATT weights. SMDs
for patient variables were all below 0.1 after IPTW-ATT (Figure 1),

suggesting balance achieved on the selected baseline characteristics
through IPTW-ATT weighting (Austin, 2009) when trying to
emulate randomization (more detail in Table 1).

Patients were artificially censored at the time of treatment
switching (i.e., the intercurrent event of interest), then the
censoring mechanism was modeled via a Cox regression model,
and the probability of not being censored conditional on patient/
clinical characteristics that were pre-specified was estimated
(Table 4). The stabilized IPCW weights were calculated as the
ratio of the inverse of the probability of not being censored
conditional on race only and the probability of not being
censored conditional on age, race, histology, and progression.
Here, different from the traditional stabilized weights, race was
added to both the numerator and denominator to further increase
the stability of the IPCW weight (Cole and Hernán, 2008). To make
a stable estimation and reduce variability, extreme weights were
trimmed at the 99th percentile for the OC arm and the 98th
percentile for the RCT arm. The distribution of the weights after
trimming is displayed in Supplementary Table S5. The mean
stabilized weights had means close to one, a necessary condition
for correct model specification (Hernán and Robins, 2006).

After accounting for treatment setting assignment at baseline and
treatment switching using the IPTW-ATT-IPCW method, the HR
estimated from the weighted Cox model was equal to 0.94 (95% CI:
[0.77, 1.13]), which suggests comparable OS between the RCT and OC
arms. Weighted K-M estimates of survival functions overall were

FIGURE 3
IPTW-ATT-IPCW weighted Kaplan-Meier survival function estimates without truncating the follow-up time.
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comparable (Figure 2), however, there was crossing hazard between the
two arms. The two curves align well at months 7–14, while RCT
performed better at months 0–6 and worse at months 15–23. The
difference in median survival time between the two arms was small
(9.9 months with 95% CI: [8.6, 12.3] for the OC cohort versus
10.9 months with 95% CI: [9.6, 12.5] for the RCT cohort). These
results suggested that after accounting for imbalances of baseline
characteristics and removing the confounding effects of treatment
switching, patients in the OC arm had similar OS as those in
the RCT arm.

3.3 Sensitivity analyses

A sensitivity analysis was performed to analyze the entire follow-up
period (i.e., no truncation at 21months) for the RCT andOC arms. The
HR was 0.93 (95% CI: [0.77, 1.13]), which was similar to the primary
analysis results. However, there were wider confidence intervals for
K-M curves after month 21 for both the RCT and OC arms due to the
low number of events (Figure 3).

3.4 Supplemental analyses

In a supplemental analysis, we performed an IPTW-ATT-only
analysis that adjusted for baseline characteristics only by IPTW-

ATTweighting but without IPCW. This is a commonly usedmethod
in analyses of external control arms, resulting in a different estimand
compared to the primary analysis. Although the HR was similar to
the primary analysis (0.92, 95% CI: [0.81, 1.05]), there was a larger
discrepancy in K-M estimates between the RCT and OC arms,
especially during Months 6 and 14, compared to the primary
analysis (Figure 4).

4 Discussion

In this study, we applied the EF and TTF to define a precise
scientific question in comparative-effectiveness research. As a case study
to illustrate how to apply the EF and TTF when designing an external
control study using observational data, we conducted a retrospective
cohort study to compare OS among patients with metastatic NSCLC
exposed to front-line chemotherapy in RCTs versus routine clinical
practice settings, while accounting for differences in subsequent
treatments between these settings. To achieve this objective, we
pooled clinical trial patients from the control arms of three RCTs
(IMPOWER 130, 131, and 132) and derived an OC cohort from de-
identified EHR data obtained from routine clinical practice. OS was
compared between the two arms, assuming a hypothetical scenario
wherein patients in neither setting received subsequent therapy after the
first-line chemotherapy.We found no relevant difference inOS between
the two arms. Hence, when accounting for baseline confounding as well

FIGURE 4
IPTW-ATT weighted Kaplan-Meier curves.
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as differences in patterns of subsequent treatments in clinical trial and
routine clinical practice care patients, the long-term outcome of first-
line treatment for patients with metastatic NSCLC is similar despite the
lack of full trial entry criteria implementation.

Our approach attempts to clarify the causal contrast of interest
by combining elements of the EF and TTF. The EF and TTF serve
complementary purposes in answering the scientific question. As
formulated by Hernán and Robins, the TTF ensures that an
appropriate comparative study is designed to help estimate the
causal effect from the observed data (Hernán and Robins, 2016).
While the causal contrast can be specified within the TTF, the EF
adds clarity to the causal contrast through the explicit consideration
of intercurrent events (i.e., events occurring post-baseline that can
affect the assessment of treatment effects). Combined, the EF and
TTF improves transparency in the: 1) target of estimation (causal
contrast), 2) assumptions and data needed to identify the causal
contrast, and 3) limitations of available data.

To our knowledge, there are a limited number of studies that
combine the EF and TTF. Recently, Hampson et al. combined the EF
and TTF using routine clinical care data to generate an external
control arm (Hampson et al., 2023). The approach described in our
study adds to the limited number of use cases by accounting for a
scenario where patterns of subsequent treatments are different
between the sources of clinical trials and routine clinical care.
We anticipate that many researchers will likely encounter this
scenario in applications involving real-world external controls.
Our study, unlike other studies, also illustrates the iterative
nature of specifying an estimand. In practice, such iteration
allows a comprehensive and transparent dialogue among
stakeholders to reach a consensus on the scientific question and
its tractability given the available data (i.e., discern the identifiability
of the estimand).

Strengths of this study include the combination of the EF and
TTF, its large sample size, extensive follow-up, and its high
proportion of patients with an event of interest. In addition, to
mitigate possible sources of bias due to heterogeneity from
comparing the RCT and OC arms, we emulated randomization
with IPTW. Furthermore, the real-world data source we selected
reports key variables with high accuracy and clinical relevance. For
example, the composite real-world mortality endpoint was
previously validated using the National Death Index, and the
real-world disease progression endpoint, although following a
clinician-anchored approach supported by radiology report data,
was previously found to be comparable to trial RECIST-based
disease progression (Griffith et al., 2019; Zhang et al., 2021;
Mhatre et al., 2023). Lastly, model diagnostics indicated that the
weights from the IPTW-ATT and IPCW induced balance in the
measured baseline and post-baseline confounders.

There are notable limitations with this study. First, because data
were pooled from disparate sources, full information was not
available for all possible confounders. For example, there was
limited capture of comorbidities, sites of metastasis, and smoking
status within the OC arm compared to the RCT arm. The
assumption of no unmeasured confounders underlies both IPCW
(i.e., baseline as well as time-varying covariates jointly predicting
treatment switch and outcome (Howe et al., 2011)) as well as IPTW
(i.e., baseline covariates jointly predicting treatment setting and
outcome). About 43% (Table 2) of the patients in routine clinical

care included in our study had missing ECOG PS at the start of
front-line therapy, some of whom may have had an ECOG PS value
above 1. For context, among adults with NSCLC who received first-
line chemotherapy in the real-world setting, 13.6% had an ECOG PS
greater than 1 (Supplementary Table S3). A second limitation was
that the definition of time-zero differed across the RCT and OC
arms. Time-zero was the date of randomization in the clinical trials
compared to the date of treatment initiation in the routine clinical
practice cohort. The impact is believed to be small given that
typically, treatment was initiated within a few days post-
randomization. A third limitation is that patients in the IMpower
trials were global while patients in the OC arm were from the
United States only. Although we account for potential patient
confounders in our models, there could be residual confounding
effects due to regional differences. A fourth limitation was that we
pooled data from the control arms of the RCTs and hence assumed
negligible heterogeneity in outcomes among the three clinical-trial
cohorts. However, we believe trial heterogeneity posed little bias risk
to our study because the three trials were conducted by the same
sponsor and had similar visit schedules, data quality monitoring,
and survival estimates (Supplementary Figure S1). As a final
limitation, this work does not present guidelines regarding size
and power because formal hypothesis testing was not conducted
during the study. A proper power analysis would need to specify and
model the impact of the (time-varying) confounders on the effect
size. There are limited examples applying time-varying covariate
weighting in external control analyses, and guidelines on how to
compute sample size are needed. Future work should aim to
establish size and power guidelines to ensure quality and
meaningful inferences from these types of analyses.

5 Conclusion

In conclusion, this study showed that combining the EF and
TTF approaches can improve the rigor in the design and analysis of
comparative effectiveness studies, including retrospective
observational studies. The EF approach alone does not suffice in
specifying a study design, and the TTF alone can leave ambiguity in
the inferential target. The combination of the two frameworks
should be considered more often by researchers.
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