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Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Keywords: scopoletin, plant sources, pharmacological activities, pharmacokinetics, toxicology
1 INTRODUCTION
In recent years, functional components of food sources have aroused considerable interest because of their benefits in preventing illnesses and promoting health (Iahtisham Ul et al., 2019). Scopoletin (6-methoxy-7-hydroxycoumarin, Figure 1) is a phenolic coumarin that is extracted from numerous medicinal and edible plants and has various pharmacological activities. Scopoletin is synthesized by diverse medicinal plants, such as Erycibe obtusifolia (Pan et al., 2011a), Aster tataricus (Ng et al., 2003), Foeniculum vulgare (Kwon et al., 2002), Artemisia annua (Tzeng et al., 2007), Sinomenium acutum (Shaw et al., 2003), Melia azedarach (Carpinella et al., 2005), and Artemisia iwayomogi, as well as certain edible plants, such as Lycium barbarum and Morinda citrifolia (Dou et al., 2013; Lee et al., 2014; Forino et al., 2016; Mohamad Shalan et al., 2016). In addition, it is a component of numerous fruit and vegetable crop plants, including Avena sativa, Allium ampeloprasum, Apium graveolens, Capsicum annuum, Capsicum frutescens, Daucus carota, Cichorium intybus, Citrus limon, and Citrus aurantium, demonstrating its low toxicity as well as its safe application as a synergistic compound together with synthetic or other natural substances, such as vanillin (Carpinella et al., 2005).
[image: Figure 1]FIGURE 1 | Structure of scopoletin.
Scopoletin has attracted the attention of medicinal chemists and health professionals because of its broad range of beneficial properties, such as antibacterial, antifungal, antiparasitic, anticancer, anti-inflammation, hepatoprotective, antihyperlipidemic, antidiabetic, neuroprotective, antioxidant, anti-angiogenesis, anti-hypertensive, analgesic, anxiolytic, immunomodulatory, anti-osteoporosis, anti-allergic, anti-aging, and anti-gout activities. In addition, scopoletin is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase inhibitor (Rollinger et al., 2004; Hornick et al., 2011), aldose reductase (Lee et al., 2010), γ-aminotransferase (half-maximal inhibitory concentration [IC50] = 10.57 μM) (Mishra et al., 2010), monoamine oxidase (Yun et al., 2001), quinone oxidoreductase (Khunluck et al., 2019), and inducible nitric oxide synthase (iNOS) (Kim et al., 1999).
Scopoletin is a hydroxycoumarin with a molecular weight of 192.7 g/mol and a melting point of 204°C–206°C. The empirical formula of the compound is C10H8O4. It is slightly soluble in water or cold ethanol, soluble in hot ethanol or hot acetic acid, easily soluble in chloroform, and almost insoluble in benzene. Scopoletin is biosynthesized by ortho-hydroxylation of feruloyl-CoA in Arabidopsis thaliana (Figure 2) (Kai et al., 2008). Scopoletin is widely distributed in medicinal plants of various families and genera, including Malva (Lagunas-Herrera et al., 2019; Medrano-Jiménez et al., 2019), Cynodon (Patel et al., 2013), Convolvulus (Kaur et al., 2016; Garg et al., 2018), Artemisia (Kang et al., 1999; Choi et al., 2012; Kim et al., 2018), Erycibe (Pan et al., 2010), Canarium (Mogana et al., 2013), and Brunfelsia (Oliveira et al., 2001). It is also present in the whole plant of Viola mandshurica W. Becker (Park et al., 2017), Polygala sabulosa A.W. Bennett (Meotti et al., 2006; Ribas et al., 2008; Capra et al., 2010; Pereira Dos Santos Nascimento et al., 2016), Hedyotis diffusa Willd. (Chen et al., 2018), and Artemisia annua L. (Seo et al., 2016); in the aerial parts of Artemisia capillaris Thunb. (Navarro-García et al., 2011), Mitracarpus frigidus Willd. (Lemos et al., 2020), Solanum lyratum Thunb. (Kang et al., 1998), and Cirsium setidens (Dunn) Nakai (Ahn et al., 2014); in the roots of Hibiscus syriacus L. (Yun et al., 2001), Urtica dioica L. (Nahata and Dixit, 2012), Biebersteinia multifida DC. (Monsef-Esfahani et al., 2013), Gelsemium sempervirens L. (Khuda-Bukhsh et al., 2010), Saposhnikovia divaricata Turcz. Schischk (Kamino et al., 2016), Hypochaeris radicata L. (Jamuna et al., 2015), Argyreia speciosa L.f. (Kashyap et al., 2020), and Angelica pubescens Maxim. (Yang et al., 2009); the fruit of Tetrapleura tetraptera (Schumach. and Thonn.) Taub (Ojewole and Adesina, 1983); the flowers of Tilia cordata Mill. (Barreiro Arcos et al., 2006), the heartwood of Acer nikoense Miq. (Iizuka et al., 2007); and the inner shell of the nut of Castanea crenata (Noh et al., 2010). In addition, scopoletin has been analyzed in Morinda citrifolia L. (Kishore Kumar et al., 2017; Wigati et al., 2017; Ahmadi et al., 2019), Fraxinus rhynchophylla Hance (Kim et al., 1999), Torilis radiata (Ezzat et al., 2012), Brunfelsia hopeana Benth. (Oliveira et al., 2001), and Canarium patentinervium Miq. (Mogana et al., 2013). Table 1 summarizes the main plant sources of scopoletin and the associated bioactivities.
[image: Figure 2]FIGURE 2 | Synthesis of scopoletin (Kai et al., 2008).
TABLE 1 | Main plant sources of scopoletin and their bioactivities.
[image: Table 1]The present review concentrates on recent research progress associated with the role of scopoletin in the prevention and/or treatment of illnesses and disorders, stressing the mechanism of its action and discussion of its toxicity and pharmacokinetic characteristics. Accordingly, recent literature concerning the bioactivity and uses of scopoletin as a chemotherapeutic agent was collated from multiple databases.
2 PHARMACOLOGICAL ACTIVITIES OF SCOPOLETIN
A considerable body of evidence has proven the benefits of scopoletin in human health (Figure 3). Table 2 summarizes the health-promoting activities of scopoletin and the underlying mechanism of action for various illnesses and disorders. Details concerning the activity of scopoletin against various illnesses and disorders are discussed in the following sections.
[image: Figure 3]FIGURE 3 | Main biological activities and possible molecular mechanisms of scopoletin.
TABLE 2 | Treatment perspectives of scopoletin.
[image: Table 2]2.1 Anti-microbial activities
2.1.1 Antifungal activity
The microbial population, inside and outside the human body, plays a vital role in human health because many microbes may induce illnesses. Scopoletin shows maximum antifungal activity against Trichophyton mentagrophytes, Aspergillus niger, and Candida albicans (Navarro-García et al., 2011). The minimum inhibitory concentration (MIC) of scopoletin against Candida glabrata and Candida tropicalis is 67.22 and 119 μg/mL, respectively, which initiates an oxidative imbalance and reduces metabolism to achieve its antibacterial effect on these two Candida species (Das et al., 2020). Scopoletin has antifungal properties effective against a multidrug-resistant strain of C. tropicalis. Its mechanism of action is interference in the synthesis of essential fungal cell components, disruption of cell walls and plasma membranes, and impairment of C. tropicalis biofilm growth, formation, and proliferation (Lemos et al., 2020). Recent studies have reported that scopoletin has strong antitubercular activity; the compound isolated from Morinda citrifolia roots exhibits high activity against Mycobacterium tuberculosis with an MIC of 50 μg/mL (Sam-Ang et al., 2023). The MIC of the crude ethanol extract from the stem bark of Hymenodictyon floribundum BL Rob. against Mycobacterium indicum and Mycobacterium madagascariense is 195 and 781.25 μg/mL, respectively (Marealle et al., 2023).
2.1.2 Antibacterial activity
Several studies have reported that scopoletin is active against Staphylococcus aureus (Buathong et al., 2019; De La Cruz-Sánchez et al., 2019; Ramírez-Reyes et al., 2019; Chandrasekhar et al., 2023). Scopoletin exerts antimycobacterial activity against Streptococcus pyogenes, Pseudomonas aeruginosa, P. aeruginosa DMSC 37166, Mycobacterium tuberculosis H37Rv, Actinomyces israelii, Actinomyces naeslundii, and Salmonella typhi (Chiang et al., 2010; More et al., 2012; Acharya et al., 2013; Meerungrueang and Panichayupakaranant, 2014; Napiroon et al., 2018). In addition, Duggirala et al. reported that scopoletin inhibited both the polymerization and GTPase activity of filamentous temperature-sensitive protein Z, a target of anti-bacterial drugs, so it may be used as a lead structure for anti-filamentous temperature-sensitive protein Z drug design (Duggirala et al., 2014). Molokoane et al. reported that the compound from Artemisia afra (62.5 μg/mL) showed good activity against Escherichia coli (Molokoane et al., 2023).
2.1.3 Antiparasitic activity
Scopoletin significantly inhibits the growth of Plasmodium yoelii and Trypanosoma brucei brucei (Mamoon Ur et al., 2014; Li et al., 2018).
2.1.4 Antiviral activity
Individual fractions of scopoletin isolated from Artemisia annua exert strong virucidal and antiviral effects at a minimum concentration of 50 μg/mL in vitro and have been shown to inhibit SARS-CoV-2 infection (Baggieri et al., 2023).
2.2 Anticancer activity
The antitumor activity of scopoletin may result from its anti-proliferation, anti-migration, pro-apoptotic, anti-invasion, and anti-angiogenic inhibition of multiple drug resistance, regulation of the mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR pathways, and its effect on cell cycle arrest (Antika et al., 2023).
Scopoletin shows anti-proliferative action on BW5147 murine lymphoma cells and MCF-7 human adenocarcinoma cells (Barreiro Arcos et al., 2006; Manuele et al., 2006; Nasseri et al., 2022). It exerts anticancer effects on human cervical cancer cell lines by inducing apoptosis and cell cycle arrest and inhibiting cell invasion and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway (Tian et al., 2019). It is indicated to play a role in triggering cell cycle arrest and increasing apoptosis in PC3 cells via activation of caspase-3 (Liu et al., 2001). Scopoletin has been reported to activate nuclear factor-kappa B (NF-κB), caspase-3, and PARP cleavage, leading to apoptosis of promyeloleukemic HL-60 cells (Kim et al., 2005). Scopoletin causes human melanoma cell A375 apoptosis through downregulation of cyclin-D1; proliferation of cell nuclear antigen, survivin, and Stat-3; and upregulation of p53 and caspase-3 (Khuda-Bukhsh et al., 2010). Similar outcomes have been observed for cholangiocarcinoma cells and cervical cancer cells with respect to cell cycle arrest (G0/G1) and apoptosis induction, and an increase in cytotoxicity by co-administration of cisplatin and scopoletin is indicated (Asgar et al., 2015). Scopoletin has a significant inhibitory effect on A549 cells, with an IC50 of approximately 16 μg/mL (Yuan et al., 2021). In human Jurkat leukemia cells and leukemia-induced BALB/c mice, scopoletin shows anti-leukemia activity associated with cancer cell apoptosis and inhibition of inflammation and angiogenesis and mitigation of bone marrow myeloblast imbalance (Ahmadi et al., 2019). Angiogenesis plays an important role in tumor growth and metastasis (Yamakawa et al., 2018). Beh et al. observed that scopoletin (10, 30, and 100 nmol/egg) decreases the number of vascular branch points in a dose-dependent manner in chick embryo chorioallantoic membranes (Beh et al., 2012). Tabana et al. concluded that scopoletin (100 and 200 mg/kg, p.o.) shows anti-tumorigenic and anti-angiogenic activity in a nude mouse xenograft model by inhibiting vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), and extracellular signal-regulated kinase-1 (ERK-1) (Tabana et al., 2016). Scopoletin inhibits in vitro tube formation, proliferation, and migration in human umbilical vein endothelial cells and functions by obstructing VEGFR2 autophosphorylation and inhibiting ERK1/2, p38 MAPK, and Akt activation (Pan et al., 2009; Pan et al., 2011b; Cai et al., 2013). Scopoletin exposure upregulates cell cycle arrest in cancer cells, including cervical (Tian et al., 2019), cholangiocarcinoma (Prompipak et al., 2021), breast cancer (Yu et al., 2021), hepatoma, and lung cancer cells (Shi et al., 2020). A recent study has reported that matrine and scopoletin are effective ingredients of the Qinghao–Kushen combination combating liver cancer, which reduce the expression of GSK-3β in HepG2 cells and upregulate GSK-3β in HepG2.2.15 cells (Ji et al., 2022).
2.3 Anti-inflammatory activity
Administration of scopoletin inhibits mouse ear edema induced by ethyl phenylpropiolate, 12-O-tetradecanoylphorbol-13-acetate, croton oil, carrageenan, and 2,4-dinitrochlorobenzene, as well as paw and skin inflammation (Farah and Samuelsson, 1992; Muschietti et al., 2001; Ding et al., 2008; Selim and Ouf, 2012; Jamuna et al., 2015; Bak et al., 2022), which may be associated with modulation of the generation of pro-inflammatory mediators, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), prostaglandin E2, and IL-6, which suppresses cyclooxygenase-2 (COX-2) and iNOS expression. In lipopolysaccharide (LPS)-stimulated human gingival fibroblast and RAW 264.7 cells, scopoletin significantly inhibits the expression levels of the pro-inflammatory mediators IL-6 and TNF-α, thus prohibiting COX-2, iNOS, and nitric oxide (NO) expression (Kim et al., 1999; Kim et al., 2004; Choi et al., 2012; Kamino et al., 2016; Chaingam et al., 2021). However, the mechanism by which scopoletin influences the generation of inflammatory cytokines remains unclear. Moon et al. revealed that scopoletin (0.01–0.2 mM) suppresses the generation of inflammatory cytokines induced by phorbol 12-myristate 13-acetate plus A23187 by suppressing IκBα phosphorylation and degradation to obstruct NF-κB activation (Moon et al., 2007). In vitro assays indicate that scopoletin (100 and 200 mg/kg, i.p.) suppresses monosodium urate crystal-induced leukocyte infiltration and activation by inhibiting the synthesis and release of inflammatory mediators of activated macrophages. Scopoletin may exert anti-inflammatory effects through prevention of NF-κB signaling and the MAPK pathway (Yao et al., 2012). Pereira et al. reported that the anti-pleurisy effect of scopoletin is mainly mediated by inhibition of pro-inflammatory cytokines (TNF-α and IL-1β), NF-κB, and p38 MAPKs (Pereira Dos Santos Nascimento et al., 2016) and reduction in central nervous system inflammation via suppression of NF-κB signaling (Zhang et al., 2019). In addition, the regulation of the NF-κB signaling pathway reduces airway inflammation in platelet-derived growth factor BB-induced airway smooth muscle cells (Fan et al., 2022). In addition, a scopoletin-rich Morinda citrifolia leaf extract reduces TNF-α, IL-1β, and NO levels in serum, which relieves osteoarthritis symptoms (Wan Osman et al., 2019).
2.3.1 Anti-dendritic cell activity
Rheumatoid arthritis is an autoimmune disorder characterized by synovial hyperplasia and inflammation as well as resulting in joint destruction and deformity (Sajti et al., 2004). The synovium relies on blood supply for proliferation and formation of a pannus that invades the cartilage and bone, causing osteoclast activation and cartilage and bone destruction (Kimura et al., 2007). Dendritic cells are bone marrow-derived cells that arise from lymphoid–bone marrow hematopoiesis and coordinate innate and adaptive immune responses (Collin and Ginhoux, 2019). Immature dendritic cells are preferentially localized at the lining or sub-lining layer of the rheumatoid arthritis synovium (Page et al., 2002). Scopoletin (1 and 5 μM) functionally decreases the proliferation of bone marrow immature dendritic cells (Ren et al., 2020). Scopoletin (50 and 100 mg/kg), in part, improves the clinical state of rat adjuvant-induced arthritis through ameliorating synovial inflammation and destruction of cartilage and bone, thus blocking synovial angiogenesis, triggering apoptosis of fibroblast-like synoviocytes, and inhibiting COX-2 (Ying et al., 2009; Pan et al., 2010; Chen et al., 2021; Gao et al., 2011). The anti-rheumatoid arthritis activity of scopoletin (15, 30, and 60 μM) is likely exerted by suppression of IL-6 generation by fibroblast-like synoviocytes of adjuvant arthritis and potential activation of the MAPK/protein kinase C/cAMP response element-binding protein (CREB) (Dou et al., 2013). Furthermore, scopoletin (30, 40, and 50 μM) inhibits fibroblast-like synovial cells and blocks NF-κB signal transduction, thus combating rheumatoid arthritis (Chen et al., 2022). In addition, scopoletin isolated from Bouvardia ternifolia (Cav.) Schltdl. inhibits NF-κB expression, thereby exerting its anti-rheumatoid arthritis action in Freund’s complete adjuvant-induced ICR mice (Zapata Lopera et al., 2022).
2.4 Effects of scopoletin on liver diseases
The common clinical liver diseases are mainly viral diseases caused by hepatitis B and C viral infection, drug-induced liver injury, alcoholic fatty liver disease, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and liver cancer.
2.4.1 Acute liver injury
Acute liver injury is the beginning of the progression of many liver diseases leading to liver failure; hence, it is a crucial research focus. Models to simulate acute liver injury mainly include a chemical liver injury model induced by carbon tetrachloride (CCl4), drug-induced liver injury model, drug liver injury model induced by lipopolysaccharide, and alcohol-induced alcoholic liver injury model.
Scopoletin (1, 5, and 10 mg/kg) reduces the activity of an antioxidant enzyme (superoxide dismutase, SOD) and reduced glutathione (GSH) content, inhibits the production of malondialdehyde (MDA), and resists oxidative stress during acute liver injury induced by CCl4 in rats so as to protect the liver (Sharma et al., 2022). Scopoletin (1, 5, and 10 mg/kg) significantly improves alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) activities in rat livers under toxicity induced by 100 mg/kg isoniazid, 300 mg/kg rifampicin, and 700 mg/kg pyrazinamide (Sharma et al., 2023).
2.4.2 Chronic liver injury
2.4.2.1 Alcoholic fatty liver disease
Lee et al. reported that orally administered scopoletin (0.05%, w/w) decreased lipid contents in the liver and plasma and the activities of hepatic lipogenic enzymes in alcohol plus 35% kcal high-fat diet (HFD)-induced mice. The potential mechanism for these effects was modulation of AMP-activated protein kinase (AMPK)-sterol regulatory element-binding protein 1C (SREBP-1c) pathway-mediated lipogenesis in HFD-induced mice. The hepatoprotective effect of scopoletin is associated with its stimulation of the antioxidant defense system (Lee et al., 2014). In alcohol-fed rats, scopoletin regulates AMPK and the toll-like receptor 4 (TLR4)/myeloid differentiation major response gene 88 (MyD88)/NF-κB pathway and alleviates alcoholic hepatic steatosis and inflammation (Lee and Lee, 2015). In addition, Lee et al. reported that scopoletin (0.01 and 0.05 g/L) weakened chronic alcohol-induced insulin resistance and activated the antioxidant defense system through regulation of genes involved in liver glucose and antioxidant metabolism (Lee and Lee, 2015). Scopoletin is among the predominant compounds in the inner shell of chestnut (Castanea crenata) and has protective effects on ethanol-induced oxidative damage in vivo. Its hepatoprotective effects are associated with inhibition of lipid accumulation, peroxidation, and reinforcement of the antioxidant defense system in ethanol-induced mice. Scopoletin (50 μg/mL) increases antioxidant enzyme activities (SOD, catalase, glutathione peroxidase, and glutathione reductase) in alcohol-induced HepG2 cells (Noh et al., 2011).
2.4.3 Non-alcoholic fatty liver disease
In the HFD-induced obesity mice model, scopoletin (0.01% and 0.05% in diet) may mitigate NAFLD and prevent the development of liver fibrosis by regulating lipid metabolism and inflammation. The specific mechanism involves reduction of liver lipid accumulation, improvement in insulin resistance, and reduction in inflammatory factors (TNF-α, IL-6, and IFNγ), chemokine monocyte chemoattractant protein-1 (MCP-1), and leptin levels (Ham et al., 2016). Administration of scopoletin to HFD-fed mice decreases the body weight, liver weight, and serum levels for lipids and liver damage markers (ALT and AST) and regulates the AMPK/SREBP signaling pathway (Park et al., 2017). Scopoletin promotes palmitic acid-induced intracellular accumulation of triglycerides (TGs) and total cholesterol in HepG2 cells (Kim et al., 2017a). Scopoletin (6.25–50 μmol/L) inhibits endoplasmic reticulum stress and reactive oxygen species (ROS) production in primary liver cells of rats and reduces c-Jun N-terminal kinase (JNK) phosphorylation to prevent palmitic acid- and bile acid-induced liver cell death (Wu et al., 2022).
2.5 Effects on the cardiovascular system
2.5.1 Hypotensive activity
Ojewole and Adesina, (1983) observed that scopoletin isolated from Tetrapleura tetraptera fruit had non-specific spasmolytic activity on smooth muscles(Ojewole and Adesina, 1983). Subsequently, Oliveira et al. proposed that, with regard to scopoletin derived from the roots of Brunfelsia hopeana, the non-specific spasmolitic action is exerted through interference with the mobilization of intracellular calcium from norepinephrine (NE)-sensitive stores (Oliveira et al., 2001), and the release of sarcoplasmic reticulum Ca2+ induced by NE is inhibited, resulting in vasodilation of aortic rings (Iizuka et al., 2007). Wigati et al. reported that scopoletin decreases systolic pressure (SBP), diastolic pressure (DBP), and mean arterial blood pressure (MABP) in dexamethasone-induced mice. The mechanism is associated with the activity of an angiotensin-converting enzyme (ACE) inhibitor and the antioxidant activity of scopoletin (Wigati et al., 2017). Recently, scopoletin (0.01, 0.1, 1, 2, and 5 mg/kg, p.o.) has been shown to have antihypertensive effects on chronic and acute hypertensive mice induced by administration of angiotensin II. Scopoletin decreases the pharmacodynamic parameters for SBP and DBP by 75% and 92.8%, respectively (Lagunas-Herrera et al., 2019). Among the complications associated with hypertension, the onset of intracerebral hemorrhage is a devastating stage and is the most disabling type of stroke with the highest mortality rate. Zhang et al. observed that scopoletin improves rat ischemia induced by collagenase injection by reducing the expression of brain edema and other inflammatory mediators, such as TNF-α and IL-1β (Zhang et al., 2021).
2.5.2 Anti-atherosclerotic activity
The relevant literature clearly indicates that lipid accumulation (Cartolano et al., 2018), inflammation (Geovanini and Libby, 2018), and oxidative stress (Förstermann et al., 2017) are the most important risk factors for atherosclerosis. Scopoletin (10 μg/mL) attenuates lipid accumulation and inflammation in the aorta in HFD-induced apolipoprotein E-deficient (ApoE−/−) mice, which reduces vascular inflammation by AMPK activation to suppress the expression of cell-cycle regulators (cyclin and cyclin-dependent kinase adhesion molecule) in human aortic smooth muscle cells (Park et al., 2017). Subsequently, Garg et al. observed that scopoletin (the main component isolated from Convolvulus pluricaulis extract, 0.4 mg/kg) significantly decreases the levels of atherogenic lipid biomarkers, atherogenic index, and MDA and increases the levels of HDL-C and GSH in tyloxapol-induced hyperlipidemia rats (Garg et al., 2018). In addition, Batra et al. reported that orally administered scopoletin (1, 5, and 10 mg/kg) reduces total cholesterol, low-density lipoprotein (LDL), and TG contents and improves the plasma atherosclerosis index and Castelli risk index in the high-fructose high-fat diet (HFHFD)-induced dyslipidemia model of Wistar rats (Batra et al., 2023a).
2.5.3 Anti-myocardial infarction activity
Recently, in an isoproterenol-induced myocardial infarction rat model, pretreatment with scopoletin (25 and 50 mg/kg) was observed to significantly reduce the heart-to-body weight ratio, cardiac diagnostic markers, MDA content, inflammatory markers, and apoptotic markers (Rong et al., 2023). In addition, Li et al. reported that scopolamine induces endothelial-dependent relaxation mediated through the NO and prostacyclin pathways, thereby alleviating acute myocardial ischemia (Li et al., 2023).
2.6 Antidiabetic activity
Diabetes mellitus may be the fastest-growing metabolic disease in the world. Approximately 2.5%–7% of the global population suffers from diabetes, which is a leading cause of illness and death. In diabetes, chronic hyperglycemia results from an interruption of carbohydrate and fat metabolism owing to insufficient insulin secretion, insufficient insulin function, or both (Rauf et al., 2017).
Scopoletin regulates hyperglycemia and diabetes. In the streptozotocin (STZ)-induced diabetic rat model, scopoletin has hypoglycemic and lipid-lowering effects (Verma et al., 2013; Al-Zuaidy et al., 2016). Choi et al. reported that scopoletin (0.01%) ameliorates hyperglycemia and hepatic steatosis in HFD- and STZ-induced diabetic mice through suppression of lipid biosynthesis and the TLR4–MyD88 pathways (Choi et al., 2017). In addition, scopoletin enhances the postprandial blood glucose levels by inhibiting the activity of carbohydrate digestive enzymes (α-glucosidase and α-amylase) in STZ-induced diabetes mice (Jang et al., 2018).
In 3T3-L1 adipocytes and high-glucose-induced HepG2 cells, scopoletin (10, 20, and 50 µM) improves insulin resistance and enhances glucose uptake by activating the PI3K/Akt signaling pathway (Zhang et al., 2010; Jang et al., 2020). Scopoletin (10 and 25 μM) improves insulin sensitivity in methylglyoxal-induced FL83B hepatocytes by activating the PPARγ/Akt pathway and restoring the plasma translocation of GLUT2 (Chang et al., 2015). In addition, improvement in insulin sensitivity in response to scopoletin (1 mg/kg/day, p.o.) can activate the AMPK and the IRS1–PI3K–Akt pathways in pancreatic β cells of high-fructose diet (HFHFD) rats and improves glucose homeostasis in HFHFD-induced diabetes rats (Kalpana et al., 2019; Batra et al., 2023b). Scopoletin (1–5 µM) stimulates insulin secretion by the KATP channel-dependent pathway in INS-1 pancreas β cells (Park et al., 2022). Furthermore, scopoletin (5, 10, 25, and 50 μM) protects INS-1 pancreatic β cells from glycotoxicity induced by high glucose and thus has potential as a drug to protect pancreatic β cells (Park and Han, 2023). Lee and Kim showed that scopoletin has potent inhibitory activity on both advanced glycation end-product (AGE) formation and rat lens aldose reductase (RLAR) in an in vitro bioassay, with an IC50 of 2.93 ± 0.06 μM and 22.51 ± 2.01 μM, respectively (Lee et al., 2010). The accumulation of AGEs is associated with an increase in the risk of fracture in patients with type 2 diabetes and has a direct adverse effect on bone quality (Yamamoto and Sugimoto, 2016). In vitro studies have revealed that scopoletin (1–20 µM) improves osteoclast formation in diabetes through RANKL and enhances osteoclast formation in diabetes by inducing BMP-2 and Runx2. Oral administration of 10 mg/kg scopoletin promotes the formation of bone trabeculae and collagen fibers in the femoral epiphysis and metaphysis of type 2 diabetes mice (Lee et al., 2021). Aldose reductase (AR) is a crucial rate-limiting enzyme that contributes to cataract induction among patients with diabetes. Scopoletin (10 and 50 mg/kg) mitigates diabetes cataract formation through inhibiting AR activity, polyol accumulation, and GSH generation in galactose-fed rats (Kim et al., 2013). To further explore the specific mechanism by which scopoletin alleviates diabetes retinopathy, Pan et al reported that scopoletin protected retinal ganglion cells from high glucose-induced damage through ROS-dependent p38 and JNK signaling cascades in a high glucose-induced retinal ganglia cell model (Pan et al., 2022). Diabetes nephropathy is among the most common microvascular complications of type 1 and type 2 diabetes; it is observed in approximately 40% of diabetes patients and is the main cause of chronic kidney disease worldwide (Vučić Lovrenčić et al., 2023). Scopoletin inhibits the proliferation of rat glomerular mesangial cells, reduces extracellular matrix proliferation and cell hypertrophy, reduces extracellular matrix protein accumulation, reduces the expression of the crucial fibrotic factor TGF-β and connective tissue growth factor, inhibits renal fibrosis, and thus improves diabetes glomerulosclerosis (Liang et al., 2021).
2.7 Effect of scopoletin on neurodegenerative disorders
A neurodegenerative disorder indicates the progressive loss of functions and structures and neuronal cell death arising from different conditions, such as genetic and environmental factors (Gay et al., 2020). Motor neuron degeneration is an important pathological process in many types of nervous system diseases. Motor neuron disease is characterized by chronic progressive degeneration of motor neurons. Many studies have shown that scopoletin has a neuroprotective effect, which is mainly affected via 1) inhibition of monoamine oxidase (MAO) and acetylcholinesterase (AChE), 2) reduction of oxidative damage and chronic inflammation, and 3) protection of the activity of neurotrophic factors.
2.7.1 Anti-Alzheimer’s disease activity
Monoamine oxidase can be used to treat neurological disorders as a validated drug target (Carradori and Petzer, 2015). Its main function is to catalyze the oxidative deamination of neurotransmitters and biogenic amines (Edmondson et al., 2004). Yun et al. observed that scopoletin suppresses MAO in a dose-dependent manner with an IC50 value of 19.4 μg/mL (Yun et al., 2001). Furthermore, scopoletin (80 mg/kg, i.p.) is a reversible and selective MAO inhibitor causing an increase in the levels of dopamine and its metabolite (DOPAC) in the mouse brain (Mogana et al., 2013; Basu et al., 2016).
Acetylcholine (ACh) is widely distributed in the brain. The cholinergic system plays a role in crucial physiological processes, such as attention, learning, memory, stress response, wakefulness, and sleep, or sensory information (Ferreira-Vieira et al., 2016). Scopoletin can serve as an inhibitor of AChE, as indicated by the pharmacophore-based virtual screening method. The IC50 for AChE inhibition is 168.6 µM and 0.27 ± 0.02 mM (Rollinger et al., 2004; Mogana et al., 2013). Scopoletin shows AChE inhibitory activity in the range of 13.92%–34.18% at a concentration of 100 μg/mL (Suchaichit et al., 2018).
Neuronal cell death is an important feature of neurodegenerative disorders. In SH-SY5Y cells subject to hydrogen peroxide (H2O2) injury, scopoletin (5 μΜ) attenuates neurodegeneration via restoration of antioxidant enzyme activity, reduction in cell apoptosis, and activation of the SIRT1–ADAM10 signaling pathway, which is implicated in reduction in amyloid β (Aβ) production (Gay et al., 2020). In addition, Aβ is the main component of neuritic plaques in Alzheimer’s disease (AD) (Greenberg et al., 2020). Administration of 23 mg/kg scopoletin ameliorates the detrimental impacts of Aβ deposition on memory and learning among 5XFAD transgenic mice under a HFD diet, which is associated with microglia-enhanced phagocytic capacity and weakened microglia M1 phenotype activation (Medrano-Jiménez et al., 2019). Subsequently, Kashyap et al. proposed that scopoletin improves Aβ42-induced neurotoxicity and H2O2-induced cytotoxicity in PC12 cells. This effect may mediate inhibition of Aβ42 aggregation, AChE, butyrylcholinesterase, Aβ-site precursor protein-cleaving enzyme 1, MAO-B, and oxidative stress (Kashyap et al., 2020).
In conclusion, the imbalance of AChE and MAO, nerve cell death, and Aβ deposition may lead to cognitive and memory impairment. In cholinergically impaired and age-impaired mice models, scopoletin induces a significant increase in presynaptic activity-dependent acetylcholine release, enhances long-term potentiation (LTP) in the hippocampus, and exerts memory-improving properties (Hornick et al., 2011). The stimulatory role of Convolvulus pluricaulis extracts (500 mg/kg, scopoletin as the active ingredient), which modulate synaptic plasticity in the hippocampal cornu ammonis, enhances LTP and reduces long-term depression, which are the two major synaptic plasticity forms of memory formation (Das R. et al., 2020).
2.7.2 Anti-Parkinsonism disease activity
Although the pathogenesis of Parkinson’s disease (PD) is not entirely resolved, it has been reported that excessive production of ROS, mitochondrial dysfunction, neuroinflammation, and environmental toxins can promote the loss of dopaminergic neurons in PD (Ryan et al., 2015). Rotenone-induced Sprague‒Dawley (SD) rats and SH-SY5Y cell models have shown that scopoletin inhibits cell apoptosis and oxidative stress by activating DJ-1–Nrf2–antioxidant response element (ARE) signaling (Narasimhan et al., 2019). In the same model, scopoletin attenuates rotenone-induced apoptosis of dopaminergic neurons in SD rats. The mechanism involves inhibition of the mitochondrial pathway of internal apoptosis, regulated by the Bcl2 family (Kishore Kumar et al., 2017). In addition, scopoletin (2.5 mM) is an antioxidant, reducing mitochondrial dysfunction and oxidative stress caused by an increase in ROS concentrations so as to restore motor ability and enhance the mitochondrial and cellular health of dopaminergic neurons in a Drosophila fly model of PD (Pradhan et al., 2020).
2.7.3 Anti-Huntington’s activity
In a 3-nitropropionic acid-induced model of Huntington’s disease, administration of 20 mg/kg scopoletin attenuates motor deficits and oxidative damage in rats where it improves behavioral parameters (locomotor, rotarod, and narrow beam walking activity) and biochemical parameters (MDA, SOD, GSH, and nitrite) (Kaur et al., 2016).
2.8 Anti-mental disorder
Worldwide, the prevalence of mental illness is approximately 25%. The mental illness mentioned in this paper refers to the medical concept of mental pain defined in the DSM-5 diagnostic criteria traditionally used for research. However, due to its long-term effects, mental illness is also considered a disability (Littlewood, 2001; Sayce and Boardman, 2008).
2.8.1 Anti-anxiety activity
Biebersteinia multifida root extract (45 mg/kg, i.p., including scopoletin) exhibits an anxiolytic effect that shows the same anti-anxiety effect as that of diazepam but lasts longer for 90 min (Monsef-Esfahani et al., 2013). In the Freund’s adjuvant-induced chronic inflammation anxiety mouse model, scopoletin (50 mg/kg, i.p.) exerts an anxiolytic effect through ameliorating anxiety-like behaviors, for which the mechanism is associated with suppression of the NF-κB/MAPK signaling pathways involving anti-inflammatory activities and regulation of the excitatory/inhibitory receptor balance (Luo et al., 2020).
2.8.2 Anti-schizophrenia activity
Scopoletin at a specific dose of 0.1 mg/kg can alleviate the positive symptoms of schizophrenia. Scopoletin exerts anti-climbing and anti-stereotypy effects on apomorphine-induced cage climbing and methamphetamine-induced stereotypy behaviors, respectively, in mice (Pandy and Vijeepallam, 2017).
2.8.3 Anti-depressant activity
Scopoletin (10–100 mg/kg, p.o.) shows particular antidepressant-like effects, as observed in the tail suspension test. Antidepressant effects are associated with the interaction of serotonergic (5-HT2A/2C receptors), noradrenergic (α1-and α2-adrenoceptor), and dopaminergic (D1 and D2 receptors) systems (Capra et al., 2010).
2.9 Anti-oxidant activity
Scopoletin hinders oxidation in the ABTS, diphenyl-2-picrylhydrazyl (DPPH), FRAP, and β-carotene bleaching assays with half-maximal effective concentration (EC50) values of 5.62 ± 0.03 μM, 0.19 ± 0.01 mM, 0.25 ± 0.03 mM, and 0.65 ± 0.07 mM, respectively (Mogana et al., 2013). Scopoletin scavenges xanthine/xanthine oxidase-generated superoxide anions in a dose-dependent manner while xanthine oxidase activity is maintained and enhances the activity of endogenous antioxidant enzymes, such as SOD, catalase, and GSH (Shaw et al., 2003; Panda and Kar, 2006). Furthermore, scopoletin inhibits xanthine oxidase, maintains mitochondrial functioning to reduce ROS amounts, and suppresses LDL oxidation mediated by either Cu2+ or free radicals generated with an azo compound (Thuong et al., 2005). In addition, scopoletin shows antioxidant potential against DPPH (IC50 = 0.82 mg/mL) and NO (IC50 = 0.64 mg/mL) radicals (Sam-Ang et al., 2023).
2.10 Miscellaneous properties
2.10.1 Anti-gout-lowering uric acid activity
Ding et al. showed that scopoletin (100 and 200 mg/kg, i.p.) causes a significant reduction in uric acid activity associated with potassium oxonate by decreasing the serum uric acid level and enhancing urine urate (Ding et al., 2005), although the mechanism is not clear. Scopoletin (200 mg/kg, p.o.) remarkably lowers the serum uric acid level of a yeast extract in potassium oxonate-induced mice; the therapeutic mechanisms are associated with inhibition of the activity of hepatic xanthine oxidase and promotion of uric acid excretion (Zeng et al., 2017).
2.10.2 Anti-allergic activity
Scopoletin (50 μΜ) exerts anti-allergic activity mainly by inhibiting the production of cytokines (IL-4, IL-5 IL-10, and IFN-γ) and suppressing nuclear factor and GATA3 expression in activated T cells and PMA-/ionomycin-induced EL-4 T cells (Cheng et al., 2012).
2.10.3 Anti-vitiligo activity
Vitiligo is a skin disease. The death or loss-of-function of skin melanocytes leads to partial discoloration of the skin (Pichler et al., 2006). Ahn et al. reported that scopoletin increases melanin synthesis in B16F10 cells by activating cAMP-responsive CREB phosphorylation and microphthalmia-associated transcription factor (MITF), resulting in an increase in the expression of tyrosinase (Ahn et al., 2014). In addition, scopoletin (40 μg/mL) stimulates melanin synthesis through activation of the cAMP/PKA/p38 MAPK pathway in B16 melanoma cells (Kim et al., 2017b). Furthermore, scopoletin (10, 20, and 25 μΜ) enhances melanogenesis responses in zebrafish and B16F10 cells, which is associated with increases in melanin content and expression of tyrosinase-related protein 1 and MITF (Heriniaina et al., 2018).
2.10.4 Anti-aging activity
For human lung fibroblasts, scopoletin has anti-aging effects, which promotes autophagy induction via inactivation of p53 and enhance FoxO transportation, thereby inducing anti-aging-related autophagy and longevity (Nam and Kim, 2015). In HaCaT human keratinocytes with UVB, scopoletin (30, 100, and 300 µM) inhibits the expression of pro-inflammatory cytokines and matrix metallopeptidase (MMP)-1 by inhibiting the phosphorylation of p38 MAPK (Kim et al., 2018).
2.10.5 Immunomodulatory activity
Alkorashy et al. demonstrated that scopoletin (50 μg/mL) stimulates U937-derived macrophages and significantly affects the expression of certain phagocytosis-linked genes (Alkorashy et al., 2020). Scopoletin (10 and 100 μΜ) suppresses ConA- and LPS-induced adaptive immune cell activation (Lee et al., 2017).
2.10.6 Anti-nociceptive activity
Scopoletin, found in a Polygala sabulosa hydroalcoholic extract (0.01–10 mg/kg, i.p.), inhibits the acetic acid-induced visceral nociceptive response (Meotti et al., 2006). In addition, scopoletin (10 mg/kg, i.p.) counteracts nociception induced by glutamate in mice (Ribas et al., 2008).
2.10.7 Anti-spinal cord injury activity
In a rat model of spinal cord injury, scopoletin (100 mg/kg, i.p.) improves locomotion 325 recovery and motor neuronal loss through stimulation of autophagy by triggering the AMPK/mammalian 326 target of the rapamycin (mTOR) signaling pathway (Zhou et al., 2020).
2.10.8 Facilitating the digestion activity
Sun et al. preliminarily confirmed that scopoletin isolated from Cynachum auriculatum has an anti-functional dyspepsia effect (Sun et al., 2024). Scopoletin remarkably prevents acid reflux esophagitis production, with a similar efficiency to that of standard anti-secretory agents (ranitidine and lansoprazole) through its anti-inflammatory and anti-secretory attributes, such as its pro-kinetic activity, which can accelerate gastric emptying and intestinal transit (Mahattanadul et al., 2011). The potential mechanism is partially ascribed to the active component stimulating the 5-HT4 receptor (Nima et al., 2012).
2.10.9 Inducing the expression of latent HIV
Reversing the incubation period of HIV-1 can promote the killing of infected cells, which is crucial for treatment strategies. In HIV-1 latently infected Jurkat T cell lines, scopoletin (2.0 mM) can significantly influence the incubation period of HIV-1 without cytotoxicity in a dose-dependent manner (Zhu et al., 2023).
2.10.10 Inducing metabolomic profile disturbances
Yao et al. evaluated the metabolic effects of scopoletin in zebrafish embryos using non-targeted metabolomics methods. Exposure to scopoletin (2.1, 6.2, and 18.5 μg/mL) resulted in significant metabolic disorders, mainly involving phosphonate and phosphinate metabolism, vitamin B6 metabolism, histidine metabolism, sphingolipid metabolism, and folate biosynthesis (Yao et al., 2022).
2.10.11 Ameliorating nephrotoxicity
Scopoletin (50 mg/kg/once daily, i.p.), via the Keap1–Nrf2/HO-1 and IκBα–P65–NF-κB–P38/MAPK signaling pathways, effectively improves renal function, oxidative stress biomarkers, and inflammatory mediators in vancomycin-treated rats (Khalaf et al., 2022).
3 PHARMACOKINETICS OF SCOPOLETIN
Pharmacokinetics is the study of the time course of the absorption, metabolism, distribution, and excretion of a drug, compound, or novel chemical entity upon its administration to the body (Fan and de Lannoy, 2014). Pharmacokinetics research provides compound-/drug-specific data to determine doses and dosing routes for individual patients, minimize toxicity, and offer a cornerstone for illnesses (Visser, 2018).
3.1 Absorption, metabolism, and elimination
Absorption, metabolism, and elimination transformations of scopoletin are widely used for monitoring its possible effects on different lifestyle-related disorders.
Following intragastric administration of 50 mg/kg scopoletin in rats, Xia et al. used high-performance liquid chromatography (HPLC) to tentatively detect the parameters (Tmax (min) = 10, Cmax (g/m) = 8.2 ± 0.8, T1/2 (min) = 14.1 ± 0.6, AUCt (g min/mL) = 145.9 ± 11.8, and Ke (min−1) = 0.051 ± 0.005) associated with the absorption process by rat plasma (Xia et al., 2007). Given the low sensitivity of the HPLC method, it is unsuitable to study the in vivo absorption characteristics of scopoletin in detail. Therefore, Liu et al. studied its pharmacokinetics by HPLC/tandem mass spectrometry (Liu et al., 2011; Zeng et al., 2015; Li et al., 2019). The average percentage of scopoletin excreted from urine, above the dose administered, was 14.93%, and the cumulative biliary excretion of scopoletin above the dose administered was 0.16% after oral administration of Glehniae Radix extract to male SD rats (Liu et al., 2011). The results revealed that less than 15% of the analytes unchanged from the extract were excreted in the urine and less than 1% of the analytes unchanged from the extract were excreted in the bile, indicating that scopoletin undergoes major metabolism in the body. A pharmacokinetic study on rats after oral administration of scopoletin (5, 10, and 20 mg/kg) revealed that the oral bioavailability following a dose of 5 mg/kg was 6.62% ± 1.72%, for a dose of 10 mg/kg, it was 5.59% ± 1.16%, and for 20 mg/kg 5.65% ± 0.75% in the rat plasma (Zeng et al., 2015). Pharmacokinetic studies of dog plasma after oral administration of scopoletin (10, 25, and 50 mg/kg) showed that the bioavailability was 7.08%, 5.87%, and 5.69%, respectively (Zhao et al., 2019), similar to the bioavailability of coumarin (3.40% ± 2.60%) (Ritschel et al., 1977). Thus, these results indicated the statistical similarity of the oral bioavailability among the three p.o. groups and thus was found to be independent of the delivery of the administered dose. Zhang et al. applied the UHPLC-LTQ-Orbitrap-MS method to study the pharmacokinetics of scopoletin in dog plasma after intravenous (1 mg/kg) and oral administration (10, 25, and 50 mg/kg). The main relevant measurement parameters were as follows: AUC0-t (ng/h/mL) = 186.54 ± 36.45, 131.83 ± 19.23, 277.78 ± 35.12, and 528.19 ± 45.78; AUC0-∞ (ng/h/mL) = 197.97 ± 35.21, 140.43 ± 21.10, 284.69 ± 39.87, and 546.61 ± 51.28; T1/2 (h) = 2.05 ± 0.27, 2.36 ± 0.45, 1.87 ± 0.21, and 1.65 ± 0.45; Cmax (ng/mL) = 423.23 ± 39.45, 85.47 ± 15.78, 253.78 ± 45.27, and 410.79 ± 57.19; and CL/F (L/kg/h) = 5.05 ± 0.89, 71.22 ± 15.23, 87.87 ± 15.56, and 91.47 ± 17.28 (Zhao et al., 2019). Li et al. reported that in rats administered 100 mg/kg scopoletin by gavage, the relevant pharmacokinetic parameters are as follows: AUC0-t (μg/L/h) = 203 ± 29.5; AUC0-∞ (μg/L/h) = 206 ± 29.1; T1/2 (min): 69.6 ± 5.4; Cmax (μg/mL) = 72.7 ± 8.7; and CL/F (L/kg/min) = 418.9 ± 36.8 (Tian et al., 2023). Li et al. reported that, after the oral administration of 30 mg/kg scopoline, which is a metabolite of scopoletin, significant differences in certain parameters were observed between male and female rats (p < 0.05), i.e., AUC (9783.33 ± 157.61 ng/mL/min vs. 12,966.66 ± 1771.97 ng/mL/min), Tmax (14.00 ± 5.48 min vs. 6.67 ± 2.58 min), and CL/F (3.07 ± 0.05 L/min/kg vs. 2.36 ± 0.36 L/min/kg). Further investigation is needed to elucidate the potential mechanism of gender differences; however, the maximal excretion rates of scopoletin were 31.68 μg/h and 25.58 μg/h in male and female rats, respectively (Li et al., 2019).
Coumarin is quickly absorbed from the human gastrointestinal tract and is thoroughly metabolized by the liver, and only 2%–6% of the coumarin enters the systemic circulation intact (Ritschel et al., 1977; Ritschel et al., 1979). Scopoletin is a coumarin analog, and its rapid absorption, metabolism, and excretion from the human body may explain the poor bioavailability (Zeng et al., 2015). One study has shown that scopoletin is eliminated by first-order kinetics after intraperitoneal injection of Ding Gong Teng in mice. It showed the characteristics of a two-compartment open model: rapid absorption, rapid distribution, rapid action, and slow elimination. After intramuscular injection of Ding Gong Teng (scopoletin content: 2030 mg/L) in rabbits, the absorption showed double peaks: the first peak appeared at 8.08 min, and the concentration of scopoletin was 145.45 μg/L; the second peak appeared at 2.45 h, and the scopoletin concentration was 48.66 μg/L (Min et al., 2000). The pharmacokinetic study of Ding Gong Teng injection in rabbits showed that scopoletin was eliminated quickly, the elimination rate constant was 0.56 h, the half-life was 1.81 h, and the concentration at 4 h after administration was 5.32 μg/L. An additional study reported that scopoletin was well-absorbed in a human colon adenocarcinoma cell line model, indicating that it is well-absorbed in the gut lumen (Galkin et al., 2009). The aforementioned results suggest that scopoletin undergoes extensive metabolism in the body. Wang et al. determined that hepatic injury does not significantly influence the pharmacokinetics of scopoletin (Wang et al., 2018). The reason for this may be that cytochrome P450 enzymes had underwent partial change in the process of liver injury. It is also possible that scopoletin is not a P-glycoprotein substrate (Nabekura et al., 2015; Yang et al., 2015), which would explain the decrease in the bioavailability of scopoletin. The bioavailability of scopoletin is low (approximately 6.0%) (Zeng et al., 2017), which may be associated with its low water solubility and instability in physiological media. It may also reflect limited solubility, poor absorption and metabolism, or decomposition in the gastrointestinal tract (Issell et al., 2008).
Nevertheless, after oral administration of a Hedyotis diffusa extract (4.837 g/kg equivalent to 30.45 mg/kg of scopoletin), scopoletin was rapidly absorbed into the circulatory system in rats, and the half-life and average retention time were more than 10 h (Chen et al., 2018), indicating that the clearance rate of scopoletin in the plasma was slow.
3.2 Distribution
Following oral administration of 6 g/kg of Angelicae Pubescentis Radix extract to rats at the lower limit of quantification levels (2.16 ng/mL), scopoletin could not be determined in the rat plasma. Analysis of its tissue distribution showed that scopoletin was extensively distributed in multiple tissues, particularly the heart, liver, and kidneys, reflecting its pharmacological roles (Chang et al., 2013).
The pharmacokinetic deficiencies and outlook for scopoletin can be briefly summarized as follows: 1) the optimal method to investigate the pharmacokinetics of scopoletin requires clarification; 2) there are distinct differences in pharmacokinetic parameters between mice of different genders, and additional studies should be conducted to explore the underlying mechanism of gender differences; 3) the pharmacokinetic parameters of scopoletin have only been studied in mice/rat and rabbit models.
4 TOXICOLOGY OF SCOPOLETIN
No strict boundary is proposed to portray or differentiate favorable or detrimental chemicals. The degree of harmfulness and safety seems to depend on the chemical dose. Therefore, this concept has become the hub of modern toxicology, meaning that dose determines toxicity (Hayes and Dixon, 2017).
4.1 Toxicity
As indicated by the acute toxicity test, scopoletin failed to generate treatment-associated mortality and abnormal performance at the limit test dose (2000 mg/kg, p.o.) for 14 days in SD rats (Tabana et al., 2016). This research shows the safety of scopoletin at the dose level, and, therefore, the LD50 value of scopoletin for oral toxicity is > 2000 mg/kg. Jamuna et al. observed rats for 14 days after administration of oral doses of 10, 50, and 100 mg/kg scopoletin and detected no obvious acute toxicity signs, no net gain or loss of body weight, or gross behavioral variation (Jamuna et al., 2015). In vivo experiments have administered a dose of 50–200 mg/kg (i.p.) scopoletin to SD rats and ICR mice (Ding et al., 2005; Pan et al., 2010; Yao et al., 2012). Table 3 summarizes the reported dosages of scopoletin for different animals. Thus, previous research has defined scopoletin as a relatively safe natural product, but there is a lack of long-term toxicity studies on animals. Strict experiments in vivo should be conducted for improved estimation of the side effects of scopoletin to ensure its safe use.
TABLE 3 | Dose range of scopoletin examined in animal models.
[image: Table 3]4.2 Cytotoxicity
Scopoletin cytotoxicity has been assessed in numerous cell types in previous in vitro research, such as cancer cells, normal cells, immune cells, and nerve cells, illustrating that scopoletin is a relatively safe natural product. Table 4 summarizes the reported dosages of scopoletin for different cell lines.
TABLE 4 | Cytotoxic effects of scopoletin in different cell lines.
[image: Table 4]5 CONCLUSION AND FUTURE RESEARCH PROSPECTS
In summary, this review summarizes the multiple physiological effects of scopoletin, confirming its significant positive effects on different illnesses, as stated previously. Consequently, many therapeutic intervention measures should be proposed in accordance with the potential mechanisms of the active agent and its derivatives. Moreover, as a natural compound, scopoletin provides a safer alternative for pharmaceutical applications targeting hepatic, neural, and cancer illnesses. Considering the therapeutic activities and the weak oral bioavailability of scopoletin, a large number of its derivatives and pharmaceutical dosages can be designed. Shi et al. considered isoxazole-based hybrids of scopoletin as an efficient chemical modification that improved the anticancer activity of scopoletin(Shi et al., 2017). The 2-fluorobenzylpyridinium derivative is the most potent tested compound, with an IC50 value of 0.215 ± 0.015 μM, which is significantly ameliorated compared with that of scopoletin (Khunnawutmanotham et al., 2016). Multiple substituted 8,8-dimethyl-8H-pyrano [2,3-f] chromen-2-ones (chromeno-coumarin hybrids) have been synthesized based on scopoletin as vasorelaxing agents. Compared with the parent molecule scopoletin, the sensitivity of these derivatives to experimental tissues was increased by 29.40–70.89 times (Singh et al., 2020). In addition, Soluplus-based scopoletin micelles (Sco-Ms) have been produced using a simple thin-film hydration technique, and the oral bioavailability of Sco-Ms was enhanced by 438% compared with that of free scopoletin. Oral delivery of Sco-Ms showed distinctly higher hypouricemic efficiency in hyperuricemic mice compared with that of scopoletin (Zeng et al., 2020). Polymeric nanoparticle encapsulation of scopoletin induced massive apoptosis in the human melanoma cell line A375 (Bhattacharyya et al., 2011).
The poor solubility of scopoletin limits the oral absorption and bioavailability of the compound. Therefore, methods to improve the bioavailability of scopoletin, reduce its toxicity, develop a suitable method for administration, and improve its clinical efficacy should be the focus of future research. In addition, scopoletin is a constituent in many edible plants and food products and thus could be developed as a health food and functional food. Further research on human subjects should be conducted to guarantee its safety, and decomposition products in the human body should be assessed to ensure its safe application in treatments. Similarly, further efforts should be made to verify the effects of food supplements, explore their diverse effects on humans and elucidate the mechanisms of action.
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Species

Content
W/W (%)

Bioactivity

Reference

Malvaceae Malva parviflora L.~ Whole plant | Not measured |~ Anti-hypertension and anti-AD Lagunas-Herrera et al. (2019),
Medrano-Jiménez et al. (2019)
Poaceae Cynodon dactylon ~ Whole plant | Not measured | Anti-asthma Patel et al. (2013)
Linn.
Convolvulaceae | Convolvulus Whole plant | Not measured ~ Anti-oxidant and anti-hyperlipidemia Kaur et al. (2016), Garg et al. (2018)
pluricaulis Chois.
Violaceae Viola mandshurica Whole plant | Not measured | Anti-atherosclerosis Park et al. (2017)
W Becker
Rubiaceae Hedyotis diffusa Whole plant  0.0528 Chen et al. (2018)
Willd.
Polygalaceae Polygala sabulosa  Whole plant | 0.0287, 0.112 Anti-pleurisy, anti-depression, and Meott et al. (2006); Ribas et al. (2008); Capra
AW. Bennett antinociceptive et al. (2010); Pereira Dos Santos Nascimento
et al. (2016)
Compositae Artemisia annua  Whole plant | Not measured |~ Anti-cancer Seo et al. (2016)
Linn.
Apiaceae Torilis radiata Aerial parts | 0.0045 Hepatoprotective Ezzat et al. (2012)
Moench.
Compositae Artemisia capillaris  Aerial parts | Not measured | Downregulated MMP-1 and suppressed Kim et al. (2018); Lee et al. (2017)
Thunb. primary splenocyte proliferation
Rubiaceae Mitracarpus frigidus ~ Aerial parts | 23.07 Antifungal Lemos et al. (2020)
Willd. (scopoletin/
extract)
Polemoniaceae | Loeselia mexicana  Aerial parts | 0.005 Antifungal Navarro-Garcia et al. (2011)
Lamb.
Solanaceae Solanum lyratum  Aerial parts | 0.00023 Hepatoprotective activity (Kang et al., 1998)
Thunb.
Compositae Cirsium setidens Aerial parts | Not measured | Increased melanin synthesis Ahn et al. (2014)
Nakai.
Compositae Artemisia Aerial parts | 0.024 Inhibited NO Kang et al. (1999)
feddei Lev.
Asteraceae Artemisia Leaves and Not measured Anti-inflammatory Choi et al. (2012)
iwayomogi Kitam.  stems
Convolvulaceae | Erycibe obtusifolia  Stems 0022 Anti-angiogenesis and anti-arthritic Pan et al. (2010)
Benth.
Solanaceae Nicotiana glauca ~ Leaves Not measured |~ Anti-tumor Tabana et al. (2016)
Graham.
Rutaceae Melicope Leaves Not measured | Inhibited a-glucosidase activity Al-Zuaidy et al. (2016)
lunuankenda
Rutaceae Acgle marmelos Leaves Not measured | Decreased serum glucose Panda and Kar (2006)
Linn.
Solanaceae Nicotiana glauca ~ Leaves Not measured | Anti-tumor Tabana et al. (2016)
Graham.
Burseraceae Canarium Leavesand 098 Anti-inflammatory, anti-cholinesterase, and | Mogana et al. (2013)
Kunth patentinervium barks anti-oxidant
Mig.
Solanaceae Nicotiana glauca Leaves Not measured Anti-tumor Tabana et al. (2016)
Graham.
Convolvulaceae | Erycibe schmidtii  Twigsand | 0.066 Anti-rtheumatoid arthritis Ren et al. (2020)
Craib. leaves
Rubiaceae Morinda citrifolia L. Fruits and 0.46 + 0.05 (leaf) | Antioxidant, anti-inflammatory, anti- Mandukhail et al. (2010); Mahattanadul et al.
leaves leukemia, anti-hypertension, anti-PD, (2011); Beh et al. (2012); Nima et al. (2012);
antibacterial, anti-angiogenic, anti-gastric Mohamad Shalan et al. (2016); Kishore
ulcer, gastrokinetic activity, and anti- Kumar et al. (2017); Wigati et al. (2017);
dyslipidemic Ahmadi et al. (2019); De La Cruz-Sinchez
et al. (2019); Narasimhan et al. (2019)
Rubiaceae Morinda citrifolia L. Fruits 0.06 Parkinson’s disease Kishore Kumar et al. (2017)
Mimosaceae Tetrapleura Fruits Not measured | Spasmolytic activity Ojewole and Adesina (1983)
tetraptera (Taub)
Malvaceae Hibiscus syriacus ~ Root bark | 0.0021 Anti-oxidative Yun et al. (2001)
Linn.
Urticaceae Stinging nettle Roots Not measured  Benign prostatic hyperplasia Nahata and Dixit (2012)
(Urtica dioica L.)
Solanaceae Brunfelsia hopeana  Roots 001125 Anti-hypertension Oliveira et al. (2001)
Benth.
Geraniaceae Biebersteinia Roots Not measured | Anxiolytic effects Monsef-Esfahani et al. (2013)
multifida DC.
Loganiaceae Gelsemium Rootsand | Not measured | Anticancer Khuda-Bukhsh et al. (2010)
sempervirens L. thizomes
Umbelliferae Saposhnikovia Rootsand  0.0039 Inhibited NO Kamino et al. (2016)
divaricata Turcz.  thizomes
Asteraceae Hypochaeris Roots Not measured |~ Anti-inflammatory Jamuna et al. (2015)
radicata Var.
Convolvulaceae | Argyreia speciosa  Roots 0.56% Anti-amyloidogenic Kashyap et al. (2020)
Linn. (scopoletin/
extract)
Umbelliferae Angelicae Root 0.0001 Yang et al. (2009)
Pubescentis Maxim.
Fagaceae Castanea crenata Inner shells | Not measured Anti-oxidant Noh et al. (2010)
Aceraceae Acer nikoense Miq.  Heartwood | Not measured Vasorelaxant Tizuka et al. (2007)
Tiliaceae Tilia cordata Mill.  Flowers Not measured | Anti-tumor Barreiro Arcos et al. (2006)
Oleaceae Fraxinus Barks 00025 Inhibited NO Kim et al. (1999)
thynchophylla

Hance.
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Mechanism

Cell wall and membrane damage T, apoptosis 1, oxidative imbalance T, and metabolic
activities |

Bacterial cell division |

Cell proliferative |

Cell cycle arrest 1, apoptosis T, and caspase-3 T
Caspase-3 T and NF-kB T

Caspase-3 T, caspase-8 T, bone marrow myeloblast levels |, CSF3 |, SOCS1 |, PTEN |, TRPS3
1, VEGEL, IL-10 1, and IL-4 T

Cyclin-D1], PCNA |, STAT-3 |, P53 1, and caspase-3 T

Cell cycle arrest T and apoptosis T

NQO1/ and cell migration |

Cell cycle arrest T, cleaved-3/8/9 T, PARP T, cell invasion |, p-PI3K |, and p-AKT |
Tumor growth |, vascularization |, and anti-vascular effect

NE-xB |

Synovial angiogenesis | and apoptosis T

1L-6 |, cell proliferation |, MAPKs |, PKC |, and CREB |
cox2 |
Cell proliferation |

IL-B |, TNF-a |, H,S |, chemoattractant protein 1], IL-33 |, preprotachykinin A |, and NF-
B |

NF-xB | and MAPKs |
K* | and Ca** |

NE-kB |, demyelination |, MHC class II |, CD80 |, and CD86]

ALT 1, AST T, LDH T, TNF-a |, NO |, NAG |, MPO |, MDA |, CAT 1, and GSH T
GSH 1, SOD 1, and MDA |
ROS |, CAT T, SOD T, GPx T, and MDA |

AMPK T, ACC |, SREBP-1c |, FAS |, PAP |, G6PD |, CYP2E1 |,SOD T,CAT T, GSH-Px T,
GST 1, and GSH T

TG |, adiponectin], AMPK 1, SREBP-Ic |, FAS |, PPARa T, ACSLI T, CPT T, ACOX 1,
ACAAIA 1, TLR4 |, MyD88 |, TRIF |, NF-xB |, TNF-a |, and IL-6 |

Glucose intolerance |, HOMA-IR |, serum insulin level |, IR |, PI3K 1, GK T, G6Pase |, SOD
1, CAT 1, GPx T, H,0, |, and MDA |

ALT |, AST |, TG |, TBARS |, CAT T, SOD T, GPx T, GR T, and CYP2E1 |

Body weight |, visceral fat |, leptin |, TG |, TC |, TNF-a |, IL-6 |, IFNy |, MCP-1 |, serum
glucose |, insulin |, HOMA-IR |, IPGTT |, ERRFII T, APOA4 |, CYP7AI |, COLIAI |,
MMP-13 |, CDKNIA |, and GDE-15 |

Body/liver weight |, TG |, TC |, LDL |, glucose |, ALT |, AST |, ACC |, SREBP-Ic |, and
p-AMPK

TG | and TC |
TG |, TC |, and glucose |

TG |, TC |, LDL |, and MDA |

a-glucosidase |, a-amylase |, and postprandial hyperglycemia |
a-glucosidase |, DPPH radical activity|, and fasting blood glucose |
Glucose uptake T, GLUT4 1, p-Akt T, PI3K T, and AMPK T
PPARy 2 T, IR |, p-Akt T, and p-PKB T

Serum glucose | and G6PD |

Insulin secretion 1, blood glucose |, TG |, and TC |

HbAI |, blood glucose |, FFA |, TG |, TC |, ALT |, TLR4 |, MyD88 |, TNF-a |, IL-6 |,
PPARy |, DGAT2 |, and MCP-1 |

AGEs |, TG |, TC |, LDL |, HDL , D-lactic acid , IR |, blood glucose |, Nif2 T, PPARy T,
p-AKT 1, PTPIB |, and GLUT2 |

AMPK T, IRS1 1, PI3K 1, Akt T, TBARS |, LHP |, PC |, SOD T, GPX T, CAT T, HOMA-IR |,
TC |, TG |, HDL-C T, LDL |, and VLDL |

AGE formation | and RLAR |

AR |, oxidative stress |, galactitol T, and GSH T

AP42 fibril |, AChE |, BuChE |, oxidative stress |, and neurotoxicity |

AChE T, LTP 1, LTD |, and memory retention T

Microglia phagocytic T, PPARy T, CD36 1, TNF-a |, IL-6 |, and amyloid plaque |
Apoptotic |, ROS |, SIRT1 1, FOXO3A T, ADAMIO T, Bel2 T, CAT 1, and SOD |
SOD T, CAT T, GST T, Ntf2 T, GR T, ARE T, DJ-1 T, Keapl |, and GUL3 T

Cell death |, striatal neuronal loss T, Bax |, Bel2 T, and cytochrome C |

GSH T, redox balance T, mitochondrial function T, and oxidative damage |

Body weight T, locomotor activity T, grip strength T, gait abnormalities T, MDA |, nitrite |,
SOD 1, and GSH |

AMPK 1, mTOR T, motor neuronal T, apoptosis |, autophagy T, beclin-1 T, and LC3B-
positive neuronal cells T

MAOs |
Microglia activation |, IL-1p |, IL-6 |, TNF-a |, MAPK |, NF-kB |, and GABA-T |
Climbing behavior | and stereotyped behavior |

Depression-like behavior | and immobility time |

Superoxide anion |, SOD 1, CAT T, and GSH T

LDL oxidation | and TBARS |

Branching pattern of blood vessels |

Blood vessels |, tube formation |, proliferation |, and migration |

VEGFR2, proliferation |, migration |, tube formation |, and ERK1/2 |

Relaxed smooth muscles T, spasmogenic activities |, ACE |, and portal vein contractions |
Contractile responses |

SBP |, DBP |, TNF-a |, MDA |, 1L-6 |, and IL-1§ |

SBP | and DBP |

Uric acid |

PMA |, IL-4 |, IL5 |, 1L-10 |, IEN-y T, NFAT|, GATA-3 |

MITE 1, tyrosinase T, p-CREBT, cAMP/PKA 1, and P38MAPK

MMP-11, IL-la |, TNF-a |, and p-P38 |

SA-B-Gal staining |, HDACIT, SIRT1 T, SIRT6T, Nrf-2 1, p-FoxO11, and P53 T

GABA transaminase |

Macrophage phagocytic activity

Macrophage phagocytic activity T and phagocytosis-linked genes (CDC42 |, FCGRIA |,
FCGRIC |,ITGAY |, ITGB3 |, PLCEI |,RHOD |, RND3 |, DIRAS3 T, 1TGAI 1, PIK3CA T,
PIK3R3T, and PLCD1T)

Splenocyte proliferation | and adaptive immune cell activation |

Osteoclastic differentiation |, ROS |, superoxide anion |, NF-xB |, and peroxyl radical-
scavenging T

Glutamatergic transmission |, TNF-a |, and 1L-1§ |

ctivation, and inhibition; T, upregulation and activation.

Reference

Das et al. (2020a); Lemos et al. (2020)

Duggirala et al. (2014)

Barreiro Arcos et al. (2006); Manuele et al.
(2006)

Liu et al. (2001)

Kim et al. (2005)

Ahmadi et al. (2019)

Khuda-Bukhsh etal. (2010); Bhattacharyya et al.
(2011)

Asgar et al. (2015)

Khunluck et al. (2019)

Tian et al. (2019)

‘Tabana et al. (2016)

Seo et al. (2016)

Ying et al. (2009); Pan et al. (2010); Pan et al.
(2011a)

Dou et al. (2013)
Chen et al. (2021)
Ren et al. (2020)

Leema and Tamizhselvi (2018)

Pereira Dos Santos Nascimento et al. (2016)
Patel et al. (2013)

Zhang et al. (2019)

Ezzat et al. (2012)
Kang et al. (1998)
Noh et al. (2010)

Lee et al. (2014)

Lee and Lee (20152)

Lee and Lee (2015b)

Noh et al. (2011)

Ham et al. (2016)

Park et al. (2017)

Kim et al. (2017a)
Mandukhail et al. (2010)

Garg et al. (2018)

Abdullah et al. (2016); Jang et al. (2018)
Al-Zuaidy et al. (2016)

Jang et al. (2020)

Zhang et al. (2010)

Panda and Kar (2006)

Verma et al. (2013)

Choi et al. (2017)

Chang et al. (2015)

Kalpana et al. (2019)

Lee et al. (2010)

Kim et al. (2013)

Kashyap et al. (2020)

Hornick et al. (2011); Das et al. (2020a)
Medrano-Jiménez et al. (2019)

Gay et al. (2020)

Narasimhan et al. (2019)

Kishore Kumar et al. (2017)

Pradhan et al. (2020)

Kaur et al. (2016)

Zhou et al. (2020)

Monsef-Esfahani et al. (2013)
Luo et al. (2020)

Pandy and Vijeepallam (2017)
Capra et al. (2010)

Shaw et al. (2003)

Thuong et al. (2005)

Beh et al. (2012)

Pan et al. (2011b)

Pan et al. (2009)

Ojewole and Adesina (1983)
Tizuka et al. (2007)
Lagunas-Herrera et al. (2019)
Wigati et al. (2017)

Ding et al. (2005)

Cheng et al. (2012)

Ahn etal. (2014); Kim et al. (2017b); Heriniaina
etal. (2018)

Kim et al. (2018)
Nam and Kim (2015)
Mishra et al. (2010)
Mankar et al. (2013)

Alkorashy et al. (2020)

Lee et al. (2017)

Lee et al. (2013)

Ribas et al. (2008)
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Animal model

Administration Experimental

duration

approach

Reference

SD rats Ether-induced arthritis | ip. 23 days 50 and Suppressed new vessel formation | Pan et al. (2010)
‘model 100 mg/kg
ICR mice Murine air pouch ip. 6h 50,100,and | Inhibited monosodium urate Yao et al. (2012)
‘model 200 mg/kg crystal-induced inflammation
SD rats Drug-induced liver po. 21 days 15 and Decreased ALT, AST, and ALP  Sharma et al. (2023)
injury model 10 mg/kg levels
Wistar male | Type IV collagenase T 6 weeks 100 mg/kg Reduced the expression of brain | Zhang et al. (2021)
rats was injected into the edema and inhibited
left striatum inflammation
Wistar rats | HFHFD-induced po. 60 days 15 and Reduced TG, TC, and LDL-Hand | Batra et al. (2023a)
dyslipidemia model 10 mg/kg improved plasma atherosclerosis
index and Castelli risk index
Albino male | Isoproterenol-induced | p.o. 28 days 50 mg/kg Reduced heart to body weight ~ Rong et al. (2023)
rats ‘myocardial infarction ratio, cardiac diagnostic markers,
‘model inflammatory markers, and
apoptotic markers
db/db mice po. 10 weeks 10 mg/kg Decreased weight and increased  Lee et al. (2021)
the serum RANKL/OPG ratio
ICR mice Potassium oxonate- | ip. 1h 50,100,and | Decreased hyperuricemia Ding et al. (2005)
induced hyperuricemia 200 mg/kg
SD rats Acute oral toxicity po. 14 days 2000 mg/kg | Did not produce any considerable | Tabana et al. (2016)
toxic behavioral effects
Athymic HCT116 cell xenograft | p.o. 21 days 50,100, and | Suppressed tumor growth by
nude mice | mouse model 200 mg/kg/ | 94.7% relative to the vehicle-
day treated group.
Female Swiss | Acute oral toxicity po. 14 days 10, 50, and Possessed high safety profile Jamuna et al. (2015)
albino mice 100 mg/kg
Swiss albino | Cerulein-induced acute | ip. 6h 10 mg/kg Improved acute pancreatitis Leema and
mice pancreatitis Tamizhselvi (2018)
Female Swiss | Carrageenan-induced | ip. 45h 0.1, 1, and Decreased neutrophil migration  Pereira Dos Santos
mice pleurisy 5 mg/kg Nascimento et al.
(2016)
Female Swiss | Forced swimming test, | p.o. 1h 0.1,1,10,and | Antidepressant-like action Capra et al. (2010)
mice tail suspension test, or 100 mg/kg
open-field test
Swiss mice | Acetic acid-induced | ip. 05h 001,01,1, | Improved visceral and Meotti et al. (2006)
visceral nociceptive and 10 mgkg | inflammatory pain
Swiss albino ip. 4 weeks 80 mg/kg Increased brain DA and decreased | Basu et al. (2016)
mice DOPAC
Female T4-induced po. 1 week 05 and Anti-hyperthyroid Panda and Kar
Wistar rats 1.0 mg/kg/day (2006)
Wistar STZ-induced diabetic ~ p.o. 6 weeks 1 mg/kg Decreased blood glucose level and | Verma et al. (2013)
albino rats | rats lipid level
C57BLIGN | STZ-induced diabetic 11 weeks 001%, wiw | Ameliorates steatosis and Choi et al. (2017)
mice rats inflammation
SD rats HFED-induced type | p.o. 45 days 1 mg/kg/day | Improves insulin sensitivity Kalpana et al. (2019)
2 diabetes
SD rats HFHED-induced po. 74 days 15 and Reversed insulin resistance Batra et al. (2023b)
diabetes model 10 mg/kg/day
SD rats Galactose-fed rats po. 2 weeks 10, Kim et al. (2013)
50 mg/kg/day
C57BL/ CFA-induced anxiety  p.o. 2 weeks 2,10, and Ameliorates anxiety-like Luo et al. (2020)
6 mice 50 mg/kg behaviors
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Cell line Species Category Detection Tested Reference
method concentration or
ICso
PC3 Human Androgen MTT assay 33, 66, 133, 266, and 533 mg/ | Inhibited cell proliferation | Liu et al. (2001)
adenocarcinoma cell mL (72 h), ICyo = 157 +
25 mg/mlL
HL-60 Human Leukemia cell line MTT assay 0.025,0.05, 0.1, 0.2, and Induced apoptosis via Kim et al. (2005)
0.5 mg/mL (24 h) ICso = activation of NF-xB and
0.5 mg/mL. caspase-3
A375 Human Melanoma cell MTT assay 6,12, 24, 30, 48, and Inhibited cell proliferation | Khuda-Bukhsh et al.
60 M (24 h) and induced apoptosis (2010)
KKU-100 Human Cholangiocarcinoma | MTT assay 250, 300, 350, 400, and Induced cell apoptosis Asgar et al. (2015)
cell line 500 WM (72 h) ICs =
4862 £ 15 uM
KKU-M214 Human Cholangiocarcinoma | MTT assay 50, 300, 350, 400, and 500 Induced cell apoptosis
cell line (72 h) 1Cso = 4935 + 4.7 M.
HG9 cells Human Bile duct epithelial cell | MTT assay (20-72 h) ICs > 500 M. Lower cytotoxic effects
line
BW 5147 Human T-cell lymphoma cell | Trypan blue 10, 50, 100, and 500 pg/ Inhibited cell proliferation | Barreiro Arcos et al.
line exclusion method | mL (72 h) (2006); Manuele et al.
(2006)
ECso = 251 15 pg/mL
MCF-7 Human Human breast MTT assay 29717 £ 7.99 pg/mL Inhibited cell proliferation | Nasseri et al. (2022)
adenocarcinoma
KKU-100 Human Cholangiocarcinoma | Sulforhodamine B 0.08, 0.16, 033, 0.65, 1.3, and | Anti-migration effect Khunluck et al. (2019)
cell line assay 2.6 mM (24-48 h), ICy,
24h=192mM ICs 48h =
089 mM
DoTc2 Human Cervical cancer cell lines | Cell counting assay | 356, 6.12, 12,5, 25, 50,and | Triggered apoptosis and  Tian et al. (2019)
100 M (24 h) ICso = 25 uM | cell cycle arrest and
inhibited cell invasion
SiHa Human Cervical cancer cell lines | Cell counting assay | 3.56, 6.12, 125, 25, 50, and
100 M (24 h) IC5, = 15 M
Hela Human Cervical cancer cell lines | Cell counting assay | 356, 6.12.125, 25, 50, and
100 uM (24 h) IC5g = 7.5 pM
C33A Human Cervical cancer cell lines | Cell counting assay | 3.56, 6.12, 125, 25, 50, and
100 uM (24 h) IC5, = 25 pM
HCVEpC Human Normal cell Cell counting assay  3.56, 6.12,12.5, 25, 50, and
100 1M (24 h) IC5, = 90 M
KKU-100/KKU-  Human Cholangiocarcinoma | MTT assay 1,2,3,and 4mgmL 24h, | Antiproliferative Prompipak et al. (2021)
2138 cell 48 h, and 72 h)
1C50 = 1.06 + 0.03 mg/mL,
2.14 £ 0,08 mg/mL
RAW 2647 Mouse Murine macrophage cell | MTT assay 1,5,10, 25, and 50 ug/mL, did Kim et al. (2004)
line not affect the cell viability
RAW 2647 Mouse Murine macrophage cell | MTT assay 1,10, 25, and 50 ug/mL, did | Inhibited iNOS Kim et al. (1999)
line not affect the cell viability
RAW 2647 Mouse Murine macrophage cell | MTT assay 30, 100, and 300 pM (20h)  Anti-inflammatory Yao etal. (2012)
line
RA-FLS Human Fibroblast-like MIT assay 10, 20, 30, 40, and 50 kM Inhibited proliferation, Chen et al. (2022)
synoviocytes (24h,48h) ‘migration, and invasion
HASMCs Human Airway smooth muscle | CCK-8 assay Inhibited proliferation Fan et al. (2022)
cells
Fibroblast-like ~ Mouse Adjuvant arthritis rat | MTT assay 125, 250, 500, and 1,000 Ying et al. (2009)
synoviocytes cells M (24 h)
Fibroblast-like ~ Mouse Adjuvant arthritis rat | MTT assay 15,30, and 60 mM (24 h) did | Anti-rheumatoid arthritis | Dou et al. (2013)
synoviocytes cells not display remarkable
cytotoxicity
INS-1 pancreatic ~ Mouse Pancreatic f cells MTT assay 5,10, 20, 25, 50, and 100 uM | Stimulated the secretion of | Park and Han (2023);
B cells insulin Park et al. (2022)
RGC-5 cell Mouse Retinal ganglion cell | MTT assay 625, 125, 250, and Protected RGC-5 cells Pan et al. (2022)
500 mM (6 h) exposed to high-glucose
environments
RGMCs HBZY- ~ Mouse Mesangial cell MTT assay 001, 5,01, and 1 uM (48 h)  Inhibited rat glomerular | Liang et al. (2021)
1 cells ‘mesangial cells
proliferation and ECM
proliferation and cell
hypertrophy
SH-SYSY cells  Human Dopaminergic cell MTT assay 1,5,10,and 50 M (24h) | Attenuated Gay et al. (2020)
neurodegeneration
PCI2 cells Mouse Nerve cell MIT assay 10, 20, and 40 uM Anti-amyloidogenic and | Kashyap et al. (2020)
anti-cholinesterase
EL-4 T cells Mouse T-lymphoma cell Trypan blue dye 1, 10, 25, and 50 M Attenuates allergy Cheng et al. (2012)
exclusion
BIGFIO cells Mouse Melanoma cells Crystal violet assay | 0.1, 1, 10, 20, and Increases melanin synthesis | Ahn et al. (2014)
50 pM (24 h)
BIGF10 cells Mouse Melanoma cells MTT assay 0-40 pg/mL (24 h) Stimulates melanogenesis | Kim et al. (2017a)
BIGF10 cells Mouse Melanoma cells MTT assay 05, 10, 25, 50, 100, 150, 200, Stimulates melanogenesis | Heriniaina et al. (2018)
and 250 pM (48 h)
IMR 90 Human Lung fibroblast cells MTT assay 1,2,48,and 16 pM (24 h) | Anti-aging Nam and Kim (2015)
HaCaT Human Fibroblasts MTT assay 05,5, 15,50, 150, 250, and  Downregulated MMP-1 | Kim et al. (2018)
Keratinocytes 500 M (24 h) expression
U937 Human Macrophage cell line | CytoTox96 LDH- 10, 50, and 100 pg/mL No detectable cytotoxic | Acharya et al. (2013)
release kit effects
U937 Human Monocytic cell line MTT assay 125, 25,50, 100, 200, and | No detectable cytotoxic | Alkorashy et al. (2020)
400 pg/mlL effects
Caco-2 Human Colonic WST-1 cytotoxicity | 250 mM. No detectable cytotoxic | Galkin et al. (2009)
adenocarcinoma assay effects
HUVECs Human Human endothelial cell | MTS assay ICs = 0.73 M Antitumor ‘Tabana et al. (2016)
3T3-L1 cells Mouse Embryo fibroblasts MTT assay 5,10, 25, 50, and Did not affect the viability | Jang et al. (2018)

100 mM (24 h)
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