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Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high
expression in various tumors and is associated with a poor prognosis. FAK
activation promotes tumor growth, invasion, metastasis, and angiogenesis via
both kinase-dependent and kinase-independent pathways. Moreover, FAK is
crucial for sustaining the tumor microenvironment. The inhibition of FAK
impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore,
developing targeted inhibitors against FAK presents a promising therapeutic
strategy. To date, numerous FAK inhibitors, including IN10018, defactinib,
GSK2256098, conteltinib, and APG-2449, have been developed, which have
demonstrated positive anti-tumor effects in preclinical studies and are
undergoing clinical trials for several types of tumors. Moreover, many novel
FAK inhibitors are currently in preclinical studies to advance targeted therapy for
tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in
terms of their scaffold function, are increasingly evident, holding promising
potential for future clinical exploration and breakthroughs. This review aims to
clarify FAK’s role in cancer, offering a comprehensive overview of the current
status and future prospects of FAK-targeted therapy and combination
approaches. The goal is to provide valuable insights for advancing anti-cancer
treatment strategies.
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1 Introduction

Focal adhesion kinase (FAK), also known as PTK2, is a non-receptor tyrosine
kinase encoded by the PTK2 gene. It plays a critical role in signal transduction
mediated by both growth factor receptors and integrins (Kornberg et al., 1992). Upon
activation by various extracellular signals received through transmembrane receptors
on the cell surface, FAK aggregates in a focal adhesion manner in the cytoplasmic
membrane. Autophosphorylation at tyrosine residue 397 (Tyr397), leading to FAK’s
activation and initiation of downstream signaling cascades. This process involves a
conformational change exposing the phosphorylation site through lipid binding
(Acebron et al., 2020; Le Coq et al., 2022). The FAK protein consists of three distinct
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domains: an N-terminal 4.1 ezrin-radixin-moesin domain
(FERM), a central kinase domain, and a C-terminal focal
adhesion targeting (FAT) domain (Figure 1) (Lim et al., 2008).
Through its FERM domain, FAK acts as an intracellular scaffold
facilitating the interconnection of multiple oncogenic signaling
pathways via diverse protein-protein interactions. FAK positively
regulates tumor progression by promoting cell proliferation,
survival, intracellular signaling, and angiogenesis. It also contributes
to maintaining the stability of the tumor microenvironment
(TME) (Sulzmaier et al., 2014; Dawson et al., 2021). At the
adhesion sites of cells with the extracellular matrix (ECM), FAK
enhances cellular dynamics, migration, and invasion capabilities by
participating in the formation of molecular complexes within the actin
and adhesion regulation network (Sulzmaier et al., 2014; Schoenherr
et al., 2017; Tapial et al., 2020).

FAK stands out as a key player in cancer pathogenesis, being
abnormally activated across various cancer types. Its expression
level not only is inversely linked to patient survival but also
positions FAK as a pivotal target for thwarting tumor
progression and curbing recurrence (Zeng et al., 2016; Kanteti
et al., 2018; Aboubakar et al., 2019a; Aboubakar et al., 2019b; Qiao
et al., 2020; Wei et al., 2021; Roy-Luzarraga et al., 2022). Rigorous
meta-analyses underscore the significance of heightened FAK
expression in predicting unfavorable overall survival (OS)

outcomes in a spectrum of solid tumors. These include gastric
cancer, ovarian cancer, endometrial cancer, glioma, breast cancer,
and squamous cell carcinoma (Zeng et al., 2016; Qiao et al., 2020).
Compared to non-small cell lung cancer (NSCLC), small-cell lung
cancer exhibits a higher degree of malignancy and is more prone to
early-stage metastasis. It is worth noting that the expression of
FAK in small-cell lung cancer is significantly elevated compared to
other types of lung cancer, which implying its potential association
with the degree of malignancy as well as invasion and metastatic
capabilities (Aboubakar et al., 2019b).

As a paralogous homolog of FAK, proline-rich tyrosine kinase
2 (PYK2) displays a similar multi-domain organization and
protein binding sites to FAK, forming a subfamily of adhesion
kinases together with FAK that is crucial in regulating signaling
networks involved in tumor growth and metastasis (Sulzmaier
et al., 2014; Naser et al., 2018). Unlike FAK, PYK2 does not localize
to focal adhesions, relying instead on intracellular calcium
mobilization for activation (Avraham et al., 2000). Moreover,
inhibiting FAK can induce an increase in the expression or
phosphorylation of PYK2 in cancer cells (Fan and Guan, 2011).
The concurrent targeting of both FAK and PYK2 is believed to
confer a more advantageous anti-cancer effect. FAK kinase
inhibitors are typically classified as either FAK specific
inhibitors or dual FAK/PYK2 inhibitors (Berger et al., 2021).

FIGURE 1
FAK domain structure. FAK consists of a central kinase domain flanked by a FERM homology domain on the N-terminal side and a C-terminal FAT
domain. Both the terminal domains are separated from the kinase domain by a linker region containing proline-rich regions (PRR). Important tyrosine (Y)
phosphorylation (P) sites are indicated; Y397, K454, andH58 play crucial roles in FAK activation. FAK binding partners are displayed at their interaction sites
within FAK. The color signifies the function of FAK interacting proteins, which facilitate diverse activities of cancer cells by interacting with FAK
(Sulzmaier et al., 2014).
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However, there is currently no clinical evidence demonstrating
specific differences in therapeutic efficacy between the use of FAK
or dual FAK/PYK2 kinase inhibitors (Dawson et al., 2021).
Multikinase inhibitors containing FAK, such as Conteltinib and
APG-244, have exhibited significant efficacy in specific tumor
types and are currently undergoing clinical investigation (Xing
et al., 2022; Zhao et al., 2022). Despite the promising anti-tumor
activity demonstrated in preclinical studies, the clinical efficacy of
FAK inhibitors as a monotherapy for anticancer treatment remains
limited. This limitation stems from the dual role of FAK, acting
both as a kinase and a protein scaffold, which mediates drug
resistance through crosstalk with specific signaling pathways in the
network (Gerber et al., 2020). As adjuvant therapy, the
combination of FAK inhibitors with conventional chemotherapy
agents as shown enhanced anti-tumor potential (Dawson et al.,
2021). Consequently, the exploration of combining FAK inhibitors
with chemotherapy, radiotherapy or immunotherapy has become
as a focal point of research in recent years.

This review critically delves into the role of FAK in regulating
tumor cell signal transduction, diverse cellular activities, the
immune microenvironment, and drug resistance. Additionally, it
explores the current research progress on FAK inhibitors in
anticancer therapy, aiming to provide new insights for the future
development and application of FAK inhibitors in the field.

2 Role of FAK in different
signaling pathways

2.1 PI3K/AKT signaling pathway

FAK plays a pivotal role in regulating the survival and
development of tumor cells through mediating multiple signaling
pathways (Figure 2). One key regulatory pathway for FAK is the
PI3K/AKT signaling pathway, which mediates various cellular
functions, such as proliferation, survival, migration, invasion, and
metastasis (Fresno et al., 2004). When activated, FAK forms
complexes with PI3K, boosting PI3K activation and generating
more PIP3, initiating downstream pathway signaling. In uveal
melanoma (UM), characterized by activating mutations in
GNAQ/GNA11, encoding the Gαq protein, FAK has been
identified as a central mediator of Gαq-driven signaling (Feng
et al., 2019; Paradis et al., 2021). Additionally, a whole-genome
CRISPR screen has revealed that activation of the PI3K/AKT
pathway is not only essential for the survival of human UM cells
but also contributes to drug resistance. Specifically, Gαq can
upregulate FAK expression and subsequently activate PI3K by
binding to its p85 regulatory subunit and inducing tyrosine
phosphorylation, thereby initiating downstream signaling
cascades associated with cancer promotion (Arang et al., 2023).

FIGURE 2
The regulatory mechanism of FAK in tumorigenesis, metastasis and angiogenesis. FAK promotes oncogenesis by activating transcription factors via
the p53, YAP, RAS/RAF/MEK/ERK, PI3K/AKT, and downstream pathways including mTOR, β-catenin, or JNK.
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Targeting FAK effectively blocks this process. As a crucial upstream
regulator of the PI3K/AKT pathway, FAK activates PI3K/AKT and
its related downstream effectors, including mTOR, β-catenin and
p53, promoting cancer progression (Claesson-Welsh and Welsh,
2013; Sulzmaier et al., 2014; Guo et al., 2020). The PI3K/AKT/
mTORC1 pathway is a widely targeted therapeutic pathway for
various cancer types (Popova and Jucker, 2021; Tewari et al., 2022).
Despite the promising clinical activity of mTORC1 inhibitors, their
effectiveness in treating breast cancer is limited, with certain patients
developing rapid drug resistance. Inhibiting FAK has been shown to
enhance the sensitivity of rapamycin resistant tumors to
mTORC1 inhibition, revealing an inherent reliance of mTORC1-
resistant tumors on FAK (Cuellar-Vite et al., 2022). Combining FAK
inhibitors with mTORC1 inhibitors to improve efficacy against
drug-resistant cancers appears feasible (Shi et al., 2016; Liao
et al., 2022; Qiao et al., 2022; Wang Z et al., 2022; Yang F et al.,
2022), although further validation through clinical studies is
necessary. In addition, activation of the PI3K/AKT/β-catenin
pathway by FAK is crucial for promoting β-catenin nuclear
translocation, influencing the transcriptional regulation of tumor
cell genesis (Xing et al., 2021; Lee et al., 2023).

2.2 P53 signaling pathway

P53, a prominent tumor suppressor gene, plays a crucial role in
regulating tumor growth and maintaining the anti-cancer effect
properties associated with cell cycle regulation (Hu et al., 2021). The
relationship between FAK and p53 is intricate. Studies have
demonstrated that p53 directly binds to the PTK2 promoter,
inhibiting the transcription of PTK2 (Golubovskaya and Cance,
2010). Various drugs achieve FAK targeting effect by modulating
this interaction (Lin et al., 2019; Klungsaeng et al., 2020; Miao et al.,
2020; Shen et al., 2022). Furthermore, p53 can indirectly
downregulate FAK expression. Wild-type p53 transactivates the
transcription of immunoglobulin superfamily 9 (IGSF9), and the
resulting IGSF9 interacts with FAK, inhibiting FAK/AKT signal
transduction in breast cancer (Li H et al., 2022). Recent research has
unveiled that the extracellular domain (ECD) of IGSF9 binds to
T cells, inhibiting their proliferation and activation, thereby creating
a microenvironment conducive to tumor growth (Liu X et al.,
2023a). Consequently, upregulating IGSF9 expression to inhibit
FAK function may not be an ideal strategy. Additionally, the
impact of FAK as a scaffold protein on p53 can be critical.
Studies indicate that nuclear FAK promotes the ubiquitination of
p53 in a kinase-independent manner by enhancing MDM2 activity.
The inactivation of p53 by FAK requires the binding of FAK FERM
F1 leaf and p53 FERM F2 leaf, facilitating the nuclear localization of
FAK, while FERM F3 leaf connects with MDM2, mediating
proteasomal degradation (Lim et al., 2008; Steinberg et al., 2023).
Targeting specifically the FAK FERM domain of FAK using its
scaffold function may offer novel therapeutic avenues to counteract
this pro-cancer effect (Pomella et al., 2022). However, clinical and
preclinical studies have revealed that higher FAK copy number and
gene overexpression are associated with worse disease-free survival
in patients with mutant-type p53, but not in patients with wild-type
p53 (Lakshmanan et al., 2021; Yu et al., 2021; Pifer et al., 2023). This
could be attributed to the fact that mutated p53 loses its inhibitory

effect on FAK transcription, restoring the positive influence of FAK
on the biological behavior of tumor cells. Lakshmanan et al.
developed two genetically engineered lung cancer mouse models
KrasG12D/+; Trp53R172H/+; Ad-Cre (KPA) and KrasG12D/+; Ad-Cre
(KA), revealing the ST6GalNAc-1/MUC5AC axis as a mediator
of mutant p53’s regulation of FAK signal transduction. The
p53 R175H mutation leads to increased expression of
ST6GalNAc-I, promoting glycosylation of MUC5AC and
enhancing its interaction with integrin β4. This, in turn, increases
phosphorylation of FAK at Y397, ultimately promoting lung cancer
invasion and liver metastasis (Lakshmanan et al., 2021).

2.3 RAS/RAF/MEK/ERK signaling pathway

Abnormal activation or gene mutation of the RAS/RAF/MEK
signaling pathway is a crucial factor in sustaining tumor survival and
invasion (Imperial et al., 2019). In recent years, targeting RAS, RAF,
or MEK to disrupt pathway transduction has emerged as a
promising breakthrough in cancer treatment (Song et al., 2023).
Intriguingly, there is a close relationship between FAK expression
and the transduction of the RAS/RAF/MEK pathway. FAK
promotes the invasion and metastasis of tumor cells by
regulating the activation of the RAS/RAF/MEK/ERK signaling
pathway (Shao et al., 2022; Yoon et al., 2022). A study has
identified a significant correlation between ERK5 activity and
FAK expression, as well as Ser910 site phosphorylation in lung
cancer and malignant melanoma. ERK5 increases the expression of
the transcription factor USF1, which, in turn, upregulates the
expression of FAK and activates the FAK signal to promote cell
migration (Jiang W et al., 2020). Furthermore, TCGA cancer
survival data indicates that lower RNA expression of PTK2 is
associated with better survival outcomes in KRAS mutated
tumors (Zhang L et al., 2021). This suggests that FAK could
potentially serve as an effective biomarker for cancer
development induced by abnormal KRAS signaling. Inhibiting
the expression of KRAS G12C induces sustained activation of
FAK, subsequently restoring the vitality of KRAS G12C mutant
tumor cells, including a human CRC cell line (SW837), a human
Pancreatic cancer cell line (Mia PaCa-2), and 3 human NSCLC cell
lines (NCI-H23, NCI-H1792, and NCI-H2122), through the FAK/
YAP pathway (Zhang L et al., 2021). High-throughput
transcriptome sequencing of three cell lines from malignant
peripheral nerve sheath tumors resistant to MEK inhibitors,
revealed that the upregulation of FAK/SRC, leading to the
reactivation of the ERK signaling pathway, is a crucial factor in
cell resistance. Therefore, the compensatory activation of FAK-
related pathways, such as FAK/SRC and FAK/YAP, is a crucial
pathway contributing to the ineffectiveness of single targeted
therapies for RAS, RAF, or MEK in KRAS mutant tumors.
Combining FAK inhibition therapy can potentially restore the
sensitivity of drug-resistant cells to MEK or KRAS inhibitors,
improving their anti-tumor effect (Gu et al., 2022; Tarin et al.,
2023). Based on these preclinical research findings, a phase II clinical
trial (NCT04620330) is currently underway (Capelletto et al., 2022)
to investigate the true efficacy of the combination therapy of FAK
inhibitor defactinib and the RAF/MEK inhibitor VS-6766 for KRAS-
mutant NSCLC. FAK holds the potential to serve as a promising
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therapeutic target for future combination therapy in KRAS
mutant tumors.

2.4 YAP signaling pathway

The Yes-associated protein (YAP), a primary downstream
effector of the Hippo pathway, exhibits dynamic cellular
localization, influencing its role as a transcriptional activator.
While YAP in the cytoplasm undergoes ubiquitination and
degradation, nuclear YAP acts on TEA domain DNA-binding
proteins to induce gene transcription (Heng et al., 2021).
Phosphorylation intricacies govern YAP’s cytoplasmic-nuclear
translocation. Phosphorylation at S127 and S397 suppresses
nuclear localization, while Y357 phosphorylation enhances YAP
stability and facilitates nuclear translocation, with FAK playing a
crucial role in this phosphorylation process (Lachowski et al., 2018;
Fard et al., 2023). In cholangiocarcinoma, FAK and activated AKT
synergize to induce the YAP oncogene, promoting AKT/Jag1-driven
biliary tract cancer occurrence (Song et al., 2021). Interestingly, YAP
reciprocally activates FAK, contributing to tumor cell migration
(Goto et al., 2020). The YAP-TEAD axis, highlighted by Jie Shen
et al., plays a crucial role in inducing FAK activation by targeting
platelet-derived growth factor 1 (THBS1) in breast cancer (Shen
et al., 2018). The FAK-YAP signaling pathway emerges as a key
player in chemotherapy resistance and cancer relapse. Activation of
the FAK-YAP cascade, disrupts COL17A1, enabling LGR5+p27+
cancer stem cells (CSCs), to exit dormancy, re-enter the cell cycle,
and restore proliferative capacity. Targeting YAP through TEAD
inhibitors provides an effective strategy to impede tumor organoid
regeneration, offering a novel approach for overcoming cancer
recurrence following chemotherapy (Ohta et al., 2022).
Furthermore, YAP-FAK contributes significantly to radiotherapy
resistance. The focal adhesion component, p130Cas, regulates the
YAP-FAK signaling pathway, mediating radiotherapy resistance in
NSCLC. p130Cas directly interacts with FAK to regulate YAP
activation and nuclear translocation (Li J et al., 2022). Targeting
the p130Cas-FAK interaction merges as a potentially cost-effective
strategy for overcoming YAP activation-mediated radioresistance
in NSCLC.

3 Role of FAK in the occurrence and
development of tumors

3.1 FAK promotes tumor cell survival and
proliferation

FAK plays a pivotal role in promoting the survival and
proliferation of tumor cells through both kinase-dependent and
kinase-independent mechanisms, orchestrating downstream signal
transduction. Recent insights highlight FAK’s dual role in phenotype
transition, with distinct functions in the cytoplasmic and nuclear
compartments. In the cytoplasm, activated FAK initiates survival
pathways in a PI3K andMAPK-dependent manner. Simultaneously,
within the nucleus, the FERM domain of FAK hinders the activation
of p53, thereby preventing inherent cell apoptosis (Del et al., 2022;
Ke et al., 2022). Previous studies have delineated various

mechanisms through which FAK promotes tumor cell survival
and proliferation. These include activating NF-κB to mediate the
expression of inhibitor of apoptosis proteins (IAPs), inducing
upregulation of cyclin D1 through the ERK pathway activation,
and interacting with receptor-interacting protein (RIP) via the death
domain kinase to neutralize the pro-apoptotic function of RIP
(Chuang et al., 2022). Moreover, FAK contributes to maintaining
tumor cell survival by countering anoikis, a form of cell death
induced by cell detachment from the ECM. FAK reduces the
sensitivity of cancer cells to receptor ligands inducing death by
stabilizing the TPL2 protein (Del et al., 2022). Additionally, FAK
inhibits cellular senescence, a process crucial for maintaining cell
survival (Fard et al., 2023; Steinberg et al., 2023; Tien et al., 2023).
Notably, the Sema6C protein, initially recognized as Semaphorin Y,
not only forms a complex with tyrosine kinases c-Abl, activating
FAK, and leading to the nuclear localization of the YAP
transcriptional co-activator. This interaction enables YAP-
dependent cancer cells to survive under nutrient deprivation
conditions. Inhibition of Sema6C expression reverses these
effects, inducing cellular senescence (Fard et al., 2023).

The dysregulation of CDK4/6 in tumor cells is a critical factor in
sustaining tumor cell proliferation, making CDK4/6 inhibitors a
focal point in inhibiting tumor growth. However, utilizing CDK4/
6 inhibitors as a standalone treatment often leads to the
development of drug resistance. This resistance is thought to be
linked to FAK signaling, which mediates CDK4/6-independent
activation of CDK2, driving cell cycle progression and fostering
cell survival even in the presence of CDK4/6 inhibitors (Jiang H
et al., 2020). Furthermore, research suggests a correlation between
CDK4/6 activity and the subcellular localization of FAK in
B16F10 melanoma cells. Inhibiting FAK kinase activity promotes
nuclear the localization of FAK. In its inactive state, nuclear FAK,
leveraging its scaffold function, recruits CDH1 and CDK4/6 to its
N-terminal FERM domain. This recruitment facilitates the
ubiquitination and proteasomal degradation of CDK4/6,
suppressing melanoma cell proliferation. Importantly, this
process occurs exclusively when FAK is localized within the
nucleus (Murphy et al., 2022). The scaffold structure of nuclear
FAK has been observed in multiple studies to possess the ability to
facilitate the degradation of various nuclear factors in multiple
studies (Jeong et al., 2019; Zhou et al., 2019; Jeong et al., 2021;
Jeong et al., 2022). Therefore, concurrent inhibition of FAK and
CDK4/6 expression holds the potential to overcome drug resistance.
Currently, preclinical studies in intrahepatic cholangiocarcinoma
and diffuse gastric cancer (DGC) have demonstrated the synergistic
anti-cancer effects of combining FAK and CDK4/6 inhibitors (Song
et al., 2021; Peng et al., 2023) These findings provide a solid
theoretical foundation for future clinical studies in this area.

3.2 FAK promotes tumor cell migration
and invasion

The heightened expression of FAK is intricately linked with
unfavorable outcomes for cancer patients due to its pivotal role in
promoting tumor metastasis. FAK’s influence on cell migration
involves its participation in the integration and resolution of
components within the focal adhesion complex, coupled with
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dynamic interactions with intracellular Actin and the ECM. In
migrating cells, the contraction of myosin stress fibers attached
to the focal adhesion complex exerts force to regulate cell migration
(Tapial et al., 2020; Le Coq et al., 2022). Additionally, various
intracellular protein molecules have been identified that activate
FAK, thereby promoting tumor cell invasion and migration (Hu
et al., 2019; Jiang W et al., 2020; Dong et al., 2021; Kim et al., 2021).
For example, PPFIA binding protein 1 induces the movement of
glioblastoma U87 MG and U251 MG cell lines by interacting with
FAK to activate Src and JNK (Dong et al., 2021). Similarly, Rho-
associated protein kinase 1 (ROCK1) enhances the migratory ability
of NSCLC cells through the PTEN/PI3K/FAK signaling pathway
(Hu et al., 2019). Sialylation, a terminal glycosylation modification
of glycoproteins, plays a crucial regulatory role in facilitating tumor
cell adhesion and immune evasion (Jarahian et al., 2021; Pietrobono
and Stecca, 2021). Sun et al. employed the CRISPR/Cas9 system to
establish a stable FAK knockout (KO) cell line in HeLa cells,
revealing that sialylation levels were significantly reduced in KO
cells, leading to inhibited cell migration. Specifically, FAK primarily
regulates N-glycan sialylation via the FAK/PI4KIIα/GolPH3/ST
axis, reaffirming FAK’s unique position in multiple pathways
regulating cell migration (Sun et al., 2023).

Epithelial-mesenchymal transition (EMT) plays a crucial role in
the infiltration and spread of cancer cells, and FAK expression is
positively correlated with EMT. Epidermal growth factor induces
EMT in colorectal cancer cells by activating FAK (Huang et al.,
2020). Tspan9 stimulates osteosarcoma migration by inducing EMT
via activation of the FAK/Ras/ERK1/2 signaling cascade (Shao et al.,
2022). The activated ERK further promotes cell contraction and
stimulates tumor cell movement by driving actin polymerization
and edge protrusion adhesion turnover (Samson et al., 2022). FAK
has been identified as a significant regulatory factor for interleukin-6
induced EMT in colorectal cancer (Huang et al., 2023). In DGC, the
loss of CDH1 (encoding E-cadherin, a key regulator of the EMT)
and RHOA Y42C mutation in gastric organs of engineered mice co-
activate the FAK/AKT/β-catenin and YAP-TAZ pathways,
promoting the transformation of normal gastric epithelial cells
into highly invasive DGC cells (Zhang et al., 2020). Despite the
single drug resistance observed with FAK inhibitors, studies have
shown that combining FAK inhibitors with MAPK inhibitors can
effectively eliminate compensatory ERK activation, synergistically
inhibiting the migration and invasion of malignant tumors such as
DGC and UM (Paradis et al., 2021; Peng et al., 2023). Further
investigation is warranted to uncover the specific molecular
mechanisms underlying this phenomenon.

3.3 FAK regulates tumor angiogenesis

Angiogenesis is essential for the malignant development of
tumors, and key regulatory molecules such as vascular
endothelial growth factor (VEGF), VEGFA, and vascular
endothelial growth factor receptor 2 (VEGFR2) play crucial roles
in this process (Wang et al., 2020; Shiau et al., 2021; Patel et al.,
2023). VEGFA, with a strong affinity for VEGFR2, promotes
angiogenesis by activating downstream pathways, including the
FAK-paxillin pathway. This activation facilitates the proliferation,
survival, and migration of vascular endothelial cells (Simons et al.,

2016; Wang et al., 2020). The VEGFR2-FAK signaling pathway
induces VEGFA secretion, promoting angiogenesis and vascular
permeability (Li L et al., 2022). In triple-negative breast cancer
(TNBC), The results showed a positive correlation between FAK and
VEGFR2 expression was observed, and knockout of FAK inhibited
endodermal tube formation and angiogenesis in zebrafish,
suppressing suppressed VEGF and VEGFR2 expression at the
molecular level (Shiau et al., 2021).

Temporal quantitative phosphoproteomic analysis of human
umbilical vein endothelial cells revealed that FAK phosphorylation
activation is an early phosphorylation-dependent signaling event in
the VEGFA/VEGFR2 pathway, emphasizing the crucial role of FAK
in initiating angiogenesis (Abhinand et al., 2023). Notably, distinct
phosphorylation sites on EC-FAK have divergent effects on tumor
angiogenesis in vivo. EC Cre+; FAK Y397F/Y397F small mutant mice
exhibited constitutive reduction in tumor growth and angiogenesis,
while EC Cre+; FAK Y861F/Y861F mice showed normal tumor growth
without significant inhibition of angiogenesis. These effects were
attributed to decreased VEGFR2 expression, attenuated integrin
β1 activation, and disruption of downstream FAK/Src/PI3K/AKT
signaling induced by EC FAK-Y397F (Pedrosa et al., 2019).
However, studies by Marina Roy-Luzarraga et al. found that
inducing endothelial FAK deficiency in both orthotopic and
spontaneous mouse model of pancreatic ductal adenocarcinoma
(PDA) did not hinder angiogenesis but reduced the incidence of
tumor metastasis and improved mouse survival (Roy-Luzarraga
et al., 2022). However, Combining EC-FAK inhibition with other
tumor therapies, such as Doxorubicin for melanoma (Tavora et al.,
2014), demonstrated potential effectiveness in suppressing tumor
angiogenesis, suggesting distinct effects of FAK inhibition when
combined with different cancer types. The impact of EC-FAK on
tumor angiogenesis may be intricately linked to the regulation of EC
barrier function (Jean et al., 2014; Roy-Luzarraga et al., 2022).

Contrary to FAK expression in ECs, FAK expressed in pericytes
(perivascular cells) may exert an opposing regulatory effect on
tumor angiogenesis (Lechertier et al., 2020). The loss of FAK in
pericytes enhances GAS6-stimulated receptor tyrosine kinase Axl
phosphorylation and upregulates Cyr61, promoting tumor growth
(Lechertier et al., 2020; Zhang et al., 2023b). Notably, FAK-Y861 in
pericytes plays a pivotal regulatory role in tumor vascular regression
and control of tumor growth (Lees et al., 2021). Targeting FAK
specifically in ECs rather than pericytes remains an urgent challenge
for future anti-FAK therapy.

4 Role of FAK in TME

TME comprises a diverse array of cell types, including cancer
cells, immune cells, dendritic cells, tumor-associated macrophages
(TAMs), cancer-associated fibroblasts (CAFs), tumor blood vessels,
lymphatics, adipocytes, and an ECM with collagen and elastin
fibrous networks, along with numerous cytokines. This complex
and dynamic ecosystem plays a pivotal role in evading immune
responses and promoting tumor progression (Xiao and Yu, 2021).
FAK influences various TME cell populations, ECM architecture,
and associated signaling pathways involved in immunosuppression
and matrix regulation, orchestrating the development of the
immunosuppressive TME (Figure 3) (Osipov et al., 2019).
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ECM is a crucial component in mediating FAK’s regulation of
the TME. CAFs are key regulators of tumor occurrence and
progression, residing in the tumor matrix surrounding tumor
cells. CAFs promote tumor fibrosis, resisting various therapies by
synthesizing collagen and other ECM molecules. Lumican,
overexpressed in CAFs, activates the integrin β1/FAK pathway,
promoting the growth and migration of gastric cancer cells
(Wang et al., 2017). In PDA, CAFs play a pivotal role in
promoting clonal growth, self-renewal, and migration, associated
with enhanced differentiation activity of CSCs. Inhibiting FAK
kinase activity in PDA cells eliminates the influence of CAFs on
clonal growth (Begum et al., 2019). Lysyl oxidase-rich extracellular
vesicles from CAFs promote tumor EMT through the activation of
the p-FAK/p-axis/YAP pathway, identified as a pivotal step in
collagen cross-linking. Targeting FAK disrupts this process (Liu
X et al., 2023b). However, FAK-targeted therapy can lead to stroma
depletion in the TME and decreased resident fibroblasts, resulting in
reduced TGF-β secretion and weakened inhibition of the
STAT3 signaling pathway. Combining FAK and STAT3 targeting
alleviates this impact (Jiang H et al., 2020). Discoidin domain
containing receptor 1 (DDR1), crucial for ECM stability through
collagen interaction, has FAK as an important downstream
regulatory molecule. Targeting DDR1 reshapes the TME,
inhibiting chemotherapy resistance induced by the ECM in

pancreatic cancer through the DDR1/PYK2/FAK pathway (Ko
et al., 2022). Matrix stiffness induces lipid metabolic crosstalk
between tumor and stromal cells, leading to bevacizumab
resistance in colorectal cancer liver metastases. FAK, in the FAK/
YAP pathway, plays a crucial role in this process. Inhibiting FAK
enhances anti-VEGF therapy efficacy by suppressing hepatic stellate
cell lipolysis (Zheng et al., 2023).

Despite the promise of immune checkpoint inhibitors, only a
fraction of cancer patients benefits from them due to the
immunosuppressive effects within the TME, involving regulatory
T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and
TAMs. Inhibiting FAK expression reduces the presence of these
immunosuppressive cells, affecting CSCs differentiation, and
creating a more favorable TME for anti-tumor immune responses
(Osipov et al., 2019). Furthermore, FAK has been found to inhibit the
expression of PD-L1 on tumor cells, enhancing the recognition
efficiency of cytotoxic T cells (Li et al., 2019; Zhang D et al., 2022).
Positive correlations between PD-L1 and FAK was discovered in PD-
L1-positive triple-negative breast cancer (TNBC) tissue samples
(Mohan et al., 2019). The infiltration of various immune cells
(CD8+ T cells, CAFs, and MDSCs) correlates with FAK expression.
Blair et al. suggest that a promising strategy to modulate the immune
microenvironment and enhance immunotherapy efficacy involves
targeting stromal components in combination. Their study

FIGURE 3
The role of FAK in tumor microenvironment (TME). The abnormal activation of FAK inhibits T cells, B cells, and dendritic cells (DCs) in the immune
microenvironment. Furthermore, the activation of FAK leads to the promotion of myeloid-derived suppressor cells (MDSCs), tumor-associated
macrophages (TAMs), cancer-associated fibroblasts (CAFs), and angiogenesis, all of which contribute to the progression of the tumors. FAK inhibitors,
when combinedwith PD-1/PD-L1 inhibitors, demonstrate amore powerful anti-tumor effect by blocking tumor growth and enhancing immune cell
functionality. ECM, extracellular matrix.
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showcased the effectiveness of co-inhibition strategies targeting
hyaluronic acid degradation and FAK, in combination with PD-1
blockade. This combined approach specifically reduced the number of
granulocytes and bone marrow-derived cells expressing C-X-C
chemokine receptor type 4 (CXCR4). Simultaneously, it facilitated
T cell infiltration leading to an enhancement in the therapeutic
outcomes of immune-based interventions for pancreatic cancer
(Blair et al., 2022). Combining the FAK inhibitors with anti-PD-
1antibodies demonstrated enhanced anti-cancer effects in C57BL/6 J
primary hepatocellular carcinoma model with complete immune
function, reducing Tregs and TAMs while increasing CD8+ T cell
population (Wei et al., 2021). FAK also impedes antigen the processing
and presentation in pancreatic cancer, contributing to immune evasion
of pancreatic cancer. Depletion of FAK enhances anti-tumor activity by
upregulating immune proteasome,MHC-I, and increasing CD8+ T cell
infiltration (Blanco-Gomez and Jorgensen, 2023; Canel et al., 2023).
CD11b, a protein in myeloid cells, enhances T cell-mediated immunity
through downregulation of interferon gene expression, leading to
suppression of tumor progression by decreasing infiltrating myeloid
cells. Inhibiting FAK-mediatedmitochondrial dysfunction activates the
STING/STAT1 pathway, contributing to this process (Schmid et al.,
2018; Panni et al., 2019; Liu Y et al., 2023a).

FAK serves as a potential target for radiotherapy, modulating
tumor immune responses. A study demonstrated that radiation
alone or in combination with checkpoint immunotherapy failed to
elicit antigen-specific T-cell responses in PDA. In contrast, In the
p48-Cre/LSL-KrasG12D/p53Flox/Flox (KPC) genetically engineered
mouse models, combined administration of FAK inhibitors with
checkpoint immunotherapy and radiation led to complete tumor
regression and long-term survival in spontaneous PDA mice. This
highlights FAK inhibition’s role in facilitating radiotherapy-induced
tumor immunity and enhancing responsiveness to checkpoint
immunotherapy (Lander et al., 2022). Additionally, combining
low-dose radiotherapy with FAK inhibitors mitigated fibrosis and
hypoxia in pancreatic cancer, promoting CD8+T cell infiltration and
enhancing sensitivity to cancer radiotherapy (Chen H et al., 2022).
Therefore, Clinical research is needed to assess the safety and efficacy
of this combination therapy.

5 FAK mediates drug resistance

The pivotal role of FAK in regulating chemoradiotherapy
resistance across various cancers underscores its potential as a
therapeutic target. Targeting FAK has demonstrated sensitizing
effects on both radiotherapy and various chemotherapy
treatments (Allert et al., 2022; Gu et al., 2022; Jang et al., 2022;
Li Y et al., 2022; Ling et al., 2022; Wang C et al., 2022; Yu et al., 2022;
Gao et al., 2023). Most chemotherapy drugs, including platinum-
based agents and fluoropyrimidine chemotherapy, exert their
anticancer effects by inducing DNA damage in cancer cells
(Newport et al., 2022). FAK, as a crucial regulatory protein in
DNA damage repairs, orchestrates its regulatory function by
facilitating the nuclear translocation of β-catenin. This process
regulates the transcription of DNA damage repair genes,
promoting cell survival and ultimately contributing to drug
resistance. Targeting FAK emerges as a promising strategy to
restore sensitivity to DNA damage therapy (Tavora et al., 2014;

Newport et al., 2022; Roy-Luzarraga et al., 2022; Gao et al., 2023).
Notably, Pifer et al. reported that targeting FAK suppresses
homologous recombination and nonhomologous end-joining
repair in p53-mutant HPV-negative head and neck squamous
cell carcinoma cell lines, thereby enhancing the DNA-damaging
effects of radiotherapy (Pifer et al., 2023). Additionally, in human
CDH1-deficient cell line (SNU-668 and NUGC-4)-derived
xenograft models in mice, ROS1 inhibitors activate the FAK-
YAP-TRX signaling pathway, mitigating oxidative stress-induced
DNA damage, thereby attenuating their anticancer efficacy (Gao
et al., 2023).

Furthermore, FAK frequently facilitates the emergence of drug
resistance in specific tumor types undergoing targeted therapy for
particular gene mutations:1. BRAF/KRAS: Tumors harboring BRAF
or KRAS mutations can effectively suppress the RAS/RAF/MEK/
ERK pathway with BRAF or MEK inhibitors. However, tumor cells
rapidly develop adaptive or acquired resistance mechanisms often
accompanied by exhibit heightened expression of FAK and
activation of the downstream Wnt/β-catenin signaling pathway
(Fallahi-Sichani et al., 2017; Chen et al., 2018). This phenomenon
may be related to the negative regulation of FAK signal transduction
by the RAS/RAF/MEK pathway (Zheng et al., 2009). Additionally,
CRISPR/Cas9 genome screening revealed significant enrichment of
the Grb7 gene in KRAS mutant colorectal cancer cells exhibiting
resistance to MEK inhibitors. This gene facilitates the activation of
the FAK pathway through RTK signaling, triggering the ERK/
MAPK signaling pathways and conferring resistance to MEK
inhibition in tumor cells (Yu et al., 2022). 2. CDH1: CDH1-
deficient tumors, characterized by a poor response to
chemotherapy and increased susceptibility to drug resistance,
often show upregulated FAK expression as a prognostic marker
(Yuen et al., 2021). Treatment with FAK inhibitors has
demonstrated significant efficacy against CDH1-deficient gastric
cancer, characterized by downregulated E-cadherin and damaged
membrane E-cadherin/β-catenin protein complexes a, resulting in
reduced sensitivity of tumor cells to chemotherapy. The dense
collagen matrix in gastric cancer cells further increases the
interaction between integrin-mediated ECM and activated FAK/
ERK signaling, facilitating the nuclear translocation of β-catenin and
promoting the invasion and metastasis of tumor cells (Jang et al.,
2018). In addition to CDH1 deficiency, DGC, often accompanied by
RHOA gene mutation and activation of the YAP downstream
signaling pathway, promotes tumor survival. FAK, a classic
upstream regulator of YAP, inhibits the activation of the YAP
pathway, restores the E-cadherin/β-catenin complex, and
remodels ECM. Combining FAK inhibitors with chemotherapy
enhances the anticancer effect synergistically (Gao et al., 2023). 3.
HER2: FAK mediates resistance to anti-HER2 targeted drugs. The
N-terminal FERM domain structure of FAK interacts with HER2,
and the Src-FAK signaling pathway activates key downstream
signaling pathways involved in HER2 crosstalk (Nahta, 2012).
Activated FAK can further activate the downstream AKT, ERK
and STAT3 pathways promoting drug resistance. Therefore,
targeting FAK emerges as a promising strategy to overcome anti-
HER2 drug resistance (Lazaro et al., 2013; Jin et al., 2017; Cooper
and Giancotti, 2019; Castro-Guijarro et al., 2023). However, not all
HER2-positive cancers exhibit sensitivity to FAK inhibition. Recent
studies have demonstrated that HER2-positive breast cancer

Frontiers in Pharmacology frontiersin.org08

Hu et al. 10.3389/fphar.2024.1274209

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1274209


patients with elevated levels of circCDYL2 experience rapid
recurrence after anti-HER2 therapy compared with those with
lower levels of circCDYL2. Mechanistic investigations have
revealed that circCDYL2 stabilizes Grb7 by preventing its
ubiquitination and degradation, enhancing its interaction with
FAK, and sustaining downstream AKT and ERK1/2 activity,
mediating trastuzumab resistance. The application of FAK
inhibitors has been shown potential in ameliorating trastuzumab
resistance in cells exhibiting high levels of circCDYL2 (Ling et al.,
2022). Future research should focus on screening specific tumor
types highly sensitive to FAK inhibitors to explore their potential
clinical application value.

The presence of CSCs plays a significant role in conferring drug
resistance and promoting tumor recurrence. FAK, as a critical
regulator of CSC activity, exerts a significant influence (Yin et al.,
2021; Jang et al., 2022). CSCs rely on the highly expressed laminin to
bind to integrin α6β1, promoting FAK-mediated self-renewal signaling
of CSCs (Cooper and Giancotti, 2019). Yin et al. found that ATP-
binding cassette subfamily G member 1 mediates the signaling of
extracellular matrix protein-1-integrin αXβ2 interaction, leading to the
activation of FAK/Rho/cytoskeletonmolecules and conferring cisplatin
resistance on cancer cells by upregulating CD326-mediated stemness
(Yin et al., 2021). Moreover, the overexpression of KRT17 is correlated
with unfavorable OS and reduced responsiveness to platinum-based
therapy in patients diagnosed with oral squamous cell carcinoma The
interaction betweenKRT17 and plectin (amacromolecular cytoskeletal
protein) triggers the activation of the integrin β4/FAK/ERK pathway,
thereby facilitating the stabilization and nuclear translocation of
β-catenin while augmenting oral squamous cell carcinoma stemness
and CD44 expression (Jang et al., 2022).

6 Development and clinical research
progress of FAK inhibitors

Targeting FAK has demonstrated efficacy in cancer therapy,
particularly when standard treatments prove ineffective or in
combination with other drugs. The ongoing development of novel
FAK inhibitor reflects the significance of this approach. However,
despite the active pursuit, no FAK inhibitor has yet received clinical
approval. Most of them are currently in preclinical or clinical
development stages (Quispe et al., 2022). FAK inhibitors can be
categorized into allosteric site inhibition, ATP-competitive
inhibition of kinase inhibitors, as well as FERM domain and FAT
domain inhibitors. Notably, only ATP-competitive inhibitors of FAK
have advanced to the clinical research stage (Mustafa et al., 2021b;
Spallarossa et al., 2022). Consequently, this article will focus on
providing a detailed overview of representative drugs within this
class, covering their progress in both preclinical and clinical studies
(Table 1). Certain studies within this class have shown promising
advancements, instilling new hope for patients who are responsive to
FAK inhibition therapy (Figure 4). Additionally, recent developments
in FAK degraders based on PROTAC technology have addressed the
limitation of FAK scaffold function being untargetable by small
molecule inhibitors (Huo et al., 2022). This breakthrough opens
avenues for exploring novel mechanisms of FAK degradation,
aiming to enhance anticancer efficacy and gain new insights into
targeted FAK therapy. The evolving landscape of FAK inhibitors,

coupled with innovative approaches like PROTAC technology, holds
the potential to reshape cancer therapy. Ongoing research endeavors
are critical for advancing our understanding and application of these
promising treatments.

6.1 IN10018 (BI 853520; Ifebemtinib)

IN10018 stands out as a highly efficient and selective ATP-
competitive FAK inhibitor. Biomarker analysis and gene set
enrichment studies have unveiled a heightened sensitivity of
IN10018, particularly associated with the mesenchymal tumor
phenotype. This sensitivity is notably correlated with elevated
E-cadherin expression. Impressively, IN10018 demonstrates rapid
and persistent inhibition of FAK autophosphorylation in the tumor
tissue of immunodeficient mice (Hirt et al., 2018; Tiede et al., 2018).
IN10018 shows robust anti-cancer activity both in breast cancer cells
in vitro and multiple preclinical mouse models. It also inhibits the
in vitro growth of malignant pleural mesothelioma cell spheroids,
significantly reduces tumor weight in mice, and show effective
inhibitory effects on cell proliferation and microvascular growth
in tumor tissue (Laszlo et al., 2019). IN10018 also inhibit EMT and
tumor growth in vivo of ovarian cancer cells through the FAK/AKT/
mTOR signaling pathway (Li et al., 2021). Moreover, in KPC
orthotopic murine model, IN10018 enhances the sensitiveness of
PDA to radiotherapy. Compared with single radiotherapy or FAK
inhibition therapy, the combination of FAK inhibitor and
radiotherapy significantly increases the infiltration of CD8+

T cells and macrophages (Osipov et al., 2021).
The initial findings from the phase I study of IN10018 in human

subjects demonstrate its safety and excellent tolerability among
advanced non-hematologic malignancy patients. The maximum
tolerated dose (MTD) was determined to be 200 mg daily. Out of
the 63 patients enrolled, 49 were evaluable, and 17 (27%) achieved
disease stabilization as the best response, with four cases exhibiting
stability for over 150 days (de Jonge et al., 2019). Additionally, a phase
I research conducted with patients having advanced or metastatic
solid tumors in Japan and Taiwan revealed favorable
pharmacokinetics and safety profiles for IN10018. The median
disease control duration was recorded at 3.7 months, indicating
promising anti-tumor activity (Doi et al., 2019). The prospect of
combination therapy involving IN10018 appears to be a feasible
approach for maximizing the anti-tumor effects of FAK inhibitors.
A phase I study of IN10018 combined with pegylated liposomal
doxorubicin for platinum-resistant ovarian cancer showed an ORR of
56.7% (95% CI: 37.4%–74.5%) and a DCR of 86.7% (95% CI:
69.3%–96.2%) in the 30 evaluable patients. The observed median
progression-free survival (PFS) among all 42 enrolled patients was
6.2 months (95% CI: 6.2 months–NA), suggesting that the
combination of IN10018 and pegylated liposomal doxorubicin has
elucidated therapeutic effects and manageable safety in platinum-
resistant ovarian cancer patients (Wu X et al., 2022).

6.2 Defactinib (VS-6063)

Defactinib is a highly efficient and reversible dual inhibitor of
FAK and Proline-rich tyrosine kinase 2 (PYK2), belonging to the
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TABLE 1 Summary of FAK inhibitors in clinical studies.

Drug Target Tumor type Clinical
stage

NCT
Trial No.

References

IN10018 FAK Metastatic non-hematologic malignancy I NCT01335269 de Jonge et al. (2019)

IN10018 FAK Advanced or metastatic solid tumors I NCT01905111 Doi et al. (2019)

IN10018 +PLD FAK Platinum-resistant ovarian cancer I/II NCT05551507 Wu X et al. (2022)

Defactinib FAK/PYK2 Merlin protein low expression epithelioid
sarcoma

II NCT01870609 Fennell et al. (2019)

Defactinib FAK/PYK2 KRAS mutant NSCLC II NCT01951690 Gerber et al. (2020)

Defactinib+ Pembrolizumab +
Gemcitabine

FAK/PYK2 PD-1 Intractable pancreatic cancer I NCT02546531 Wang-Gillam et al.
(2022)

Defactinib+ VS-6766 FAK/
PYK2RAF/MEK

KRAS mutant NSCLC II NCT04620330 Capelletto et al. (2022)

GSK2256098 FAK Advanced solid tumor I NCT01138033 Soria et al. (2016)

GSK2256098+ Trametinib FAK MEK Advanced solid tumor Ib NCT01938443 Mak et al. (2019)

GSK2256098 FAK NF2 Mutant Meningioma II NCT02523014 Brastianos et al. (2023)

Conteltinib FAK/PYK2/ALK Advanced ALK-positive NSCLC I NCT02695550 Xing et al. (2022)

APG-2449 FAK/PYK2/ALK Advanced solid tumor Ib/II NCT03917043 Zhao et al. (2022)

Note: FAK, focal adhesion kinase; PLD, polyethylene glycol-conjugated liposomal doxorubicin; NF2, neurofibromatosis type 2; PYK2, protein tyrosine kinase; NSCLC, non-small cell lung

cancer.

FIGURE 4
The chemical structure of FAK inhibitors IN10018, defactinib, GSK2256098, conteltinib, and APG-2449.
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class of ATP-competitive inhibitors. Defactinib inhibits the
phosphorylation of FAK Tyr397 in a time- and dose-dependent
manner. Many studies have demonstrated that defactinib effectively
inhibits in various types of FAK-overexpressing cancers by
effectively blocking the PI3K/AKT and downstream signaling
(Zhang B Y et al., 2021; Cuellar-Vite et al., 2022; Liu et al.,
2024). Moreover, a negative correlation was found between FAK
activation and the sensitivity of breast cancer cells to rapamycin. In
preclinical models, the inhibition of FAK has shown the potential to
increase the sensitivity of rapamycin-resistant tumors to
mTORC1 inhibition, suggesting that targeting FAK signaling
could be a feasible and effective strategy to enhance the efficacy
of mTORC1 inhibitors in resistant cancers (Cuellar-Vite et al.,
2022). Moreover, the combination of docetaxel and defactinib
has demonstrated significant reductions in the survival rate of
docetaxel-resistant prostate cancer cells in vitro. Additionally, it
effectively inhibits the growth of PC3 xenograft tumors. Notably,
FAK expression is positively correlated with advanced tumor stages
in human primary prostate cancer (Lin et al., 2018). Defactinib,
when combined with osimertinib (an EGFR inhibitor),
synergistically inhibits the activation of AKT and induces
apoptosis in NSCLC. This combined therapy exhibits a higher
therapeutic effect in vivo compared to single-drug therapy,
suggesting a feasible strategy to overcome drug resistance of
NSCLC to EGFR-TKI (Tong et al., 2019). Le Large et al. (Le
Large et al., 2021) confirmed that defactinib has anti-proliferative
and anti-migratory effects in PDA with overexpressed FAK. When
combined with albumin-bound paclitaxel, it synergistically inhibits
cell proliferation both in vitro and in vivo. Uterine serous carcinoma
(USC), a distinct subtype of endometrial cancer with higher
malignant potential than endometrioid endometrial carcinoma,
exhibits enhanced oxidative stress compared with endometrioid
endometrial carcinoma tumors. This heightened oxidative stress
leads to the phosphorylation of FAK, facilitating tumor invasion and
metastasis through the ROS-FAK-PAX signaling pathway.
Defactinib significantly inhibited the growth of the tumors of
patient-derived orthotopic xenograft models in this context,
emphasizing the potential of FAK inhibition in the treatment of
USC (Lopez-Mejia et al., 2023).

A phase II trial of defactinib for low Merlin protein-expressing
malignant pleural mesothelioma did not demonstrate improvement
in PFS and OS compared with placebo after first-line chemotherapy
(Fennell et al., 2019). Consequently, it is not recommended to use
defactinib alone as maintenance therapy for advanced malignant
pleural mesothelioma. However, a phase I study for previously
treated advanced KRAS-mutant NSCLC showed that defactinib
monotherapy had good overall tolerability, moderate clinical
activity, and efficacy in heavily pretreated patients with KRAS-
mutant NSCLC, irrespective of TP53 and CDKN2A status
(Gerber et al., 2020). This suggests heterogeneity in the response
to FAK inhibition across different cancers. In addition, a phase I
study revealed that the combination of defactinib, pembrolizumab,
and gemcitabine was well-tolerated and did not exhibit any dose-
limiting toxicity in patients with refractory pancreatic cancer. The
disease control rate (DCR) of 20 evaluable patients with refractory
pancreatic cancer was 80%, with the median PFS of 3.6 months and
OS of 7.8 months. The combination regimen showed good
tolerability and safety, demonstrated preliminary efficacy, and

increased the infiltration of T lymphocytes in tumors (Wang-
Gillam et al., 2022). Currently, a phase II clinical study known as
RAMP-202 aims to assess the effectiveness and safety of the
combination treatment of VS-6766 (an RAF/MEK inhibitor) and
defactinib in patients with advanced KRAS-mutant NSCLC who
have experienced treatment failure with previous platinum
chemotherapy and immunotherapy (Capelletto et al., 2022).

6.3 GSK2256098

GSK2256098 is an orally available small molecule compound that
exhibits high selectivity in inhibiting FAK to block adhesion,
proliferation, and migration of cancer cells (Auger et al., 2012). A
preclinical study indicated that GSK2256098 effectively blocks the FAK
signaling pathway mediated by CPNE8 in gastric cancer cell migration
and metastasis (Zhang P et al., 2022). Additionally, it inhibits the
proliferation of various PDA cells (Zhang et al., 2014). The efficacy of
GSK2256098 is closely associated with the abnormal expression of
certain genes or proteins. Research indicates that PTEN-mutant
endometrial cancer patients exhibit markedly superior responses to
GSK2256098 treatment compared with patients with PTEN-wild type
endometrial cancer (Thanapprapasr et al., 2015). In a phase I trial
involving late-stage solid tumor patients, GSK2256098 demonstrated a
controllable safety profile, with most adverse reactions ranking grade
1–2, and the maximum tolerated dose (MTD) was determined to be
1000 mg twice daily. When targeting at or below MTD doses,
GSK2256098 exhibits clinical activity in mesothelioma patients,
especially those with Merlin protein deficiency (Soria et al., 2016).
Another phase Ib trial showed that the combined use of trametinib
(a MEK inhibitor) and GSK2256098 to treat solid tumors also
demonstrated good safety, supporting the progress of further
clinical research (Mak et al., 2019). As NF2 mutations serve as
malignant markers of meningioma, FAK inhibition, and NF2 loss
have been shown to have a synthetic lethality relationship. A phase II
trial examined the effectiveness of GSK2256098 in the treatment of
patients with NF2 mutant meningiomas. The results demonstrated
that GSK2256098 improved 6-month PFS in patients with recurrent or
progressive NF2 mutant meningioma compared with that in the
control group (Brastianos et al., 2023). These findings suggest the
need for further evaluation of GSK2256098 in this specific patient
population.

6.4 Conteltinib (CT-707; SY-707)

Conteltinib is a multi-kinase inhibitor targeting FAK, PYK2, and
anaplastic lymphoma kinase (ALK). Initially developed as an ALK
inhibitor due to its strong inhibitory activity against ALK (IC50 =
2.4 nM), conteltinib demonstrated manageable safety, favorable
pharmacokinetic properties, and anticancer effects in patients
with advanced ALK-positive NSCLC in a phase I human clinical
study (Xing et al., 2022). In a breast cancer mouse model, conteltinib
was found to inhibit tumor growth and spontaneous metastasis to
the lung (Liu P et al., 2022), with the inhibitory effect on tumor
invasion and metastasis primarily attributed to FAK inhibition.
Preclinical studies further support conteltinib’s efficacy in
inhibiting FAK kinase activity and blocking downstream
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signaling in various tumors, including liver and lung cancer. In liver
cancer, conteltinib inhibits the growth of cancer cells in vitro and
xenografts derived from patients in vivo by blocking the IGF1R-YAP
signaling axis activated by hypoxia (Zhu et al., 2018). Additionally,
conteltinib overcomes sorafenib resistance in hypoxia-mediated
liver cancer by inhibiting the YAP signaling pathway (Chen Y
et al., 2022). Moreover, conteltinib synergizes with cabozantinib,
a MET inhibitor, to inhibit the progression of liver cancer by
blocking cabozantinib-induced FAK inactivation (Wang et al.,
2016). This approach with FAK-containing kinase inhibitors
offers a new therapeutic strategy for refractory metastatic cancers.
Previous studies have highlighted the role of FAK inhibition in
enhancing immune surveillance by overcoming fibrosis and
improving immunosuppressive TME in KPC mouse models. This
enhancement results in an improved response of PDA to T cell
immunotherapy and PD-1 antagonists (Jiang et al., 2016; Blair et al.,
2022). Building on this, a Phase Ib/II, open-label, dose-escalation,
and dose-expansion study has been initiated to evaluate the safety,
tolerability, pharmacokinetics, and antitumor activity of conteltinib
in combination with toripalimab (anti- PD-1 monoclonal antibody)
and gemcitabine in advanced pancreatic cancer (NCT05580445).

6.5 APG-2449

APG-2449 is a multi-kinase inhibitor targeting FAK, ALK, and
ROS1 in various cancers. In esophageal squamous cell carcinoma,
the combination of APG-2449 and ibrutinib effectively inhibits the
survival and invasion of cancer cells, inducing cell cycle arrest in the
G1/S phase and promoting apoptosis. Mechanistically, this
combination therapy significantly reduces the phosphorylation of
MEK/ERK and AKT (Luo et al., 2021). Furthermore, APG-2449 has
demonstrated the ability to sensitize drug-resistant ovarian
xenograft tumors to carboplatin and paclitaxel. The inhibitory
effect of APG-2449 on FAK activity contributes to a reduction in
CD44-positive and aldehyde dehydrogenase 1-positive CSCs within
the TME, thereby improving drug resistance (Fang et al., 2022).
Currently, a phase I clinical trial (NCT03917043) is underway to
evaluate the safety and preliminary efficacy of APG-2449 in
advanced solid tumors (Zhao et al., 2022).

6.6 Other FAK inhibitors

In addition to the aforementioned FAK inhibitors, several drugs
entered clinical research based on promising anti-tumor activity in
preclinical studies. Unfortunately, these candidates failed to
demonstrate significant improvements in disease treatment during
subsequent clinical trials. Examples include PF-00562271
(NCT00666926), VS-4718 (NCT01849744; NCT02651727), and
CEP-37440 (NCT01922752). Additionally, numerous FAK-targeted
drugs are still in preclinical research, such as BJG-03-025 (Groendyke
et al., 2021), PF-573228 (Slack-Davis et al., 2007), and Y15 (Hochwald
et al., 2009) (Table 2), demanding extensive preclinical research data
to support their transition to clinical application.

Given the intricate crosstalk between FAK and multiple signaling
proteins in tumor development, various dual or multiple inhibitors
emerged to simultaneously target FAK and other pathways. Examples

include HDAC2/FAK inhibitors (Compounds 6a (Mustafa et al.,
2021a)), EGFR/FAK inhibitors (2-Arylquinolines (Elbadawi et al.,
2022)), FAK/IGF-1R inhibitors (TAE-226 (Schultze et al., 2010) and
INT2-31167 (Ucar et al., 2012)), and ALK/IGF-R1/FAK inhibitors
(Certinib (Mehta et al., 2022)), FAK/ALK inhibitors (CEP-37440 (Ott
et al., 2016)), and FAK/CDK4/6 inhibitors (Compounds 1–7 (Sun
et al., 2021)). While most inhibitors have displayed promising
anticancer activity in preclinical studies, certain drugs faced
setbacks in further clinical investigation due to adverse effects (Wu
L Y et al., 2022). Notably, TAE-226 remains in the preclinical research
stage due to side effects causing severe dysregulation of glucose
metabolism and blood glucose in animal models (Kurio et al.,
2011). Recent preclinical studies have highlighted novel FAK
inhibitors based on the lead compound TAE-226, such as 4-
arylamino-pyrimidine derivatives (Long et al., 2023) and 2,4-
diaminopyrimidine cinnamyl derivatives (Liu Y et al., 2023b).
These compounds exhibit remarkable drug stability and potent
anticancer activity, emphasizing the imperative need for further
optimization of molecular structures to enhance drug safety, and
stability, and reduce off-target effects for clinical application.

6.7 FAK degraders based on PROTAC

The successful development of FAK degraders through
Proteolysis Targeting Chimera (PROTAC) technology has also
opened up a new pathway for FAK targeted therapy (Pang et al.,
2021). A PROTAC comprises three components: a warhead
designed for specific binding to target proteins, an E3 ubiquitin
ligand to recruit E3 ubiquitin ligases, and a linker to connect them.
Specifically, PROTAC facilitates the proximity of the target protein
with the E3 ubiquitin ligase, leading to ubiquitination and
subsequent degradation through the proteasome system (Bekes
et al., 2022). The primary distinction in FAK-PROTAC design
lies in the variation of their ligands. The activity of PROTACs is
closely associated with the expression of ligase RNA, DNA copy
number, and protein levels (Luo et al., 2022). Currently, cereblon
(CRBN) and Von Hippel-Lindau (VHL)-based PROTACs are
extensively utilized due to their low molecular weight, favorable
drug formation, and facile synthesis (Luo et al., 2022; Jiang et al.,
2023). Utilizing PROTAC technology, a diverse range of degraders
targeting androgen receptor (AR), estrogen receptor (ER), Bruton’s
tyrosine kinase (BTK), STAT3, BRD4, and other protein molecules
have been developed. While certain drugs like ARV-110 (targeting
AR) and ARV-471 (targeting ER) have exhibited remarkable efficacy
in clinical trials, the degraders targeting FAK are yet to progress into
the clinical stage (Chen Z et al., 2022; Liu Z et al., 2022; Zhao et al.,
2023). Compared with the conventional small molecule inhibitors
that solely inhibit kinase activity, PROTAC technology effectively
eliminates both kinase-dependent enzymatic activity and scaffold
function by inducing degradation of FAK (Figure 5). This approach
circumvents drug resistance arising from the restoration of FAK
functionality (Huo et al., 2022).

Cromm et alprepared PROTAC 3, a compound that efficiently
degrades FAK at low concentrations, inhibiting 95% of Fak at
50 nM. This compound is created by conjugating a modified
defactinib warhead to a VHL ligand via a linker. Their study
findings demonstrate the superiority of PROTAC 3 over the FAK
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inhibitors defactinib in terms of activating FAK and inhibiting
downstream proteins paxillin and AKT signaling (Cromm et al.,
2018). Notably, both FAK encoding genes PTK2 and ASAP1 are
located in the oncogenomic locus 8q24 and are associated with
tumor metastasis and recurrence. By blocking FAK kinase activity
and the interaction between FAK and ASAP1, PROTAC 3 exhibits
high efficacy in inhibiting invasion and metastasis of ovarian cancer
cells (Huo et al., 2022). GSK215 is a FAK highly selective PROTAC
based on VHL E3 ligase adhesive and FAK inhibitor VS-4718. In
mice, a single dose of GSK215 induced rapid and long-term
degradation of FAK, having a lasting effect on FAK levels lasting
approximately 96 h (Law et al., 2021). Additionally, another team
developed and compared the consequences and advantages of the
FAK degrader BSJ-04146 and the FAK inhibitor BSJ-04-175 in
eliminating all FAK activities in cancer models. The results
showed that, compared with kinase inhibition, the targeted
degradation of FAK performed better in downstream signal
transduction and cancer cell viability and migration (Koide et al.,
2023). Based on the above findings, FAK-targeted PROTAC may
emerge as a more promising research and development strategy, as
well as a treatment modality, compared with FAK small molecular
inhibitors in the foreseeable future.

In preclinical studies of lung cancer, two novel FAK-
PROTACs (PROTAC-A13 and PROTAC B5) demonstrated
superior FAK degradation compared with the FAK inhibitor
PF-562271 (PROTAC-A13: 85% degradation at 10 nM;

PROTAC-B5: 86.4% degradation at 10 nM), as well as potent
anti-cancer activity (PROTAC-A13: IC50 value of 26.4 nM;
PROTAC-B5: IC50 = 0.14 μM). At the same time, they exhibit
excellent plasma stability and appropriate membrane permeability
(Qin et al., 2022; Sun et al., 2022). Additionally, Professor Rao Yu’s
team developed a FAK PROTAC (FC-11) based on the CRBN
ligand, which exhibiting remarkable degradation activity with a
DC50 value of 310 pM (Gao et al., 2020b). Furthermore, the
team investigated the practical application potential and side
effects of this compound and discovered that after treatment
with FC-11, there was a significant decrease in both sperm
count and vitality in the mouse epididymis. However, no
impact on the reproductive system was observed when using
the FAK inhibitor PF562271. Importantly, discontinuing the
administration of PF562271 restored sperm vitality (Gao et al.,
2020a). These findings offer promising prospects for the future
development of reversible male contraceptives.

7 Summary and prospect

FAK is frequently overexpressed in various cancer types and is
associated with poor prognoses for cancer patients. FAK plays a
crucial role in mediating signaling pathways such as p53, RAS/RAF/
MEK, and YAP/TAZ, promoting tumor cell survival and
progression. Additionally, FAK influences the tumor immune

TABLE 2 Summary of FAK inhibitors in preclinical studies.

Drug Target CAS number IC50 to FAK Start time References

BJG-03-025 FAK 2553213-90-2 20.2 nM 2020 Groendyke et al. (2021)

PF-573228 FAK 869288-64-2 4 nM 2007 Slack-Davis et al. (2007)

Y15 FAK 4506-66-5 - 2009 Hochwald et al. (2009)

PF-562271 FAK/PYK2 717907-75-0 1.5 nM 2008 Roberts et al. (2008)

FAK-IN-9 FAK 2911655-93-9 27.44 nM 2023 Zhang et al. (2023a)

PROTAC FAK degrader 1 FAK 2301916-69-6 6.5 nM 2018 Cromm et al. (2018)

NVP-TAE 226 FAK/IGF-1R 761437-28-9 5.5 nM 2007 Liu et al. (2007)

GSK215 FAK 2743427-26-9 - 2021 Law et al. (2021)

BI-3663 FAK/PYK2 2341740-84-7 18 nM 2019 Popow et al. (2019)

BI-4464 FAK 1227948-02-8 17 nM 2019 Popow et al. (2019)

FAK inhibitor 2 FAK 2354405-14-2 0.07 nM 2019 Su et al. (2019)

FAK-IN-7 FAK 19948-85-7 11.72 μM 2012 Yang et al. (2012)

FAK-IN-8 FAK 1374959-91-7 5.32 μM 2012 Yang et al. (2012)

FAK-IN-5 FAK 2408317-70-2 - 2020 Jorda et al. (2020)

FAK inhibitor 5 FAK 2237234-47-6 0.6 nM 2013 Iwatani et al. (2013)

FAK-IN-3 FAK 2882094-29-1 - 2022 Wei et al. (2022)

FAK-IN-4 FAK - - 2022 Yang L et al. (2022)

EGFR-IN-46 EGFR/FAK 2764772-88-3 14.25 nM 2022 Elbadawi et al. (2022)

FAK-IN-2 FAK 2872588-02-6 35 nM 2021 Chen et al. (2021)

Note: CAS, chemical abstracts service; FAK, focal adhesion kinase; PYK2, proline-rich tyrosine kinase 2; IGF-1R, insulin-like growth factor 1 receptor; EGFR, epidermal growth factor receptor.
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microenvironment, affecting the expression and chemotaxis of
immune cells and modulating ECM density to promote
metastasis and drug resistance. As a result, FAK has become an
attractive therapeutic target. Numerous small molecular inhibitors
of FAK have been developed, some progressing to the clinical
research stage. While FAK kinase function inhibitors have
demonstrated safety and efficacy, there are currently no clinically
approved FAK inhibitors. Recently, the focus has shifted to the
development of FAK degradation agents based on PROTAC
technology (Qin et al., 2022; Sun et al., 2022; Koide et al., 2023).
This approach aims to induce the complete loss of FAK function
through ubiquitination, reducing the occurrence of drug resistance.
Nevertheless, the improvement of both high selectivity and
specificity of FAK degraders remains a primary focus for future
research and development endeavors. Additionally, the CRISPR/
Cas9 system, comprising a small guide RNA and a functional
Cas9 endonuclease protein, serves as a potent gene editing tool
capable of precisely disrupting or modifying FAK at the DNA level.
Simultaneously, other genes such as MEK can be targeted for
knockout to investigate potential synergistic effects between
related genes, offering promisingly exploration and application
prospects (Paradis et al., 2021; Sun et al., 2023).

Current research indicates that FAK inhibitors show limited
efficacy as monotherapy in cancer treatment, but promising
results emerge when combined with other drugs. Additionally,

while explaining the role of FAK in signaling pathways and tumor
development, we found promising therapeutic targets that can be
synergistically combined with FAK. Specifically, significant
synergies were noted when FAK inhibitors were combined with
mTOR inhibitors (Shi et al., 2016; Cuellar-Vite et al., 2022), RAF/
MEK inhibitors (Capelletto et al., 2022; Gu et al., 2022; Tarin et al.,
2023), CDK4/6 inhibitors (Murphy et al., 2022; Peng et al., 2023),
MAPK inhibitors (Peng et al., 2023), and VEGF inhibitors such as
bevacizumab (Zheng et al., 2023). Furthermore, we observed an
upregulation of FAK in specific tumor types with gene mutations
or aberrant protein expression, such as BRAF/KRAS mutations,
CDH1 deletions, EGFR or HER2 overexpression, and mediated
drug resistance processes (Tong et al., 2019; Yuen et al., 2021; Yu
et al., 2022; Castro-Guijarro et al., 2023). Therefore, identifying
tumor types that exhibit increased sensitivity to FAK is important
for enhancing targeted efficacy and screening specific populations
responsive to FAK inhibition. Inhibition of FAK enhances
the sensitivity to chemotherapy drugs or radiotherapy by
modulating DNA damage repair genes (Tang et al., 2016),
making it a potential ally for immunotherapy by reshaping the
TME. Combination therapy with FAK inhibitors is considered a
promising treatment strategy with broad research prospects.
Ongoing clinical studies on FAK inhibitors are awaited to
provide further guidance for current research strategies
targeting FAK.

FIGURE 5
FAK- PROTAC domain structure and working principle. The FAK-PROTAC system comprises three essential components: a specifically designed
warhead to bind to FAK, an E3 ubiquitin ligand responsible for recruiting E3 ubiquitin ligase, and a linker connecting the two. PROTAC functions by
facilitating the proximity between FAK and E3 ubiquitin ligase, which subsequently leads to ubiquitination, followed by proteasome degradation. PROTAC:
Proteolysis Targeting Chimera.
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