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Introduction: Cervical cancer (CC) ranks as the fourth most prevalent malignant
tumor among women worldwide, and is the fourth leading cause of cancer-
related mortality. GuiErBai (GEB), a compound preparation developed by our
research team, is derived from the ancient Chinese medicine of the Miao
nationality and is comprised of podophyllotoxin (PTOX), imperatorin,
isoimperatorin, and A. dahurica alkaloids. These individual components have
demonstrated notable efficacy in tumor treatment. However, the specific anti-
tumor effect of the compound Chinese medicine GEB in the context of CC has
yet to be validated.

Methods: HeLa and SiHa cell lines were utilized for in vitro experiments and
treated with 5 mg/mL and 10mg/mL GEB concentrations, respectively. The cell
cycle changes after GEB treatment were assessed using flow cytometry.
Transmission electron microscopy was employed to observe autophagic
bodies and apoptotic bodies, while MDC staining evaluated the occurrence of
autophagy. CCK-8 was used to observe the effect of GEB on cell proliferation,
and Transwell assays assessed cell migration and invasion. Western blotting
detected cell cycle and apoptosis-related protein expression, along with the
expression level of autophagy-related protein LC3I/II. Changes in ROS and
mitochondrial membrane potential in cervical cancer cells following GEB
treatment were determined using ROS detection and mitochondrial
membrane potential detection kits. For the in vivo experiment, a nude mouse
model of cervical cancer transplantation based on HeLa cells was established.
Experimental animals were divided into negative control, positive control, high-
dose GEB (10 mg/mL), and low-dose GEB (5 mg/mL) groups.

Results: In HeLa and SiHa cell lines, the G0/G1 phase of tumor cells significantly
decreased (p < 0.001), while the G2/M phase increased notably (p < 0.001)
following various GEB treatments. Electron microscopy showed GEB promoted
apoptotic body and autophagosome formation in both cell lines. Compared to
untreated HeLa and SiHa cells, GEB-treated cells exhibited significantly reduced
caspase3 protein expression, and substantially increased autophagy-related
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protein LC3I/II expression. GEB treatment significantly reduced migration and
invasion capabilities in both cell lines (p < 0.001), while ROS content and
mitochondrial membrane potential were significantly elevated (p < 0.001). GEB
effectively inhibited cervical cancer cell proliferation, with the optimal
concentration being 10 mg/mL. A successful nude mouse model of cervical
cancer transplantation was established using HeLa cells. Post-GEB treatment,
the tumor volume and weight in nude mice significantly decreased (p < 0.001),
with diminished expression of CD34, VEGF, and caspase3 proteins in tumor tissues.

Discussion: GEB exhibits a robust antitumor effect against cervical cancer, both in
vitro and in vivo, in a concentration-dependent manner, by regulating autophagy
and apoptosis of tumor cells.

KEYWORDS

cervical cancer, antitumor effect, Chinese traditional medicine, Chinese herbal medicine,
podophyllotoxin

Highlights

• Cervical cancer is a commonmalignant tumor among women.
• Podophyllum is the rhizome of Dysosma versipellis (Hance)
M. Cheng.

• GuiErBai (GEB) is composed of Podophyllum, D. dasycarps,
and A. dahurica.

• GEB exhibits a broadly anti-tumor effect against
cervical cancer.

1 Introduction

Cervical cancer (CC) ranks as the fourth most frequent
malignant tumor and the fourth leading cause of cancer-
associated mortality among women globally. As the predominant
gynecological malignancy within the reproductive tract, CC affects
approximately 13 per 100,000 individuals worldwide, with seven
deaths attributable to the disease (Sung et al., 2021; Arbyn et al.,
2020). CC is the most prevalent gynecological malignancy in the
reproductive tract (Sung et al., 2021). In 2020, there were
approximately 604,127 reported cases of cervical cancer globally,
resulting in 341,831 deaths. This disease affects about 13 out of every
100,000 individuals worldwide, with seven deaths attributed to it
(Singh et al., 2023). The average age of CC onset continues to
decline, with the primary peak occurring between 45 and 49 years
old. Moreover, the majority of CC patients present with locally
advanced stages at hospital admission, specifically between Phase
IB2 and IVA, as per the International Federation of Gynecology and
Obstetrics (FIGO) classification (He WQ and Li C, 2021).
Concurrent chemoradiotherapy is the standard-of-care treatment
for locally advanced cervical cancer, which includes patients with
stage IB3 to IVA disease, and it is effective for many patients;
however, cervical cancer-related mortality remains high (Mayadev
et al., 2021). Although targeted therapy and immunotherapy have
recently advanced, their limited stability, high costs, and
accompanying adverse reactions constrain widespread
implementation (Ferrall et al., 2021). Consequently, conventional
approaches, such as surgery, radiotherapy, and chemotherapy,
remain prevalent in clinical practice, despite causing patients
considerable physical trauma (Marnitz et al., 2020; Bhatla et al.,

2021). Thus, researchers continue to explore novel treatments for
advanced CC (Pal et al., 2022).

Continuous HPV infection is the cause of the majority of CC cases,
and certain HPV subtypes such as E6*I and E6 have been associated
with resistance to standard chemoradiotherapy (Ruiz et al., 2021).
Previous scholars have suggested routine HPV testing for primary
cervical cancer before treatment, to determine which patients may
benefit from more aggressive precision-driven treatment (Ruiz et al.,
2021). Over one-third of advanced CC patients fail chemoradiotherapy,
and their resistance is closely related to the activation of inflammatory
pathways and tumor infiltration of bonemarrow-derived immune cells,
especially macrophages (Floberg et al., 2021). The tumor
microenvironment (TME) is a complex system composed of tumor
cells, stromal cells, and immune cells, and it also plays an important role
in the progression and resistance of CC. Disruption of helper T cells
(Th) in the TME is an importantmechanism leading to immune escape
of tumors (De Nola et al., 2021). High cell density accumulation,
extracellular matrix (ECM), and fluid shear stress between the ECM
and surrounding disordered arteries in the TME can hinder the entry of
chemotherapeutic drugs such as cisplatin into cancer cells, leading to
resistance of cervical cancer (Bhattacharjee et al., 2022). In addition, cell-
cell interactions in the TME can also induce resistance in cervical cells
(Khalaf et al., 2021). For example, carcinoma-associated fibroblasts
(CAFs) can induce tumor resistance through the secretion of
chemokines or growth factors (IL-6, IL-8, IL-11, IGF-1, and TGF-β)
(Mao et al., 2021). The use of natural and synthetic compounds to block
or target the NF-κB signaling pathway, PI3K pathway, etc., is also a
direction for the development of cancer therapy (Rashmi et al., 2020).
Exploring targeted drugs for immune and inflammatory regulation
pathways in CC is a focus of global scholars.

Traditional Chinese medicine (TCM) is an independent medical
system that places great emphasis on holistic regulation and
personalized interventions tailored to the unique characteristics of
each patient (Wang et al., 2021). The effectiveness of TCM
compounds and their active components in managing cervical
cancer has been supported by modern pharmacology (Wang et al.,
2021;Wang et al., 2021). Podophyllum, known as JiangBianYiWanShui
among the Miao population in China, is a medicinal material derived
from the rhizome of the Berberidaceae plant (Kalam et al., 2021).
Podophylloideae includes Sinopodophyllum, Diphylleia, and Dysosma.
In China, Podophyllum mainly comes from the rhizome of Dysoma
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versipellis (Hance) M. Cheng (D. versipellis), a plant of the
Berberidaceae family. As a rare TCM, podophyllum has
demonstrated significant efficacy in treating condyloma acuminatum
induced by the human papillomavirus (HPV) (Wollina, 2003; Maleš
et al., 2019). GuiErBai (GEB) is composed of Podophyllum*, Dictamnus
dasycarps Turcz. (D. dasycarps), and Angelica dahurica (Fisch.ex
Hoffm.) Benth. et Hook.f. (A. dahurica)*, and was originally
formulated by our team. The main effective molecules in GEB
include podophyllotoxin (PTOX), imperatorin, isoimperatorin, and
A. dahurica alkaloids. Individual components such as PTOX (Guo
and Jiang, 2021), imperatorin (Nasser et al., 2019), isoimperatorin (Kim
et al., 2022), and A. dahurica alkaloid (Wang et al., 2018) have exhibited
significant anti-tumor properties. However, the specific impact of the
GEB compound in cervical cancer remains to be verified.

The current study aims to evaluate the anti-tumor properties of
different concentrations of GEB on CC in both in vitro and in vivo
settings. Developed independently by our research team, GEB is a
Chinese medicine formula, and this study marks the inaugural
evidence-based investigation of its effectiveness in treating CC.

2 Materials and methods

2.1 GEB preparation

D. versipellis (batch number: 20160702, place of origin: Enshi,
China), D. dasycarps (batch number: 20160301, place of origin:
Jiangsu), and A. dahurica (batch number: B707071-01, place of
origin: Anhui) were acquired from Hubei Jurui Traditional Chinese
Medicine Slices Co., Ltd. Following the prescribed proportions, the
ingredients were extracted with water or ethanol. The extracts were
refined using the optimal extraction process and the refining methods
were compared, including alcohol precipitation, chitosan technique,
and membrane separation method. The investigation focused on
identifying the best refining approach and optimal process
parameters, using the retention rate of the primary active
components and solid retention rate as indicators (Gao et al., 2021).
Consequently, the optimal GEB preparation was developed.

Preparation process: According to the prescription ratio, weigh the
medicinal materials, use 80% ethanol for reflux extraction twice, with
9 times the amount for the first extraction and 7 times the amount for
the second extraction. Extraction time is 60 min at a temperature of
85°C. Combine the extracts, filter, centrifuge (11,269.4 × g), recover the
ethanol to obtain a dry extract (relative density 1.25-1.30, 60°C), vacuum
drying (0.08 mP, 60°C), pulverize (pass through a No. Five sieve), seal,
dry, and store for later use.

2.2 Cell culture and experiment in vitro

HeLa cells were chosen to represent adenocarcinoma, and SiHa
cells for squamous cell carcinoma. The cells were cultured in DMEM
medium supplemented with 10% fetal bovine serum, 2 mmol/L
glutamine, 100 IU/mL penicillin, and 0.1 mg/mL streptomycin at
37°C, 5% CO2, and saturated humidity. Adherent cells were
detached using 0.25% trypsin for passaging. Upon reaching 80%–

90% confluence, cells were subcultured. During this period, medium
was replaced every 2 days and cells were passaged 2-3 times per

week. Cells from passages 3-10 after resuscitation were used for
experiments, and the same frozen cell batch was utilized in each
experiment.

Cell identification is performed using Short Tandem Repeat
(STR) analysis. A suitable amount of specimen is extracted using the
Microread Genomic DNA Kit to obtain DNA. The MicroreaderTM
21 ID System is utilized to amplify 20 STR loci and gender
identification loci, and PCR products are detected using the ABI
3730xl Genetic Analyzer. The analysis of the detection results is
conducted using GeneMapperID-X software (Applied Biosystems).

2.3 Animals and experiment in vivo

The study adhered to internationally accepted principles for
laboratory animal use and care, as outlined in the US NIH
guidelines (Publication #85-23, revised in 1985). Logarithmically
growing HeLa cells were detached with 0.25% trypsin, terminating
the digestion of the culture medium. Following low-speed
centrifugation for 5 min, the supernatant was discarded. A cell
suspension was prepared using Matrigel matrix glue, adjusting the
cell concentration to 1 × 107 cells/mL, and placed on ice. Cells were
rapidly injected into the subcutaneous region of nude mice’s right
buttocks using a 1 mL syringe with a No. Six needle, administering
0.1 mL of cell suspension. After 5 days of observation, tumor formation
was assessed. Mice with 3.5–4.0 mm diameter tumors were considered
successful models, while those with excessively large or small tumors
were excluded. Experimental animals were divided into four groups:
negative control group, positive control group, high-dose GEB group
(10 mg/mL), and low-doseGEB group (5 mg/mL). The negative control
group received 0.1 mL of normal saline every 3 days for a total of
10 administrations. The positive control group was treated with
cisplatin, 5 mg/kg.bw, dissolved in normal saline, 0.1 mL/piece,
administered once a week for a total of 4 weeks. The low-dose GEB
group received 5 mg/mL GEB in normal saline, 0.1 mL/animal/day,
with 10 administrations in total. Finally, the high-dose GEB group was
treated with 10 mg/mL GEB in normal saline, 0.1 mL/animal/3 days,
with a total of 10 administrations. Treatment lasted for 4 weeks, and
animals were observed for a subsequent 4 weeks.

2.4 CCK8 assay

To assess cell viability, cells in the logarithmic growth phase
were collected. Cells were added to 96-well plates at a density of
5,000 cells per well. Three replicate wells were established for each
group. DMEM was added to reach a final volume of 200 µL. Cells
were incubated at 37°C with 5% CO2. Prior to measuring the optical
density, 20 µL of CCK8 solution was added to each well, followed by
incubation for 2 h at 37°C in a 5% CO2 incubator. Absorbance was
measured at 450 nm using a microplate reader, and growth curves
were plotted based on absorbance values.

2.5 Transwell assay

The ECM culture medium was diluted with Matrigel at a ratio of 5:
1, and 50 μL per well was evenly spread on the Transwell chamber and
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allowed to stand at room temperature for 2 h to allow the Matrigel to
solidify. Cell suspensions were prepared for each group, adjusting the
cell density to 2 × 105 cells/mL. A total of 200 µL of the suspension was
transferred to the chamber, followed by the addition of DMEM
medium supplemented with 10% FBS to the lower chamber. After

24 h of incubation at 37°C, cells in the upper chamber were wipedwith a
wet cotton swab, fixed with anhydrous methanol, and stained with
crystal violet dye. The number of stained cells in ten random fields per
assaywas recorded for cell migration analysis. Three replicate wells were
established for each group.

FIGURE 1
Induction of cell cycle by GEB. (A) Hela cell cycle distribution diagram. (B) SiHa cell cycle distribution diagram. (C) Compared with the empty cell
group, theHela-5 mg/mLGEB group showed significant differences inG0/G1 and S phases (p < 0.001), whichwere decreased by 92.22% and increased by
228.59% respectively; Compared with the empty cell group, Hela-10 mg/mLGEB group showed significant differences in G0/G1 and S phases (p < 0.001),
which were 53.54% lower and 136.33% higher respectively. (D) Compared with the empty cell group, the SiHa-5 mg/mLGEB group had a statistical
difference in G0/G1 and G2/M phases (p < 0.001), which decreased by 24.14% and increased by 181.92% respectively; Compared with the empty cell
group, the SiHa-10 mg/mLGEB group had a statistical difference in G0/G1 and G2/M phases (p < 0.001), which decreased by 19.06% and increased by
84.91%, respectively. (E) Western blot results of CDK1. (F) Gray analysis diagram of CDK1.
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2.6 Transmission electronmicroscope (TEM)

Cell samples were prepared according to standard procedures. A
2.5% glutaraldehyde and phosphoric acid buffer solution were prepared
and used to fix the samples for 2 h. Samples were then dehydrated in a
4°C refrigerator. Following embedding and curing, ultrathin sections
were cut using a Leica EMUC7 ultramicrotome at 70 nm thickness. The
samples were double-stainedwith 2%uranyl acetate and lead citrate and
were observed using a transmission electron microscope
HT7800 operating at an acceleration voltage of 80 kV.

2.7 MDC staining

An autophagy staining kit (SOLARBIO, G0170) was used to detect
autophagy. To prepare the MDC working solution, 9 mL of cell
suspension was added to an EP tube, followed by the addition of
1 mL ofMDC Stain, mixing gently. Excess liquid was removed from cell
slides, and slides were washed with 1×Wash buffer. A total of 250 µL of
MDC working solution was added per well, followed by incubation at
room temperature in the dark for 45 min. Slides were washed with 1×
Wash buffer, mounted with glycerol, and observed using a microscope.
Three replicate wells were established for each group.

2.8 Reactive oxygen species (ros) detecting

Cell culture conditions were maintained in DMEM+10% FBS at
37°C and 5% CO2. Cells were washed twice with PBS, digested with
trypsin, and centrifuged at 1,000 RPM for 5 min to collect the cell
pellet. The cells were then resuspended in serum-free mediumwith a
concentration of 50,000 to 100,000 cells/mL. DCFH-DA ROS
fluorescence probe powder was dissolved in DMSO to a final
concentration of 10 mM, then further diluted with serum-free
medium at a 1:1,000 dilution ratio to obtain a final working dye
concentration of 10 µM. After centrifuging the cell suspension at
1,000 RPM for 5 min and discarding the supernatant, cells were
resuspended in the dye solution and incubated in the dark at 37°C
for 20 min with gentle mixing every 3–5 min. Flow cytometry was
used to analyze the samples, counting 10,000 cells per sample. ROS-
positive cells displayed strong green fluorescence when excited at
480 nm and measured for emission near 520 nm. Three replicate
wells were established for each group.

2.9 Detection of mitochondrial membrane
potential JC-1

Cervical cancer cells were treated with 5 mg/mL GEB and
10 mg/mL GEB, respectively, for 48 h. Cells were then collected
through trypsin digestion and centrifugation, pelleted, and
resuspended in 500 µL of complete medium. To prepare the JC-1
dye solution, an appropriate amount of JC-1 (200×) was diluted in
8 mL ultrapure water, followed by vortexing for thorough mixing.
Next, 2 mL of 5× JC-1 dye buffer was added and mixed well to create
the JC-1 staining working solution. A total of 0.5 mL of JC-1 dye
solution was added to each cell sample, mixed gently by inversion,
and incubated at 37°C for 20 min. Meanwhile, the 5× JC-1 dye buffer

was further diluted with 4 mL distilled water to prepare a 1× JC-1
dye buffer, which was placed on ice. After incubation, cells were
centrifuged at 600 g and 4°C for 3–4 min, and the supernatant was
discarded. Cells were then washed twice in 1× JC-1 dye buffer, as
previously described, and analyzed for changes in mitochondrial
membrane potential. Three replicate wells were established for
each group.

2.10 Western blot analysis

Total cell protein was extracted, quantified according to the kit
instructions, and separated using 10% SDS-PAGE gel at a constant
voltage of 110 V for 80 min. The primary antibody (1:50) was
dissolved in T-TBS solution and incubated at 4°C for 24 h. The
internal control β-actin was dissolved in T-TBS solution at a 1:
1,000 dilution. The secondary antibody was added and incubated at
37°C for 1.5 h, followed by three washes with T-TBS for 10 min each.
ECL working solution (1 mL) was added to the membrane and
incubated at 37°C for 1 min before being covered with a protective
film. Membranes were exposed to an X-ray film in the dark, and
protein bands were visualized using chemiluminescence imaging.
Band intensities were quantified using ImageJ software.

2.11 Hematoxylin and eosin (HE) staining

Paraffin-embedded tissue sections (4 µm thickness) were
prepared for H&E staining. Sections were deparaffinized and
rehydrated, stained with Harris hematoxylin, rinsed with running
water, and dehydrated with gradient alcohol. Samples were stained
with 1% ethanol eosin, dehydrated with gradient alcohol, and excess
xylene was removed before mounting with neutral resin and
capturing images using a panoramic scanner.

2.12 Immunocytochemistry staining

Tumor slides were fixed in absolute methanol solution and blocked
with 5% BSA solution at 37°C for 1 h. Slides were incubated overnight at
4 °C with primary antibodies: mouse anti-CD 90 antibody (1:200;
Abcam), mouse anti-CD 105 antibody (1:200; Abcam), and mouse
anti-CD 45 antibody (1:200; Abcam). The next day, slides were
incubated with secondary antibody: anti-mouse FITC (1:200). Lastly,
the slides were incubated with DAPI (1:1,000) and sealed with
fluorescent mounting gel.

2.13 Statistical analysis

Statistical analysis was performed by using SPSS 22.0 software.
The count data was presented as frequency (percentage) and
analyzed by χ2 test. The measurement data was presented as
mean ± standard deviation (X±SD). Independent t-test was
performed to analysis differences between groups while paired
t-test was used to analysis differences within group. The grade
data was tested by Mann-Whitney U test. Two-sides p <
0.05 was considered as statistically significant.
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FIGURE 2
GEB induces apoptosis of cervical cancer cells in vitro. (A) The formation of autophagosome (black arrow) and apoptotic bodies (white arrow). (B)
Western blot results of caspase3. (C)Gray analysis diagram of caspase3. (D) The ROS content of samples from Hela-5 mg/mL GEB, Hela-10 mg/mL GEB,
SiHa-5 mg/mL GEB and SiHa-10 mg/mL GEB drug treatment groups increased. (E) Flow cytometry. (F) The mitochondrial membrane potential of Hela-
5 mg/mL GEB and Hela-10 mg/mL GEB groups increased. (G) Mitochondrial membrane potential decreased slightly in SiHa-5 mg/mL GEB and
SiHa-10 mg/mL GEB groups.
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3 Results

3.1 GEB regulates the cell cycle of cervical
cancer cells in vitro

We prepared GEB and used the HeLa and SiHa cell lines for
in vitro experiments. GEB’s intervention concentrations were
5 mg/mL and 10 mg/mL. Figure 1 demonstrates that HeLa and
SiHa cell lines’ G0/G1 and S phases exhibited significant
differences after GEB intervention (p < 0.001). In HeLa cells,
GEB primarily induced cell cycle arrest in the S phase (Figures
1A, C, p < 0.001). In SiHa cells, GEB predominantly induced cell
cycle arrest in the G2/M phase (Figures 1B, D, p < 0.001). We

predict that the CDK1 protein is approximately 34 kDa. Our
experimental results indicate that protein bands were detected
between Marker 15–35 KDa (Figure 1E). Grayscale analysis
results suggest that 5 mg/mL and 10 mg/mL GEB
concentrations can inhibit CDK1 expression compared with
untreated cells (Figure 1F).

3.2 GEB induced apoptosis of cervical
cancer cells in vitro

Given the consistent cell cycle results, electron microscopy
reported the presence of apoptotic bodies (Figure 2A). Western

FIGURE 3
Detection of LC3A/B protein expression. (A) Western blot results of LC3A/B. (B) Gray analysis diagram of LC3A/B.
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blot results revealed that the expression of caspase3 protein in HeLa
cells treated with 5 mg/mL and 10 mg/mL GEB was 77% and 66%
lower, respectively (Figures 2B, C), when compared with the
untreated HeLa samples. In SiHa cells treated with 5 mg/mL and
10 mg/mL GEB, the caspase3 protein expression was 74% and 92%
lower, respectively (Figures 2B, C), when compared with the
untreated SiHa samples. Upon GEB intervention, the
caspase3 protein expression decreased, which may indicate an
increase in caspase3 activation for inducing cervical cancer cell
apoptosis. The ROS detection results displayed an increase in
ROS content in samples treated with GEB (Figure 2D). The
mitochondrial membrane potential of HeLa cells increased in the
5 mg/mL and 10 mg/mL GEB groups (Figures 2E, F), while that of
SiHa cells slightly decreased in the 5 mg/mL and 10 mg/mL GEB
groups (Figures 2E, G).

3.3 GEB promotes autophagy of cervical
cancer cells in vitro

Under the electron microscope, GEB was observed to enhance
autophagosome (Figure 2A, black arrow) and apoptotic bodies
formation (white arrow) in HeLa and SiHa cells. We treated the
HeLa and SiHa cells with GEB and 3-MA drugs of varying
concentrations for 48 h. The CCK-8 method quantified cell
proliferation in different concentration groups, examining the
effects of GEB and 3-MA drugs on HeLa cell proliferation. The
CCK-8 results suggested that no significant changes occurred in
proliferative capacity, and specific IC50 could not be analyzed. We
predict that the LC3A/B protein is approximately 14–16 KDa.
Western blot results detected protein bands between Marker
10–15 kDa (Figure 3A). After conducting the gray-scale analysis,

FIGURE 4
GEB inhibits the migration, invasion, and proliferation of cervical cancer cells in vitro. (A) Effect of GEB on themigration ability of Hela and Siha cells.
(B) Statistical analysis results of GEB drugs on the migration ability of Hela cells. (C) Statistical analysis results of GEB drugs on the migration ability of Siha
cells. (D) Effect of GEB on the invasion ability of Hela and Siha cells. (E) Statistical analysis results of GEB drugs on the invasion ability of Hela cells. (F)
Statistical analysis results of GEB drugs on the invasion ability of Siha cells. (G) Effects of GEB on the proliferation of Hela cells. (H) Effects of GEB on
the proliferation of SiHa cells.
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our results showed that GEB significantly increased LC3A/B protein
expression in HeLa and SiHa cells (Figure 3B). In comparison with
untreated HeLa samples, the LC3A/B protein expression in the
treated samples increased substantially (Figure 3B). A similar
increase was observed in the treated SiHa samples when
compared with untreated SiHa samples (Figure 3B).

3.4 GEB inhibits the migration, invasion and
proliferation of cervical cancer cells in vitro

GEB inhibits the migration, invasion, and proliferation of
cervical cancer cells in vitro. The Transwell assay results
demonstrated that GEB inhibited the migration and invasion of
cervical cancer cells, with a more significant inhibitory effect
observed at the 10 mg/mL GEB concentration (Figures 4A–F, p <
0.001). The CCK-8 assay evaluated GEB’s effect on tumor
proliferation, revealing that the IC50 values for HeLa and SiHa
cells corresponded to GEB drug concentrations of 3.472 mg/mL and
5.538 mg/mL, respectively (Figures 4G, H). These findings indicate
that GEB has a noteworthy impact on tumor proliferation, and
theoretically, 10 mg/mL GEB would produce a higher
inhibitory effect.

3.5 GEB inhibits the growth and
angiogenesis of cervical cancer cells in vivo

In our in vivo investigation, we established a cervical cancer
xenograft model in nude mice using HeLa cells (Figure 5). The
experimental animals were divided into the negative control group
(G1), positive control group (G2), low-dose GEB group (G3), and
high-dose GEB group (G4). After establishing the model, the weight
of nude mice in groups G2, G3, and G4 significantly increased
(Figures 6A, B). In comparison with G2, the tumor volume and
weight in G3 and G4 decreased considerably (Figures 6C–E, p < 0.01,

p < 0.0001). HE staining demonstrated that GEB intervention
considerably inhibited tumor angiogenesis (Figure 7A) and
suppressed the expression of CD34 and VEGF in tumor tissue
(Figures 7B–D).

4 Discussion

Despite significant advancements in global medical standards,
early screening for gynecological tumors, such as cervical cancer
(CC), remains a widespread issue worldwide (Bedell et al., 2020).
While early screening has led to a decrease in the number of patients
with advanced tumors (Rajaram and Gupta, 2021), CC continues to
be a leading cause of cancer-related deaths among women globally
(Sung et al., 2021). The standard treatment methods for women with
CC in most countries include surgical treatment, radiotherapy, and
chemotherapy (Marnitz et al., 2020; Bhatla et al., 2021). However,
surgical treatment combined with lymph node dissection has limited
effectiveness in patients with advanced CC due to metastasis.
Complementary treatments such as synchronous radiation
therapy and chemotherapy can result in damage to normal cells
and are not always successful due to drug resistance and other issues,
leading to poor prognoses for some patients (Gadducci and Cosio,
2020; Wendel and Leath, 2020). Despite the availability of mature
treatment options, the prognosis for advanced CC patients remains
grim, underscoring the need to develop new, safe, and effective
treatments for CC.

An increasing body of evidence supports the anti-tumor
properties of Traditional Chinese Medicines (TCMs) and their
active components, including Taohong Siwu Decoction (Jiang
et al., 2021), Danshen (Li et al., 2021), Shenling Baizhu (Feng
et al., 2020), and others. The anti-tumor effects of numerous
TCM compounds and their active ingredients have been
demonstrated in various gynecological tumors, such as cervical
cancer (Banik et al., 2022), endometrial cancer (Tsai et al., 2021),
breast cancer (Yang et al., 2021), and ovarian cancer (Chan et al.,

FIGURE 5
Experimental animalmodel. (A) Tumor nudemice of G2 group in vivo. (B) Tumor nudemice of G3 group in vivo. (C) Tumor nudemice of G4 group in
vivo. (D) Nude mice in G1 group. (E) Tumor nude mice of G2 group in vitro. (F) Tumor nude mice of G3 group in vitro. (G) Tumor nude mice of G4 group
in vitro.
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2020). GEB, a formula specifically formulated by our research team
for cervical cancer, comprises D. versipellis, D. dasycarps, and A.
dahurica. In this investigation, we isolated the core components of
GEB through a refinement process and explored their anti-tumor
effects in cervical cancer. The experimental results revealed
substantial and comprehensive anti-tumor activity of GEB against
cervical cancer. GEB inhibited the proliferation of both HeLa and
SiHa cells, leading to cell cycle arrest in the G2/M phase. The
formation of autophagic and apoptotic bodies served as crucial
indicators of decreased tumor cell biological activity, which were
significantly promoted by GEB intervention. The expression of
autophagy and apoptosis-related proteins further corroborated
the enhancement of autophagy and apoptosis. Additionally, the
migration and invasion assays of HeLa and SiHa cell lines
demonstrated that GEB suppressed the biological activity of
cervical cancer cells. Moreover, the measurement of ROS content

and mitochondrial membrane potential indicated that GEB might
induce apoptosis by boosting mitochondrial oxidative stress and
increasing mitochondrial membrane permeability. Consequently,
the significant and wide-ranging anti-tumor effects of GEB against
cervical cancer cells were established.

The in vivo experiments have effectively developed a nude
mouse model of cervical cancer transplantation using HeLa cells,
and have confirmed the substantial inhibitory impact of GEB on
tumor growth and tumor angiogenesis. It is worth noting that the
anti-tumor activity of GEB shows a significant correlation with its
concentration, with 10 mg/mL demonstrating greater effectiveness
compared to 5 mg/mL. Combining in vitro and in vivo experimental
data, we can conclude that GEB is an effective inhibitor of CC and
possesses significant and extensive anti-tumor activity.

The active ingredients in TCMs form the basis for their
therapeutic effects. We analyzed the source of GEB’s anti-tumor

FIGURE 6
Efficacy evaluation of subcutaneous tumorigenesis in vitvo. (A) Body weight of nudemice. (B) Body weight changes in nudemice. (C) Tumor volume
in nude mice. (D) Changes in tumor volume in nude mice. (E) Tumor weight of nude mice.
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activity, focusing on PTOX, imperatorin, isoimperatorin, and A.
dahurica alkaloids as the four active molecules with tumor cell
activity inhibition. PTOX, one of GEB’s core components, exhibits
potent microtubule or DNA damaging capabilities and provides a

wide-ranging and efficient anti-tumor effect. The US FDA approved
podophyllin drugs, including etoposide (VP-16) (Wu et al., 2011),
teniposide (VM-26) (Tepper and Studzinski, 1992), and etoposide
phosphate (Etopophos), for treating small cell lung cancer in the
1980s and 1990s. Since then, various podophyllotoxin antineoplastic
drugs have been developed for addressing lung cancer, leukemia,
lymphatic cancer, breast cancer, testicular cancer glioma, and other
human malignancies, often with good results. Imperatorin and
isoimperatorin belong to the 6,7-furacoumarins, and coumarins
exhibit higher application value and more biological activities.
Numerous coumarins are present in Angelica dahurica. Okuyama
(Okuyama et al., 1990) and others isolated six coumarin components
from the anti-tumor active part of Angelica dahurica, with
imperatorin and isoimperatorin displaying the strongest anti-tumor
effects. Lv (Lv et al., 2021) and others concluded that imperatorin can
induce autophagy and G0/G1 phase arrest of human osteosarcoma
cells both in vitro and in vivo via the PTEN-PI3K-AKT-mTOR/
p21 signaling pathway. Kim (Kim et al., 2022) and others determined
that isoimperatorin regulates NF in colorectal cancer cells and liver
cancer cells, downregulating epithelial-mesenchymal transition via κB
signaling and CXCR4 expression. Recent studies corroborated that
plant alkaloids have anti-tumor effects, and their anti-tumor
mechanisms are associated with interfering with tumor cell cycles,
inducing tumor cell apoptosis, inhibiting tumor angiogenesis, and
multidrug resistance (Chen et al., 2021; Wang et al., 2021).
Additionally, A. dahurica contains abundant Angelica alkaloids
and water-soluble polysaccharides. Dong (Dong et al., 2021) and
others demonstrated that Angelica dahurica polysaccharide (ADP)
exhibited significant anti-tumor activity in H22 tumor-bearing mice.
Hwangbo (Hwangbo et al., 2020) and others extracted A. dahurica
alkaloids and verified their inhibitory effect on the growth and
metastasis of murine melanoma B16F10 cells.

FIGURE 7
Tumor tissue detection. (A)HE staining. (B) Immunohistochemical staining. (C) Average optical density of CD34. (D) Average optical density of VEGF.

FIGURE 8
Schematic diagram of proposed mechanism. GEB, a complex
formulation, originates from the traditional Chinese medicine of the
Miao ethnicity and is composed of podophyllotoxin (PTOX),
imperatorin, isoimperatorin, and A. dahurica alkaloids. GEB has
demonstrated a potent antitumor efficacy against cervical cancer,
both in laboratory experiments and in living organisms, in a manner
dependent on the concentration, through the modulation of
autophagy and apoptosis in cancer cells.

Frontiers in Pharmacology frontiersin.org11

Qin et al. 10.3389/fphar.2024.1296588

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1296588


Through the comprehensive analysis of GEB’s anti-tumor active
components, we found that these components have broad anti-tumor
effects and action types (Figure 8). This suggests that GEB may not be
limited to treating cervical cancer but could also provide significant
activity against other tumor types. However, this conclusion requires
further verification. Importantly, these core active ingredients in GEB
can be synthesized industrially, paving the way for standardized
production and clinical application of GEB in the future.

This study has some limitations. The compatibility of compound
Chinese medicine should adhere to specified proportions. However, we
did not measure the content of specific active molecules after extracting
effective ingredients but instead used mixed ingredient concentrations
for in vivo and in vitro experiments. Although this study confirmed the
concentration dependence of GEB’s anti-tumor effect, its optimal
dominant concentration might necessitate further exploration with
refined concentration gradients in future research. Additionally, we
are currently investigating the application effect of GEB in CC patients,
and this study lacks data onGEB’s impact onCC patient prognosis. Our
research group plans to address these limitations in future work.

5 Conclusion

In this study, we demonstrated the significant anti-tumor effects of
GEB on cervical cancer through in vivo and in vitro experiments. GEB
regulates the proliferation, metastasis, migration, and invasion of tumor
cells by modulating autophagy and apoptosis in a concentration-
dependent manner. Additionally, GEB may exhibit substantial
inhibitory effects on other tumor types, warranting further investigation.
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