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Background: Schizophrenia is a serious psychiatric disorder that significantly
affects the quality of life of patients. The objective of this study is to discover a
novel antipsychotic candidate with highly antagonistic activity against both
serotonin and dopamine receptors, demonstrating robust efficacy in animal
models of positive, negative, and cognitive symptoms of schizophrenia.

Methods: In the present study, we examined the activity of antipsychotic drug
(NH300094) on 5-HT2A, 5-HT2C, 5-HT1A, 5-HT1B, 5-HT7, H1, M1, Alpha1A, D2L, D2S,
Alpha2A, D3 receptor functional assay in vitro. In addition, multiple animal models,
including dizocilpine (MK-801) induced hyper-locomotion; APO induced
climbing; Conditioned Avoidance Response (CAR); DOI-Induced Head Twitch;
Forced swimming test; Scopolamine induced cognitive impairment model, were
used to verify the antipsychotic activity of NH300094 in preclinical.

Results: In vitro functional assays have indicated that NH300094 is a potent
antagonist of 5-HT receptors and dopamine receptors, with higher relative
antagonistic activity against 5-HT2A receptor (5-HT2A IC50 = 0.47 nM) than
dopamine receptors (D2L IC50 = 1.04 nM; D2S IC50 = 11.71 nM; D3 IC50 = 31.55
nM). Preclinical in vivo pharmacological study results showed that NH300094
was effective in multiple models, which is more extensive than the clinic drug
Risperidone. Furthermore, the safety window for extrapyramidal side effects of
NH300094 is significantly wider than that of Risperidone (For NH300094, mice
catalepsy model ED50/ Mice MK-801 model ED50 = 104.6-fold; for Risperidone,
mice catalepsy model ED50/ Mice MK-801 model ED50 = 12.9-fold), which
suggests a potentially better clinical safety profile for NH300094.

Conclusion: NH300094 is a novel potent serotonin and dopamine receptors
modulator, which has good safety profile and therapeutic potential for the
treatment of schizophrenia with cognition disorders.
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1 Introduction

Schizophrenia is a serious psychiatric disorder that significantly
affects the quality of life of patients. It has a variety of psychopathological
features including positive symptoms (hallucinations and delusions),
negative symptoms (social withdrawal, spontaneous speech reduction,
impaired motivation), and neurocognitive disorders (Owen et al., 2016).
The global incidence of schizophrenia is about 1%, and the lifetime
prevalence of patients is 0.7%–0.8% (Schultz et al., 2007; Lohrs and
Hasan, 2019). It is estimated that there are more than 21 million
schizophrenics worldwide (Kane et al., 2019). Antipsychotics are still
themain treatment for schizophrenia. Typical and atypical antipsychotic
drugs are two main categories of clinical drugs to control schizophrenia.
However, these current drugs have many side effects and can only
control part of the symptoms of patients. For example, typical
antipsychotic drugs have limited efficacy in treating negative
symptoms of schizophrenia, but cause extrapyramidal reactions
(EPS), tardive dyskinesia and other adverse effects. Atypical
antipsychotic drugs, e.g., risperidone, can prolonged the time interval
from the beginning of the QRS complex to the end of the T-wave (QT
interval), prolactin elevation and other adverse effects (Bhana et al., 2001;
Lin et al., 2010; Adams et al., 2013). Additionally, current antipsychotic
drugs are ineffective in about 30% of patients with treatment-resistant
schizophrenia (Kane et al., 2019; Chakrabarti, 2021). Clozapine is the
only drug currently recommended for refractory schizophrenia, but it is
susceptible to obesity and fatal agranulocytosis, which limit its clinical
use (Mijovic andMacCabe, 2020). Therefore, there are significant unmet
medical needs for new antipsychotic drugs withmore efficacious but less
side effects (Kantrowitz et al., 2023).

Modulation of serotonin and dopamine receptors in the central
nervous system has proven to be an effective way to treat psychiatric
disorders (Malik et al., 2023; Stelmach et al., 2023). The dopamine
receptor is the crucial target of all existing antipsychotics. Dopamine D2

receptor antagonists are thought to control positive symptoms in
patients with schizophrenia (Farde et al., 1988; Casey and Canal,
2017; Juza et al., 2022). Schizophrenia may be controlled by the
antagonism of the 5-HT2A receptor in synergy with the antagonism
of the dopamine D2 receptor (Andree et al., 1997). However, many
atypical antipsychotics have more selectivity for dopamine D2 receptor
than 5-HT2A receptor at therapeutic doses in clinical. These atypical
antipsychotic drugs with relatively high D2 receptor occupancy in the
striatum and presumably other D2 expressing tissues such as pituitary
gland, elevate prolactin levels and can induce extrapyramidal motor side
effects at therapeutic doses. Selective 5-HT2A receptor antagonist has
been proved not only to enhance dopamine D2 receptor antagonist-
mediated antipsychotic efficacy but also to reduce hyperprolactinemia
and motor side effects (Wadenberg et al., 2001; Gardell et al., 2007).

Furthermore, the dopamine D3 receptor may represent an
important target for antipsychotic drugs (Schwartz et al., 2000; Gross
et al., 2013). The dopamine D3 receptor has been recognized to have
several central nervous system (CNS) functions, such as social behavior,
movement control, emotional regulation, reward, learning, and
cognition function (Kiss et al., 2021). Dopamine D3 receptor
antagonists possess improving cognitive impairment activity, which
may benefit the treatment of cognitive dysfunction associated with
several psychiatric disorders (Laszy et al., 2005). Therefore, amedication
that combines potent 5-HT2A receptor antagonism with optimal
dopamine D2 receptor modulation, and the dopamine D3 receptor

antagonism activity may present an ideal balance of dopaminergic and
serotonergic neurotransmitter for the treatment of schizophrenia.

Taken together, we proposed the hypothesis that compounds acting
synergistically on serotonin and dopamine receptors might be able to
address schizophrenic symptoms with less or without inducing
extrapyramidal symptoms (EPS) and other side effects. A series of
fused heterocyclic derivatives were synthesized, which have potent
activity in serotonin and dopamine receptors. The patent for the
synthesis of the compounds has been published (Jing et al., 2021).
NH300094 (8-(3-(4-(6-fluorobenzo [d]isoxazol-3-yl) piperidin-1-yl)
propoxy)-1,2,5,6-tetrahydro-4H-pyrrolo [3,2,1-ij] quinolin-4-one)
was characterized as a preclinical candidate compound based on the
good preclinical profiles, which is a triple antagonist of 5-HT2A receptor,
dopamine D2 receptor and dopamine D3 receptor. Additionally, it has
strong inverse agonist activity of 5-HT1B and antagonistic activity of 5-
HT1A receptor. NH300094 is being developed and clinically intended
for the treatment of positive symptoms, negative symptoms and
cognitive disorders of schizophrenia.

2 Materials and methods

2.1 Experiment cells

CHO-K1/5-HT2A and CHO-K1/D3 cells were purchased from
Shanghai PerkinElmer Biotechnology Co., Ltd. CHO-K1/M1,
HEK293/H1, CHO-K1/D2, HEK293/5-HT7 and CHO-K1/5-HT1A

cells were purchased from Nanjing GenScript Biotechnology Co.,
Ltd. HEK293/5-HT2C, HEK293/Alpha1A and HEK293/Alpha2A cells
were constructed by biology laboratory of Shanghai shujing
Biopharma Co., Ltd. CHO-K1/5-HT1B cells were purchased from
Wuhan Creater Biotechnology Co., Ltd.

2.2 Experimental animals

Male Wistar rats (weight, 200–230 g) and ICR mice (weight,
20–28 g) were purchased from SPF (Beijing) Biotechnology Co., Ltd.
Male Sprague-Dawley (SD) rats (weight, 180–220 g) were purchased
from Beijing Vital River Laboratory Animal Technology Co., Ltd.
The animals were group feeding under standard conditions
(temperature:20°C–26°C, humidity: 40%–70%, 12-h dark/light
cycle). Before the testing, the animals were acclimated to the
laboratory environment for 3 days, and the animal food and
drinking water were freely provided. The animal experiment
protocols were approved by the Institutional Animal Care and
Use Committee of Jiangsu Nhwa Pharmaceutical Co., Ltd.

FIGURE 1
Chemical structure of NH300094.
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2.3 Drugs

NH300094 hydrochloride, risperidone and duloxetine
hydrochloride were synthesized at Jiangsu Nhwa
Pharmaceutical Co., Ltd. The molecular structure of NH300094
(PCT/CN 2020/129850) is shown in Figure 1. Other compounds
such as (+)-MK-801 hydrogen maleate (M107-250MG, Sigma),
rivastigmine hydrogen tartrate (LRAB1259, Sigma), R (2)-2,5-
dimethoxy-4-iodoamphetamine (DOI) (D101-100MG, Sigma),
R-(−)-Apomorphine (APO) hydrochloride (A4393, Sigma),
L-Ascorbic acid Vc (A5960-25G, Sigma), (+)-Butaclamol
(D033, Sigma) were purchased from Sigma-Aldrich (St. Louis,
MO). Scopolamine hydrobromide (S107418-5g, Aladdin) was
purchased from Aladdin. WAY-00635 (T2631, Targetmol),
Ketanserin (T1066, Targetmol), Yohimbine (T2142,
Targetmol), Pyrilamine (T1232, Targetmol), Atropine (T0375,
Targetmol), Prazosin (T1050, Targetmol) were purchased from
Targetmol. Methiothepin (HY-107836, MCE) was purchased
from MCE. All drugs were dissolved in normal saline or
deionized water and administered orally at 10 mL/kg (volume/
body weight), unless otherwise indicated.

2.4 Receptor functional activity

2.4.1 5-HT2A, 5-HT2C, H1, M1, Alpha1A receptor
functional assay

A calcium flow assay was used to test the activity of
compounds on 5-HT2A, 5-HT2C, H1, M1, Alpha1A receptor.
After the CHO-K1/5-HT2A, CHO-K1/M1, HEK293/5-HT2C,
HEK293/H1 and HEK293/Alpha1A cells were lightly
trypsinized, a density of 2×104 cells/well were inoculated in
384-well plates (Greiner-781946) which containing 20 μL cell
medium in each well. The cells were routinely cultured at 37°C
with 5% CO2 for 16–24 h prior to testing.

In agonist experiments, 20 μL of experimental buffer was
added to each well of the assay plate after removing the medium.
Then, 20 μL of fluorescent probe solution was added to each
well. The assay plate was incubated in incubator at 37°C
for 50 min, let it stand at room temperature for 10 min,
then transferred to the reading position of the Fluorescent
Image Plate Reader (FLIPR). The compound (10 μL) was
added to the assay plate and the fluorescence signal was read
for 210 s.

For the antagonist tests, 20 μL of experimental buffer and
fluorescent probe solution was added to each well of the assay
plate after removing of the culture medium. The assay plate was
incubated in incubator at 37°C for 50 min, let it stand at room
temperature for 10 min, then transferred to the reading position
of the Fluorescent Image Plate Reader (FLIPR). The compound
and control agonist serotonin (10 μL) was added to the assay
plate and the fluorescence signal was read for 210 s. After reading
the raw data from FLIPR, the EC50 and IC50 were calculated,
respectively.

For both agonist and antagonist tests, the difference between
the maximum value and the minimum value of fluorescence
signal readings (rang, 1–210 s) was regarded as the change of
relative fluorescent unit intensity (△RFU). The agonistic or

antagonistic activity of drug was analyzed using the
following equation:

%Activity� (ΔRFUCompound-ΔRFU negative control /)
(ΔRFU positive control-ΔRFU negative control) × 100

%Inhibition � 100- ΔRFUCompound-ΔRFU positive control /)(

(ΔRFU negative control-ΔRFU positive control) × 100

Dose-response curves for agonist/antagonist were fitted using
the software GraphPad Prism (version 8.0.2) with four parameter
logistic equation.

2.4.2 D2L, D2S, 5-HT1A, 5-HT1B, Alpha2A receptor
functional assay

The activity of the compounds on D2L, D2S, 5-HT1A, 5-HT1B and
Alpha2A receptors was detected using cAMP assay. The CHO-K1/D2,
CHO-K1/5-HT1A, HEK293/Alpha2A and CHO-K1/5-HT1B cells were
diluted to the appropriate concentration with experimental buffer, and
10 μL of the cell solution was transferred to each well of the assay plate.
The compound was then transferred to the assay plate using Tecan-
D300e. After centrifuging at 1,000 rpm for 1 min, the assay plate was
incubated for 15 min at room temperature. The appropriate amount of
Forskolin solution was added to the cell plate, where the antagonist test
assay requires an additional positive compound (dopamine for D2L,
D2S; serotonin for 5-HT1A, 5-HT1B; DL-Adrenaline for Alpha2A),
centrifuged at 1,000 rpm for 1 min. The plate was incubated for
45 min at room temperature before adding 10 μL cAMP-d2 solution
and anti-cAMP-Cryptate solution to the assay plate, which was then
centrifuged at 1,000 rpm for 1 min. The plate was incubated at room
temperature for 1 h. And then read using Envision (PerkinElmer) with
parameters set to excitation 340 nm and emission 620 nm/665 nm.

2.4.3 D3 receptor functional assay
For the D3 receptor functional assay, the Nano-Glo® luciferase assay

system was used to detect the activity of the compounds. The CHO-K1/
D3 cells were diluted to a final concentration of 5×10

5 cells/mL, and 20 μL
of cell suspension (cell density of 10,000 cells/well) was added to eachwell
of a 384-cell plate and incubated for 16–24 h in a 5% CO2 and 37°C
incubator. The compounds were transferred to the assay plate using a
Tecan-D300e, centrifuged at 1,000 rpm for 1 min, and incubated at 37°C
for 30 min. After adding the Forskolin solution, the assay plate was
centrifuged at 1,000 rpm for 1 min and incubated at 37°C for 4 h. The
substrate and assay buffer (v/v, 1/50) were added to the assay plate, and
then incubated at room temperature for 5 min after centrifuging at
1,000 rpm for 1 min. Finally, the assay plate was read using enzyme-
labelling measuring instrument and the IC50 of compounds was
calculated.

2.4.4 5-HT7 receptor functional assay
The activity of the compounds on 5-HT7 receptors was detected

using Bright-Glo™ Luciferase assay system. The HEK293/5-HT7

cells were diluted to the 20000 cells/well with assay buffer, and 20 μL
of the cell solution was transferred to each well of the assay plate
(384-well plate). The test compound and positive compound were
then transferred to the assay plate using Tecan-D300e. After
centrifuging at 1,000 rpm for 1 min, the assay plate was
incubated for 30 min at 37°C. The serotonin solution was
transferred into assay plate, centrifuge at 1,000 rpm for 1 min,
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and incubated for 4 h at 37°C. After that the 30 μL of detection
reagent was added to the cell plate, centrifuge at 1,000 rpm for 1 min,
and read using Envision with the HTRF compatible reader.

2.5 In vivo pharmacological study

2.5.1 MK-801-induced hyperactivity in mice
According to the body weight, one hundred and twenty male

ICR mice (5 weeks of age) were randomly divided into ten groups
with twelve mice per group. The mice were then dosed with
vehicle (p.o.), NH300094 (0.1, 0.3, 1 and 3 mg/kg, p.o.) or
risperidone (0.1, 0.3, 1 and 3 mg/kg, p.o.) and placed back into
their home-cage for 30 min. Immediately after injection with
either saline or MK-801 (0.3 mg/kg, i.p.), the mice were placed
into the test chambers (29 cm × 29 cm × 30 cm) for 60 min of
locomotion recording using a tracking and computerized analysis
system (TopScan Version 3.00, Clever Sys Inc., Leesburg, VA).
After each test, the test chamber should be cleaned and wiped
with 75% alcohol solution. The detailed flow chart of the test
method is presented in Supplementary Figure S1A.

2.5.2 APO-induced climbing in mice
According to the body weight, one hundred and eight male

ICR mice (5 weeks of age) were randomly divided into nine
groups with twelve mice per group. The mice were treated with
either vehicle (p.o.), NH300094 (0.03, 0.1, 0.3 and 1 mg/kg, p.o.)
or risperidone (0.03, 0.1, 0.3 and 1 mg/kg, p.o.) and placed back
into their home-cage for 60 min. Afterward, mice were injected
with apomorphine (APO, 1 mg/kg, s.c.) and immediately placed
individually into cylindrical cages (13 cm diameter, 15 cm high,
with walls of vertical bars, 1 cm diameter) for behavior
observation. The behavior of the mice was observed and
scored at 10–11, 20–21, 30–31 min post injection of APO as
follows: 0 = four paws on the cage floor; 1 = two paws holding
the vertical bars of the cage; 2 = four paws holding the vertical
bars of the cage. After each test, the test chamber should be
cleaned and wiped with 75% alcohol solution. The detailed flow
chart of the test method is presented in
Supplementary Figure S1B.

2.5.3 DOI-induced head twitch in mice
The test referred to the previously description of the DOI-

induced head twitch test in mice (Fantegrossi et al., 2010). One
hundred and eight male ICR mice (5 weeks of age) were randomly
divided into nine groups with twelve mice per group: control,
NH300094 (0.001, 0.003, 0.01, and 0.03 mg/kg, p.o.), risperidone
(0.001, 0.003, 0.01 and 0.03 mg/kg, p.o.). The mice were
administered intragastrically with vehicle or compounds 60 min
before the DOI (1 mg/kg, i.p.) injection. After that, the mice were
immediately placed into the plexiglass box individually. The number
of head twitches in themice was counted by the blind observer over a
20-min period. The detailed flow chart of the test method is
presented in Supplementary Figure S1C.

2.5.4 Conditioned avoidance response test in rats
The experiments were conducted in two phases: Phase I,

conditioned avoidance response (CAR) training (112 male Wistar

rats aged 7 weeks which were used when study started); Phase II,
grouping the qualified rats and testing the efficacy of compounds in
CAR test. Shuttle-box Avoidance Test Video Analysis System
(DigBehv-SBG, Shanghai Jiliang Software Technology Co. Ltd.)
were used to assess the rats conditioned avoidance response.

Phase I: The rats responded to the conditioned stimulus
(auditory and visual) by training with foot shock reinforcement.
Briefly, rats were placed into the CAR shuttle boxes for a 5-min
habituation followed by 30 trials presented on a 20-s variable
interval (20–30 s) stimulus. Each rats were subjected to a
conditioned stimulus which consisted of 10s presentation of light
and white noise, and then followed by a scrambled 1.5 mA foot
shock for 10 s. Rats were recorded as “avoidance” if they had
successfully moved to the other compartment during the
stimulus process; Rats that ran to the other compartment during
the shock was recorded as “escape”; Rats that failed to move to the
other compartment during the shock period were recorded as
“escape failure”. Rats with avoidance rates greater than 70% for
3 consecutive days were included in this study post-training.

Phase II: The qualified rats were randomly divided into 7 groups.
Each rats were individually placed into a shuttle box for CAR testing
1 h post oral administration of vehicle, NH300094 (0.3, 1 and
3 mg/kg, p.o.) or risperidone (0.3, 1 and 3 mg/kg, p.o.). The
procedure in the testing phase was the same as the Phase I
described. The number of avoidances, escapes, and escape
failures were recorded. The detailed flow chart of the test method
is presented in Supplementary Figure S1D.

2.5.5 Novel object recognition in mice
The procedure was modified according to Bevins and Besheer

(Bevins and Besheer, 2006). According to the body weight, one hundred
and sixty male ICR mice (5 weeks of age) were randomly divided into
ten groups with sixteen mice per group. The tests were conducted in a
50 cm × 35 cm × 20 cm chamber and the mice behavior was recording
using a Hikvision video recording system (H.265, Hikvision Digtial
Technology Co., Ltd.). All mice were allowed to freely explore the
chamber environment for 10 min, and there were no objects placed in
the chamber during acclimatization period. About 24 h after
habituation, mice were dosed with vehicle (p.o.), NH300094 (0.04,
0.08 and 0.16 mg/kg, p.o.) or risperidone (0.04, 0.08 and 0.16 mg/kg,
p.o.) 30 min before injected with scopolamine hydrobromide (3 mg/kg,
i.p.). Rivastigmine hydrogen tartrate group (0.1, 0.3 and 1 mg/kg, i.p.)
were dosed simultaneously with scopolamine hydrobromide (3 mg/kg,
i.p.). Training was conducted 30 min post scopolamine hydrobromide
administration by placing a single mouse into a chamber for 10 min
with two exactly same objects positioned in the center of chamber. (The
distance between the two objects wasmore than 20 cm). The short-term
memory of mice was tested 1 h post training by exploring the chamber
for 10 min in the presence of a new and familiar object. The 10-min
testing was videotaped. After each test, the test chamber should be
cleaned and wiped with 75% alcohol solution. All of the objects
presented had similar sizes, colors and textures.

The experimental video was analyzed to record the time of mice
exploring the new and old objects, respectively, and the
differentiation index (DI) was calculated as follows: DI = new
object exploration time/(new object exploration time + old object
exploration time), which was used as the main evaluation index of
discrimination ability. Analysis stopped when the total exploration
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time of the new and old objects reaches 20 s. If the total exploration
time of the new and old objects was less than 20 s, the total 10 min of
video would be analyzed. Exploration was defined as the distance
between the nose of mouse and the object being less than 1 cm when
the mouse actively explored the object. The movement of circling
without sniffing or sitting on the object was not recorded as
exploration behavior. The detailed flow chart of the test method
is presented in Supplementary Figure S1E.

2.5.6 Forced swimming test in mice
The test referred to the previously description of the forced

swimming test (FST) in mice (Porsolt et al., 1978). One hundred and
sixty male ICRmice (5 weeks of age) were randomly divided into ten
groups with sixteen mice per group: vehicle control, duloxetine
(20 mg/kg, p.o.), risperidone (0.01, 0.03 and 0.1 mg/kg, p.o.) and
NH300094 (0.003, 0.01 and 0.03 mg/kg, p.o.), the dosage of
duloxetine was referred to the previous study (Xu et al., 2018).
Each mouse was required to swim in an open cylindrical container
(height of 25 cm, diameter of 10 cm) after intragastric
administration of compounds 1 h. The container contained 1.2 L
of water with temperature maintained at 24°C ± 1°C. The test used a
computerized analysis and tracking system (Clever Sys Inc.,
Leesburg, VA) to recorded the duration of immobility (last 4 min
of a total time of 6 min) about the testing mice. The detailed flow
chart of the test method is presented in Supplementary Figure S1F.

2.5.7 Spontaneous locomotor activity test in mice
One hundred and eight male ICR mice (5 weeks of age) were

randomly divided into nine groups with twelve mice per group. One
hour after oral administration of vehicle (p.o.), NH300094 (0.1, 0.3,
1 and 3 mg/kg, p.o.), risperidone (0.1, 0.3, 1 and 3 mg/kg, p.o.), mice
were individually placed into test chamber (29 cm × 29 cm × 30 cm)
for locomotion recording for 60 min using a computerized analysis
and tracking system (Clever Sys Inc., Leesburg, VA). After each test,
the test chamber should be cleaned and wiped with 75% alcohol
solution. The detailed flow chart of the test method is presented in
Supplementary Figure S1G.

2.5.8 Catalepsy test in mice
The test referred to the previously description of the catalepsy

test in mice (Kuschinsky and Hornykiewicz, 1972). According to the
body weight, one hundred and eight male ICR mice (5 weeks of age)
were randomly divided into nine groups with twelve mice per
group. Catalepsy was assessed at 30, 60 and 90 min post oral
administration of vehicle (p.o.), NH300094 (1, 3, 10 and
30 mg/kg, p.o.) or risperidone (0.1, 0.3, 1 and 3 mg/kg, p.o.). The
front paws of mice were placed on a horizontal stainless bar (length:
20 cm; diameter: 0.3 cm; height: 5.5 cm). If this behavior of mouse
lasted for 30 s or longer, catalepsy would be considered as positive,
and 60 s was used as cut-off. After each test, the test area should be
cleaned and wiped with 75% alcohol solution. The detailed flow
chart of the test method is presented in Supplementary Figure S1H.

2.6 Pharmacokinetics assay

Six male SD rats (7 weeks of age) were randomly divided into two
groups with three rats per group. Animals were fasted overnight and

had free access to water before dosing. For the intravenous group, male
SD rats were administered NH300094 by single intravenous bolus
administration at a dose of 2 mg/kg. For the oral group, male SD rats
were dosed orally with NH300094 at a dose of 10 mg/kg. Serial blood
samples were collected at different time points (Pre-dose, 0.033, 0.083,
0.25, 0.5, 1, 2, 4, 6, 8, 12 and 24 h for the intravenous group; Pre-dose,
0.167, 0.333, 0.5, 1, 2, 4, 6, 8, 10, 12 and 24 h for the oral group) via
jugular vein puncture from each study animal. All blood samples were
transferred into commercial tube containingK2-EDTA. Plasma samples
were prepared by centrifuging the blood samples at approximately 4°C,
3,200×g for 15 min, and then stored at −70°C until analysis
(Supplementary Materials). The pharmacokinetic parameters were
calculated using WinNonlin software (Version 6.3) according to
non-compartmental model.

2.7 Statistical analysis

All raw data were calculated as the mean ± standard deviation
(S.D.). Statistical analyses were conducted using GraphPad Prism
version 8.0.2 (GraphPad Software). For in vitro assays, the IC50

and EC50 values were calculated by nonlinear regression analysis.
For in vivo experiments, the data were analyzed statistically by
one-way ANOVA followed by Dunnett’s multiple comparison
test (p < 0.05).

3 Results

3.1 In vitro pharmacology

The results of tests in vitro showed that NH300094 has
pharmacological activity against various targets, including
antagonist activity against D2LR, D2SR, D3R, 5-HT1AR and 5-
HT2AR. Additionally, inverse agonist activity was observed at 5-
HT1BR (Table 1; Figure 2). The antagonistic activity to D2LR (IC50 =
1.04 ± 0.59 nM) and 5-HT2AR (IC50 = 0.47 ± 0.79 nM) was the most
significant activity of NH300094, which indicates its potential anti-
schizophrenia activity. NH300094 had lower antagonistic activities
ratio of 5-HT2AR and D2R than risperidone (IC50 ratio = 0.45 for
NH300094, IC50 ratio = 1.0 for risperidone), which is speculated
lower extrapyramidal side effects (Meltzer et al., 1989). The high
inverse agonist activity of 5-HT1BR (EC50 = 28.36 ± 12.52 nM) and
antagonistic activities of 5-HT1AR (IC50 = 85.59 ± 61.53 nM) and
D3R (IC50 = 31.55 ± 23.08 nM) suggesting that NH300094 has
potential to improve not only the positive symptoms but also the
cognitive dysfunctions (Laszy et al., 2005; Meneses, 2007; Ohno,
2011). NH300094 has no significant pharmacological activity
against other targets in the study (Supplementary Table S1).

3.2 Effects of NH300094 on MK-801-
induced hyperactivity in mice

Single oral dose administrations of NH300094 (0.01, 0.03,
0.1 and 0.3 mg/kg) resulted in a dose-dependent inhibition of
MK-801-induced hyperactivity in male ICR mice with an ED50 of
approximately 0.07 mg/kg and Minimum effective dose (MED) of
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0.03 mg/kg. Risperidone (0.01, 0.03, 0.1 and 0.3 mg/kg) also
significantly reduced MK-801-induced hyperactivity with an ED50

of approximately 0.08 mg/kg and MED of 0.1 mg/kg (Figure 3A).

3.3 Effects of NH300094 on APO-induced
climbing in mice

Single oral dose administrations of NH300094 (0.03, 0.1,
0.3 and 1 mg/kg) resulted in a dose-dependent inhibition of
APO-induced climbing in male ICR mice with an ED50 of
approximately 0.29 mg/kg and MED of 0.3 mg/kg. Risperidone
(0.03, 0.1, 0.3 and 1 mg/kg) also significantly reduced APO-
induced climbing behavior, with an ED50 of approximately
0.1 mg/kg and MED of 0.1 mg/kg. These results indicate that

NH300094 has potential antipsychotic effects in
clinic (Figure 3B).

3.4 Effects of NH300094 on DOI-induced
head twitch in mice

Single oral dose administrations of NH300094 (0.001, 0.003,
0.01 and 0.03 mg/kg) resulted in a dose-dependent inhibition of
DOI-induced head twitch in male ICR mice with an ED50 of
approximately 0.007 mg/kg and MED of 0.003 mg/kg. Risperidone
(0.001, 0.003, 0.01, 0.03 mg/kg) also significantly reduced DOI-
induced head twitch with an ED50 of approximately 0.002 mg/kg
and MED of 0.001 mg/kg. The data from this study reveal that both
NH300094 has potential antipsychotic effects in clinic. (Figure 3C).

TABLE 1 In vitro functional profile of NH300094 and Risperidone.

Receptor NH300094 Risperidone Positive controla

D2LR, IC50(nM) 1.04 ± 0.59 0.44 ± 0.29 1.08 ± 0.88

D2SR, IC50(nM) 11.71 ± 9.38 2.11 ± 1.08 1.12 ± 1.63

D3R, IC50(nM) 31.55 ± 23.08 84.63 ± 36.40 70.67 ± 42.69

5HT1AR, IC50(nM) 85.59 ± 61.53 4964.67 ± 2981.62 0.41 ± 0.28

5HT1BR, EC50 (nM) 28.36 ± 12.52 371.50 ± 271.30 22.27 ± 9.69

5HT2AR, IC50(nM) 0.47 ± 0.79 0.44 ± 0.53 1.05 ± 1.01

IC50, half maximal inhibitory concentration; EC50, half maximal effective concentration; R, receptor.
aPositive control: (+)-Butaclamol (D2LR/D2SR/D3R), WAY-100635 (5HT1AR), Methiothepin (5HT1BR), Ketanserin (5HT2AR).

FIGURE 2
The in vitro pharmacological activity of NH300094 and risperidone at 5-HT2AR (A), D2LR (B), D2SR (C), 5-HT1AR (D), D3R (E), 5-HT1BR (F), which
presented using concentration-dependence curves. The effects are determined by cAMP production or intracellular Ca2+ concentrations. Data are
presented as means ± S.D. of three independent test.
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3.5 Effects of NH300094 on conditioned
avoidance response

Single oral dose administrations of NH300094 (0.3, 1 and
3 mg/kg) resulted in a dose-dependent inhibition of conditioned
avoidance response of rats with an ED50 of approximately
1.02 mg/kg. Risperidone (0.3, 1 and 3 mg/kg) also significantly
reduced conditioned avoidance response of rats with an ED50 of
approximately 0.70 mg/kg. The results showed that NH300094 has
potential antipsychotic effects in clinic (Figure 3D).

3.6 Effects of NH300094 on novel object
recognition in mice

The cognitive deficits model of mice treated by scopolamine
hydrobromide was established, and the effects of NH300094 on the
model was examined using novel object recognition (NOR). In the
10-min test experiment, mice dosed with vehicle spent 12.94 s on a
novel object and 7.06 s on a familiar object, with a differentiation
index (DI) of 0.65. Mice treated with scopolamine hydrobromide
showed significant new object recognition impairment by spending
roughly equal time exploring an acquainted object and a novel object

with a DI of 0.46. Compared with the DI of scopolamine
hydrobromide-treated mice, the positive control, rivastigmine
bitartrate-treated (0.3 and 1 mg/kg, i.p.) mice also significantly
enhanced learning and memory ability, indicating that the testing
system worked well for compound testing. In this study, we found
that at doses of 0.01–0.16 mg/kg, NH300094 increased DI index of
scopolamine hydrobromide-treated mice, while risperidone (0.04,
0.08 and 0.16 mg/kg, p.o.) did not affect the DI of scopolamine
hydrobromide-treated mice. These results suggest that
NH300094 may have the potential to improve cognitive deficits
of schizophrenia (Figure 4A).

3.7 Effects of NH300094 on forced
swimming test in mice

A single oral dose of administrations of NH300094 (0.03 mg/kg)
decreased immobility time in the FST, but single oral dose of
administrations of risperidone (0.01, 0.03 and 0.1 mg/kg) did not
affect the immobility time in the FST. The results indicate that
NH300094 may have potential effects in improving the negative
symptoms of schizophrenia, which is different from
risperidone (Figure 4B).

FIGURE 3
Effects of different doses of NH300094 on schizophrenia-like model compared with antipsychotic drugs risperidone in rodents. (A) Effects of
NH300094 and risperidone on hyperactivity model induced by MK-801 (0.3 mg/kg, i.p.) in mice (n = 12). (B) Effects of NH300094 and risperidone on
climbing behavior induced by APO (1.0 mg/kg, s.c.) in mice (n = 12). (C) Effects of NH300094 and risperidone on head-twitches behavior induced by DOI
(1.0 mg/kg, s.c.) inmice (n= 12). (D) Effects of NH300094 and risperidone on the avoidance time of rats in conditional avoidance test (n=8). Data are
presented as box-and-whisker plot (min to max with all points) and are analyzed one-way ANOVA with Dunnett’s multiple comparisons tests. **p < 0.01,
***p < 0.001 compared with veh group. Veh: Vehicle.
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3.8 Effects of NH300094 on spontaneous
locomotor activity

A single oral dose of administrations of NH300094 (0.1, 0.3,
1 and 3 mg/kg) resulted in a dose-dependent inhibition of
spontaneous locomotor activity in male ICR mice with an
ED50 of approximately 0.49 mg/kg. Risperidone (0.1, 0.3,
1 and 3 mg/kg) also reduced spontaneous locomotor activity
significantly with an ED50 of approximately 0.52 mg/kg. The
ED50 of NH300094 in spontaneous locomotor activity is
much higher than that of MK-801 induced hyper-locomotor
activity, indicating the good safety margin of
NH300094 (Figure 5A).

3.9 Effects of NH300094 on catalepsy test

The catalepsy test is widely used for evaluating extrapyramidal
side effects of dopamine antagonists (Adams et al., 2013). In this

study, the minimal dose of NH300094 that induced catalepsy in
mice is 3 mg/kg with an ED50 of 6.73 mg/kg. On the other hand, the
minimal dose of risperidone that induced catalepsy in mice was
1 mg/kg with an ED50 of 1.35 mg/kg. These results indicate that
NH300094 may have lower EPS side effects compared to
risperidone (Figure 5B).

3.10 Pharmacokinetics study

Good pharmacokinetic characteristics are an important factor
for clinical efficacy of drugs. The PK parameters of
NH300094 were acquired by intravenous and intragastric
administration in rats. The mean plasma concentration of
NH300094 over 24 h is shown in Figure 6. The oral
administration of NH300094 to rats resulted in a half-life of
1.28 h, and the area under the concentration time-curves for
time zero to infinity was 14800 ng/mL*h. By comparing the
exposure of NH300094 after oral and intravenous

FIGURE 4
Effects of different doses of NH300094 on cognitive memory and depression-like behavior compared with antipsychotic drugs risperidone in mice.
(A) The influence of different doses of NH300094 on the discrimination ratio compared to model group (n = 16). (B) The influence of NH300094 on
mobility in FST (n = 16). Data are presented as box-and-whisker plot (min to max with all points) and are analyzed one-way ANOVA with Dunnett’s
multiple comparisons tests. **p < 0.01, ***p < 0.001 compared with veh group. #p < 0.05 compared with model group. Veh: Vehicle.

FIGURE 5
Side-effects of different doses of NH300094 compared with antipsychotic drugs risperidone in mice. (A) The influence of single acute treatment
with NH300094 and risperidone on the locomotion activity in mice. (n = 12). (B) The influence of single acute treatment with NH300094 and risperidone
on the catalepsy time in mice. (n = 12). Data are presented as box-and-whisker plot (min to max with all points) and are analyzed one-way ANOVA with
Dunnett’s multiple comparisons tests. *p < 0.05, **p < 0.01, ***p < 0.001 compared with veh group. Veh: Vehicle.
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administrations, the absolute oral bioavailability of NH300094 was
calculated as about 87.6% in rats. The other major
pharmacokinetics parameters for different administration routes
are presented in Table 2, demonstrating the excellent
pharmacokinetic characteristics of NH300094 for further
development.

4 Discussion

Today, many antipsychotics have been developed, but these
drugs have not been able to dissociate efficacy from side effects
(Paul et al., 2022; Schneider-Thoma et al., 2022). Additionally,
negative symptoms and cognitive dysfunctions of schizophrenia
are difficult to manage, which impairs the patient’s ability to
return to normal life (Kahn et al., 2015; Xu et al., 2022; Veleva
et al., 2023). NH300094 is a novel anti-schizophrenia candidate
with unique characteristics of D2 receptor, D3 receptor
antagonism, 5-HT1A,5-HT2A receptor antagonism and 5-HT1B

inverse agonism. Its antagonistic activity against 5-HT2A

receptor is significantly higher than that against the dopamine

receptor, which is in line with the characteristics of atypical anti-
schizophrenia drugs. Preclinical studies results suggest that
NH300094 has the potential to treat positive symptoms of
schizophrenia as well as improve negative symptoms and
cognitive impairment.

At present, the primary mechanism action of traditional
antipsychotics is still to block the signaling of postsynaptic
dopaminergic in the brain (Behr et al., 2000; Ichikawa et al., 2001;
Muller-Spahn, 2002). Preclinical and clinical studies have clearly
indicated that fronto-cortical dopamine system hypoactivity and
striatal dopamine system hyperactivity associated with the
occurrence of psychotics (McCutcheon et al., 2019; Rao et al.,
2019). It is suggested that simultaneous blocking of dopamine D2

and 5-HT2A receptors improves the efficacy of antipsychotic drugs in
patients with schizophrenia and reduces the risk of extrapyramidal
symptoms (EPS) (Andree et al., 1997; Kusumi et al., 2015). The
conditioned avoidance response study is a well-established preclinical
antipsychotic animal model (Wadenberg et al., 2000; Gao et al., 2015).
Antipsychotic drugs can selectively suppress the conditioned
avoidance response of rats. PK/PD (pharmacokinetics/
pharmacodynamics) studies have suggested that the relationship
between the suppression of conditioned avoidance response and
dopamine D2 receptor occupancy of rats correlates well with the
relationship between human clinical effects and dopamine
D2 receptor occupancy (Wadenberg et al., 2001; Olsen et al.,
2008). The present data indicate that NH300094 has good
antagonism effects with D2 receptor (IC50 = 1.04 nM), and showed
good efficacy in CAR study of rats. It predicts good clinic efficacy for
NH300094. Apomorphine is a potent dopamine agonist, challenged
with apomorphine can induce specific climbing behaviors in mice on
subsequent occasions (Costall et al., 1978; Davis et al., 1986).
Dopamine antagonists inhibit climbing behaviors of mice dose-
dependently (Kafka and Corbett, 1996). NH300094 significantly
inhibits apomorphine induced climbing, indicating strong
dopamine antagonism effects. Taken together with the CAR
results, the antipsychotic effects of NH300094 in animal studies
correlate well with the in vitro antagonism activity of Dopamine
D2 and D3 receptor.

Serotonin receptor, particularly the 5-HT1A and 5-HT2A

receptors, are useful targets for the treatment of schizophrenia

FIGURE 6
Mean plasma concentration-time profiles of NH300094 in rats
after an oral or intravenous administration.

TABLE 2 In vivo pharmacokinetics parameters of NH300094.

Group Intravenous administration group Oral administration group

Administration Dosage (mg/kg) 2 10

C0 or Cmax (ng/mL) 10800 8710

Tmax (h) NA 0.389

Cl (mL/min/kg) 9.91 NA

Vdss (L/kg) 0.379 NA

AUC0-last (ng·h/mL) 3374.4 14782.1

AUC0-inf (ng·h/mL) 3381.4 14787.1

T1/2 (h) 1.73 1.28

Bioavailability (%) NA 87.6

Frontiers in Pharmacology frontiersin.org09

Feng et al. 10.3389/fphar.2024.1298061

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1298061


(Poyurovsky et al., 2003; Meltzer et al., 2012). In the prefrontal
cortex, 5-HT1A receptor and 5-HT2A receptor are mostly expressed
in pyramidal neurons and are involved in the regulation of
excitatory and inhibitory transmission in these neurons, which
accounts for the antipsychotic effects (Burnet et al., 1996;
Amargos-Bosch et al., 2004; Santana et al., 2004). The DOI
induced head-twitch behavior is a useful model for studying the
activation of 5-HT2A receptors in mice (Fantegrossi et al., 2010;
Canal andMorgan, 2012). In 5-HT2A receptor null-mutant mice, the
DOI-induced head twitches are completely abolished (Gonzalez-
Maeso et al., 2003). In our study, the ED50 value of NH300094 in
mice DOI model was 0.006 mg/kg post p.o. administration.
NH300094 dose-dependently inhibits DOI induced head-twitch
behaviors, which is consistent with the in vitro data. The FLIPR
assay shows that NH300094 is a potent 5-HT2A receptor antagonist
(IC50 = 0.47 nM). The density of 5-HT1A receptor is increased in the
brains of chronic schizophrenia patients, implying an important role
of 5-HT1A receptor in the pathogenesis of schizophrenia
(Hashimoto et al., 1991; Millan, 2000). It is reported that
antagonism of 5-HT1A receptor can improve cognitive
impairment in schizophrenia (Meltzer and Sumiyoshi, 2008). The
stimulation of the 5-HT1A receptor often interferes with memory-
encoding mechanisms in brain, which leading to learning
disabilities. However, antagonists of 5-HT1A receptor can
enhance cortical cholinergic/hippocampal and/or glutamatergic
neurotransmission, which promoting certain types of memory
(Ogren et al., 2008; Yamada et al., 2023). 5-HT1A antagonists
reversed the cognitive impairment induced by NMDA receptor
antagonists or mACh receptor antagonists (Luttgen et al., 2005;
Madjid et al., 2006). Lurasidone, a antipsychotics with potent 5-
HT1A antagonistic activity, has been shown to improve the learning
and memory deficits induced by MK-801 in rats (Ishiyama et al.,
2007; Horisawa et al., 2011) and to improve the cognitive
impairment in schizophrenia in the clinic (Samalin et al., 2014;
Meltzer et al., 2020). In our study, NH300094 but not risperidone
shows good 5-HT1A antagonistic activity in the c-AMP assay
(NH300094 IC50 = 85.59 nM; risperidone IC50 = 4964.67 nM),
and it has a very good in vivo efficacy in the NOR test in the
scopolamine induced memory deficits model of mice. The minimal
effects dose is lower than that of rivastigmine, a dementia disorders
drug widely used for the treatment of Alzheimer’s disease (Marucci
et al., 2021). Our data indicate that the 5-HT1A antagonism activity
of NH300094 might be one of the mechanisms of memory
improvement effects.

Glutamatergic dysfunction is considered another mechanism of
schizophrenia (Kruse and Bustillo, 2022). Studies have shown that
the extracellular concentrations of dopamine and serotonin increase
in the nucleus accumbens (NAC) and prefrontal cortex (PFC) after
systemic administration of N-methyl-D-aspartic acid receptor
(NMDA) antagonists such as MK-801, indicating that
modulation of dopamine and serotonin receptors could
potentially help restore the glutamatergic dysfunction in
schizophrenia (Marcus et al., 2001; Lopez-Gil et al., 2007;
DelArco et al., 2008). In rodents, MK-801, a NMDA non-
competitive antagonist, induces complex behavioral syndromes
that include locomotor hyperactivity, stereotypy, disruption of
sensorimotor gating, and social deficit (Jentsch and Roth, 1999).
Hyperlocomotion induced by acute MK-801 treatment in mice is a

reliable and robust model for antipsychotic drugs testing (Ninan and
Kulkarni, 1999). In our study, NH300094 effectively attenuated
hyperlocomotion produced by MK-801, indicating its potential
role in restoring the function of NMDA receptors in
schizophrenia patients.

Cognitive impairment is one of the main obstacles to clinical
and functional recovery in schizophrenia (Harvey et al., 2022).
In patients with schizophrenia, D3 receptor levels are elevated in
the limbic striatum, suggesting that D3 receptor antagonists
might be effective in treating schizophrenia (Gurevich et al.,
1997). The studies have suggested that dopamine D3 receptor
antagonists could improve cognitive function of rats, which may
be helpful in the clinical treatment of cognitive dysfunction
associated with psychiatric disorders (Laszy et al., 2005; Watson
et al., 2012). Huang et al. found that cariprazine could increase
dopamine, norepinephrine, and serotonin efflux in both rat
nucleus accumbens (NAC) and ventral hippocampus (HIP)
via the antagonism of D3 activity (Huang et al., 2019).
Selective dopamine D3 receptor antagonists (SB-277011A and
SB-414796A) could enhance the extracellular levels of
acetylcholine (ACh) in the rat medial prefrontal cortex
(mPFC), which may be beneficial in the treatment of
cognitive dysfunction (Lacroix et al., 2006). NH300094 has
potent dual dopamine D3 receptor and 5-HT1A receptor
antagonism activity, which might account for its in vivo
efficacy in improving cognitive function. Antagonism of 5-
HT1A receptor has been shown to ameliorate cognitive
impairment in AD and schizophrenia (Meltzer and
Sumiyoshi, 2008; Ogren et al., 2008; Shimizu et al., 2013). It
is suggested that 5-HT1A antagonists could improve cognitive
function which mediated by postsynaptic 5-HT1A receptor;
However, full 5-HT1A agonists impairs cognition by
inhibiting the release of glutamate and acetylcholine in
various regions of the brain (Jeltsch et al., 2004; Madjid et al.,
2006). In addition, antagonism of dopamine D3 and 5-HT1A

receptor could increase the efficacy but decrease the side effects
of antipsychotics. Unlike the typical motor side effects caused by
D2 antagonists, the low brain abundance and peculiar
distribution of D3 receptors become valuable targets for the
development of drug (Maramai et al., 2016). KKHA-761, a
potent dopamine D3 receptor antagonist, has antipsychotic
activity with low risk of EPS (Park et al., 2005). The
distinctive functional profile of clozapine may be related to its
partial agonist activity against 5-HT1A receptor (Millan., 2000).
In our study, the unique profiles of dopamine D3 and 5-HT1A

receptor antagonism of NH300094 might account for its
cognitive improvement activity and better safety profiles.

NH300094 is a novel antipsychotic with antagonist activity
against 5-HT2AR > D2LR > D3R > 5-HT1AR receptors, showing
powerful efficacy in positive, negative, and cognitive impairment
animal models. In vitro mechanism studies showed that
NH300094 could antagonize both dopamine receptor and 5-
HT receptors, but its relative antagonistic potency against 5-
HT2A receptor was higher than that of dopamine receptors. Its
strong agonistic activity against 5-HT2A receptor may contribute
to higher efficacy, overcome the limitations of current
antipsychotics, and a better safety profile. Preclinical animal
results showed that NH300094 was effective in multiple
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models, which is more extensive than the clinic drug Risperidone.
The better safety margin of NH300094 may translate into a better
clinical safety profile. In conclusion, NH300094 is a novel potent
serotonin and dopamine receptors modulator, possessing
potential for the treatment of schizophrenia with
cognition disorder.
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