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Introduction: Connections among neurons form one of the most amazing and
effective network in nature. At higher level, also the functional structures of the
brain is organized as a network. It is therefore natural to use modern techniques of
network analysis to describe the structures of networks in the brain. Many studies
have been conducted in this area, showing that the structure of the neuronal
network is complex, with a small-world topology, modularity and the presence of
hubs. Other studies have been conducted to investigate the dynamical processes
occurring in brain networks, analyzing local and large-scale network dynamics.
Recently, network diffusion dynamics have been proposed as a model for the
progression of brain degenerative diseases and for traumatic brain injuries.

Methods: In this paper, the dynamics of network diffusion is re-examined and
reaction-diffusion models on networks is introduced in order to better describe
the degenerative dynamics in the brain.

Results: Numerical simulations of the dynamics of injuries in the brain
connectome are presented. Different choices of reaction term and initial
condition provide very different phenomenologies, showing how network
propagation models are highly flexible.

Discussion: The uniqueness of this research lies in the fact that it is the first time
that reaction-diffusion dynamics have been applied to the connectome tomodel
the evolution of neurodegenerative diseases or traumatic brain injury. In addition,
the generality of these models allows the introduction of non-constant diffusion
and different reaction terms with non-constant parameters, allowing a more
precise definition of the pathology to be studied.
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1 Introduction

Dynamics occurring in the connectome are crucial because they underlie the brain’s
ability to process information, learn, and adapt to changing environments (Avena-
Koenigsberger et al., 2018). Understanding these dynamics is essential for unraveling the
neural basis of cognition, behavior, and, medically, neurological issues. From this perspective,
any study that leads to progress in the understanding of the mechanisms associated with
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neurological deficits is potentially a step forward in the development
of methodologies that can help recover brain health (Raj et al., 2012;
Poudel et al., 2020).

From the introduction of the term connectome (Sporns et al.,
2005), when its exact structure was largely unknown, until today,
several research studies have been done to study the very complex
network of the connectome (Bullmore and Sporns, 2009) and the
dynamic processes occurring in it (Avena-Koenigsberger et al., 2018).

In particular, human connectome dynamics occur in multiple
time scales, ranging from milliseconds to years, and different types
of measuring equipment are used to capture them (Mitra, 2007).
These different time scales reveal various aspects of brain functions
and behaviors. The shortest time scales are related to rapid neural
processing and information exchange within functional brain
networks. Neurotransmission and synaptic communication play a
vital role in this fast-paced activity. Electroencephalography (EEG)
and magnetoencephalography (MEG) are elective techniques for
capturing these rapid electrical brain signals. At higher time scales,
from seconds to minutes, the dynamics of the connectome are
related to cognitive processes and functional connectivity changes
during specific tasks. Functional MRI (fMRI) is commonly used to
study these changes. For example, during a memory task, certain
brain regions may exhibit increased functional activity, indicating
their involvement in the memory network (Murphy et al., 2020).
From minutes to hours, the dynamics of the connectome are related
to resting-state fluctuations in functional connectivity (Smitha et al.,
2017). Resting-state fMRI is used to study intrinsic brain activity
while an individual is not performing any specific task. Examples of
processes that occur at higher time scales, from days to years, are
learning, memory consolidation processes, brain development, and
cognitive decline. In particular, the processes which we are
interested in, traumatic brain injuries and degenerative brain
dynamics, occur on these time scales. For these kinds of diseases,
it is of paramount importance to integrate the functional
information with that arising from the study of the structural
connectome, which represents the anatomical connections
between different brain regions. Diffusion tensor imaging (DTI)
and diffusion-weighted imaging (DWI) are the main commonly
used MRI techniques to create a structural connectome. We chose to
use the connectome created from DTI and DWI data because there
is evidence that it is involved in the propagation of neurological
diseases (Torok et al., 2018; Weickenmeier et al., 2019; Wilson et al.,
2023). However, it is important to emphasize that the methodology
presented in this work is independent of the type of connectome one
decides to use (whether based on functionality, proximity, synaptic
connections, or some other structure of brain physiology); the most
appropriate network must be chosen to accurately describe the
propagation of a given neural pathology.

A growing number of works on degenerative brain diseases (Raj
et al., 2012; Raj et al., 2015; Pandya et al., 2019) and traumatic brain
injuries (Poudel et al., 2020) use network diffusion as a descriptive
and predictive dynamical model.

The network diffusion process, also known as the heat diffusion
process, is becoming increasingly important in all those applications
where some kind of network dynamics needs to be modeled. The fields
of application are the most varied, from machine learning (see, for
example, (Hofmann et al., 2008) and the recent (Stolfi et al., 2023)) to
network biology (see (Carlin et al., 2017) and reference therein) and

from the propagation of epidemics (see, for example, (Masuda, 2010))
to degenerative diseases of the brain (Raj et al., 2012, 2015; Pandya et al.,
2019; Poudel et al., 2020), which is where our attention will be focused.

However, with regard to the progression of brain degenerative
diseases or brain injuries, network diffusion is not the best modeling
description. Diffusion is introduced for the description of the
random movements of particles or substances through a medium
due to thermal agitation, and the diffusion equation preserves the
amount of spreading particles or substances. This condition, in the
case of a progressive disease or increasing brain damage, cannot be
satisfied. We cannot assume that brain damage will be preserved;
most probably, it may increase or decrease. Rather than a diffusing
substance, the progressive worsening of dementia, for example,
might be better characterized by the progression of damage,
which, in modeling terms, can be described by a propagating
front associated with reaction–diffusion equations.

In neurological applications, reaction–diffusion models on networks
have been used very little and only recently.When they are used, they are
not directly coupled to the connectome (Andrade-Restrepo et al., 2021) or
diffusion on the lattice is used (Schmitt et al., 2022).

In the present work, we illustrate a simple methodology to
describe propagation dynamics on the connectome using
reaction–diffusion dynamics on graphs. We apply the model to a
simple connectome, and we show the differences between a simple
network diffusion model and a propagation model.

2 Materials and methods

In this section, we briefly recall the theory of network diffusion
models (Section 2.1) and network reaction–diffusion models
(Section 2.2). Then, we analyze some reaction terms that can be
used within the latter models (Section 2.3), and finally, we proceed
with the description of the dataset used to apply the mentioned
network dynamics models on the connectome.

2.1 Diffusion on networks

The connectome is usually described (Bullmore and Bassett,
2011) by an undirected and unweighted graph,G = (V, E), whereV is
the set of vertices (or nodes) of the graph (we consider a finite
number,N, of vertices) and E is the set of edges (or links) connecting
the vertices. The graph is determined by its adjacency matrix Aij

(Bollobás, 1998), which is given by

Aij � 1 if i, j( ) ∈ E
0 if i, j( ) ∉ E

{ (1)

An important quantity associated with each node, i, is its degree,
ki, defined as the number of nearest neighbors of i. This quantity can
be computed using the adjacency matrix ki = ∑jAij as defined in
Eq. 1.

Defining the concentration of substances contained in each
node, θi(t), we can describe the diffusion dynamics on a graph by
considering the flow, with a diffusion rate w, of that quantity from
the various edges of the graph. The increase in the concentration in
each node in time dt can be computed as follows:
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θi t + dt( ) − θi t( ) � w ∑
j

Aijθj t( )⎛⎝ ⎞⎠ − kiθi t( )⎡⎢⎢⎣ ⎤⎥⎥⎦dt. (2)

The first term on the right side of Eq. 2 accounts for the inflow of
substances coming from the neighbors of node i, while the second
term accounts for the outflow of substances from node i to its
neighbors. Equation 2 can be rewritten as follows:

θi t + dt( ) − θi t( ) � w∑
j

Aij − kiδij( )θj t( )[ ]dt,
where δij = 1 if i = j, and 0 otherwise. For dt reaching zero, the

above equation gives

dθi
dt

� w∑
j

Aij − kiδij( )θj. (3)

Following Bollobás (1998), the discrete Laplacian of the graph, L,
can be defined as L = A − K, where we use the matricial
representation, L, for Lij = Aij − kiδij. The diffusion dynamics on
the graph, G = (V, E), can be written by following Eq. 3 as:

θ′ t( ) � wLθ t( ), (4)
where θ is the vectorial representation of θi, {θ}i = θi.

The most used expression for the network diffusion, Eq. 4, has
an analytical solution:

θ t( ) � exp wLt( )θ 0( ). (5)
In all the interesting cases, Eq. 5 is very hard to be computed exactly;
its numerical solution is implemented in many software packages.

2.2 Reaction diffusion on networks

The diffusion dynamics on graphs can be used for inert
substances (i.e., that do not increase, decrease, or react) when
moving from nodes with a higher concentration to nodes with a
lower concentration. It has many different applications, but when
dealing with reactive substances or when the quantity of the
substance is not preserved (it can be the quantity of proteins that
aggregate in Alzheimer’s or Parkinson’s diseases or the progressive
damage in traumatic brain injuries), the diffusion dynamics cannot
be an adequate model to describe such phenomena.

A natural extension of Eq. 4 is the reaction–diffusion equation
on a graph (Burioni et al., 2012)

θ′ t( ) � wLθ t( ) + f θ t( )( ). (6)

The function f(θ) accounts both for the reaction of the substance
inside nodes and the interaction between the nodes. In our case, we
consider only the local reaction of the substances inside a node (which
can be a model for protein accumulation inside a node or increased
damage within a node), so the expression for the reaction function is
{f}i(θ(t)) = rg(θi(t)), where g(θ) is the reaction term, which is the same
for each node (homogeneity hypothesis of the reaction), and r is the
reaction rate. Accordingly, simplifying Eq. 6, the reaction–diffusion
equation on a graph studied in this work is represented as follows:

θi′ � w∑
j

Aij − kiδij( )θj + rg θi( ). (7)

In general, there is no analytical solution to Eq. 7. Therefore, in
order to study it, one must necessarily resort to numerical methods.
See section “Numerical Integration” of the Supplementary Material
for a simple numerical integration scheme for Eq. 7.

2.3 Reaction terms

For the reaction term g(θ), different choices can bemade depending
on the different kinds of reaction dynamics one wants to describe. One
of the most widely used is the logistic growth function,

g θ( ) � θ 1 − θ( ), (8)

which can be found inmany applications in different disciplines, for
example, biology, medicine, physics, and chemistry. It was coupled for
the first time to a diffusion operator in 1937, independently by Fisher
and Kolmogorov, giving rise to the classical reaction–diffusion model
(Fisher, 1937; Kolmogorov et al., 1937) often called the FKPP model.

θ′ � w∇2θ + rθ 1 − θ( ).

A brief discussion about the properties of the FKPP dynamics
can be found in the section “Reaction–diffusion dynamics” of the
Supplementary Material.

The logistic growth term takes into account both the exponential
growth (with rate r) of the initial concentration of substances and a
limiting factor that slows down the growth rate as the concentration
approaches a maximum capacity. Without the loss of generality,
usually, the limit concentration is fixed to θ = 1.

In some cases, at very small concentrations, the exponential growth
induced by the logistic reaction term could be inappropriate. Thus,
another very important reaction term, the Allee term (Allee, 1938;
Stephens et al., 1999), is taken into account. It considers the presence of
a concentration threshold before which the reaction is inhibited or not
activated; at a concentration below the threshold, the per capita growth
rate, i.e., _θ/θ, is negative or zero. The Allee term is a valid model when,
for small concentrations (small amounts of pathogen, inflammation, or
population), the evolution dynamics fail to take hold. In the scientific
literature, the Allee reaction term can be found in different forms
(Courchamp et al., 2008) belonging to two main groups: the strong
Allee effect, where the per capita growth rate is negative at low densities,
and the weak Allee effect, where the reaction rate is positive at low
densities but smaller than that at higher densities. In this work, we use
two Allee reaction terms. The first is the classical analytical
representation for the strong Allee effect (Courchamp et al., 1999).

g θ( ) � θ θ − θc( ) 1 − θ( ), (9)
where θc is the threshold above (below) which the per capita growth
rate is positive (negative), and the second (Vergni et al., 2012) lies in
between the strong and weak Allee effects.

g θ( ) � max θ − θc( ) 1 − θ( ), 0{ }. (10)
We call it the neutral Allee effect since, below the threshold, the

growth rate is zero and the substance concentration remains
constant (neglecting the diffusion term).

A detailed discussion of the different types of reaction terms
introduced here, with associated illustrative figures, can be found in
the section “Reaction dynamics” of the Supplementary Material.
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Here, we want to stress that different reaction terms at varying
initial conditions show very different phenomenology.

2.4 Data

We applied our model to a simple connectome constructed starting
from the data provided by the B.A.T.M.A.N. tutorial (https://osf.io/
fkyht/). The dataset was acquired from the University of Regensburg
and is freely available upon request to the author. The acquired data and
analysis pipeline are fully described in the tutorial. Here, we only
summarize the main details and analysis steps.

All DWI images were acquired on a Siemens Prisma 3T MRI
system equipped with a 64-channel receiver head coil and using a
multi-shell acquisition scheme. Diffusion weighting of b = 1,000,
2,000, and 3,000 s/mm2 was applied in 17, 31, and 50 directions,
respectively. For each b-value, five images without diffusion-
sensitizing gradients (i.e., “b0 images”) were acquired. Other
DWI parameters are as follows: TR/TE = 8,500/110 ms; voxel
size: 2.5 × 2.5 × 2.5 mm3; matrix: 96 × 96; slices: 60.

Additionally, a high-resolutionMPRAGE anatomical image dataset
was acquiredwith the following parameters: FoV 256 × 256 mm,matrix
size 256 × 256, 160 slices, 1 mm isotropic resolution, TR/TE = 1910/
3.67 ms, flip angle 9o, and 5-min acquisition scheme.

Raw diffusion-weighted images were corrected for the eddy
current, motion, and B0-field inhomogeneity using MRtrix3
software (Tournier et al., 2019). The anatomical T1-weighted
images were linearly registered to the diffusion space using FSL
(Smith et al., 2004). Constrained spherical deconvolution (CSD)
and fiber orientation distribution (FOD) algorithms were used to
reconstruct the tractograms. Then, spherical-deconvolution informed
filtering of tractograms (SIFT) was used to decrease reconstruction
biases and improve biological plausibility.

Cortical reconstruction and volumetric segmentation of
anatomical data were performed with the FreeSurfer image
analysis suite (Dale et al., 1999). To compute the structural
connectome, the Human Connectome Project Multi-Modal
Parcellation 1.0 (HCP MMP 1.0) (Glasser et al., 2016) was chosen.

In particular, the whole brain tractography and T1-based
parcellations were combined to compute the atlas-based SC
matrix in MRtrix. The nodes were represented by 379 distinct
regions of interest (ROIs), and for each possible node pair, (i, j),
interregional connectivity was defined as the number of
reconstructed streamlines (NOS) scaled by the ROI volume,
representing the edges of the connectome, Wij. The higher Wij is,
the stronger is the connection between the linked ROIs i and j.

Each ROI defines a vertex in the graphG = (V, E), and in order to
obtain the adjacency matrix, Aij, which defines the set of edges, E, we
use the weighted matrix Wij, introducing a threshold, Sw, above
(below) which the nodes (i, j) are connected (disconnected).

Aij �
1 if W i,j( ) ≥ Sw
0 if W i,j( ) < Sw

{ (11)

In our case, we choose Sw = 0.034 in order to have a fully
connected graph, i.e., from each node i, it is always possible to reach
any other node of the graph. With this choice, there are 1,738 active
links, and two nodes are particularly relevant, i = 53 (parcellation

name L_3a), with a degree of 36 and an average shortest path to
other nodes of 2.84, and i = 165 (parcellation name L_25), with a
degree of 1 and an average shortest path to other nodes of 5.93.
Those nodes are the most and the least connected ones, respectively.

3 Results

In this section, some evolution dynamics of Eq. 7 over a graph
given by Eq. 11 will be presented at varying initial conditions and the
reaction term, keeping all the parameters fixed, i.e., r = 1, w = 1, and
θc = 0.001, in the presence of the Allee effect. In this way, it is possible
to show how by only changing the nature of the reaction and the
initial condition, while keeping all the parameters unchanged, the
system can describe very different phenomenology associated with
different outcomes of possible traumatic brain injuries or different
development of degenerative brain diseases. The initial condition is
defined as θj(0) = θ0δij, i.e., an empty network, except for a certain
concentration, θ0, initially injected into a single node, i, which
represents a particular brain region, or ROI, as discussed
in Section 2.4.

A first quantity, able to characterize the evolution dynamics
inside the connectome, is the percentage of the substance in the
graph (Burioni et al., 2012) at a given time, t,

M t( ) � 1
N

∑
i∈V

θi t( ), (12)

where we recall that N is the total number of vertices. Since we are
dealing with brain diseases or injuries, another important quantity is
the number of nodes, i.e., regions in the brain, in which the
concentration of disease or injury is above a given threshold:

N t; θc( ) � ∑
i∈V

Θ θi t( ) − θc( ), (13)

whereΘ(x) is the Heaviside step function with values 0 for x ≤ 0 and
1 for x > 0. In this work, we use θc = 0.001, which is the same value of
the threshold for the Allee effect. The reason is simple: in the
presence of the Allee effect, below the concentration threshold,
the reaction dynamics are inhibited.

It is worth nothing that, with the simple network diffusion dynamics,
Eq. 4, the quantityM(t) remains fixed,M(t) =M(0) = θ0/N, and the large
time evolution of N(t; θc) can be easily predicted as follows:

N t → ∞ ; θc( ) � N if θ0/N> θc
0 if θ0/N≤ θc

{ ,

for each chosen initial condition since, at large times, the initial
concentration, θ0, is spread over the entire connectome, and finally,
a constant amount of concentration equal to θ0/N will be present in
each node. A brief comparison between diffusion dynamics and
reaction–diffusion dynamics can be found in the section “Reaction-
diffusion dynamics” of the Supplementary Material.

Instead, as shown in Figure 1, the variety in the concentration
dynamics of Eq. 7, by changing the reaction term and initial
conditions, is quite large, especially when compared to the
behavior of the simple diffusion case.

In Figures 1A and B, the evolution of M(t) for the logistic
reaction case, Eq. 8, for a different initial concentration, θ0, and two
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FIGURE 1
Comparison of different reaction dynamics, starting from a different initial node, i, and with different initial conditions θ(0) = θ0. θc = 0.001 for all the
simulations with the Allee effect. (A) Propagation dynamics ofM(t) (12) with a logistic reaction (8) on varying the initial quantity, θ0, starting from the most
connected node i= 53. (B) Propagation dynamics ofM(t) (12) with a logistic reaction (8) on varying the initial quantity, θ0, starting from the least connected
node i = 165. (C) Dynamics of N(t) (13) with a logistic reaction (8) for θ0 = 0.1 starting from the nodes i = 53 and i = 165, the least and the most
connected nodes. (D) Propagation dynamics of M(t) with a neutral Allee effect (10) on varying the initial quantity, θ0, starting from the most connected
node i = 53. (E) Propagation dynamics of M(t) with a neutral Allee effect (10) on varying the initial quantity, θ0, starting from the least connected node i =
165. (F)Dynamics ofN(t) with a neutral Allee effect (10) for θ0 = 0.1 starting from the nodes i = 53 and i = 165, the least and themost connected nodes. (G)
Propagation dynamics ofM(t) with a strong Allee effect (9) on varying the initial quantity, θ0, starting from themost connected node i= 53. (H) Propagation
dynamics ofM(t) with a strong Allee effect (9) on varying the initial quantity, θ0, starting from the least connected node i = 165. (I) Dynamics of N(t) with a
strong Allee effect (9) for θ0 = 0.0035 starting from the nodes i = 53 and i = 165, the least and most connected nodes.
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different initial nodes, i = 53 (Figure 1A) and i = 165 (Figures 1B), 1 is
shown. As reported in Section 2.4, nodes i = 53 and i = 165 were chosen
as the most and least connected node in the connectome, respectively.
However, as discussed in Section 2.2, with the logistic reaction term,
even a very little initial concentration was amplified by the initially
exponential growth rate, and the dynamics always ended with the entire
connectome full of concentration. The evolution dynamics of the
number of nodes with a value of concentration higher than a given
threshold, N(t; θc), represented in Figure 1C, shows a different behavior
when starting in the most connected node, i = 53, or in the least
connected one, i = 165, denoting a different evolution dynamic inside
the connectome; however, for large t, all the connectomes will be
invaded, i.e., M(t) = 1 and N(t) = N.

The dynamics in the presence of the Allee effect is very different.
Starting with the neutral Allee effect, Eq. 10, in Figures 1D and E, the
propagation dynamics involve the whole connectome only when the
initial concentration is above a given value that we call the invasion
value. This value, which cannot be easily analytically computed,
depends on the threshold value and, more interestingly, on the
position in the network of the initial condition. When starting in the
most connected node, i = 53, (Figure 1D) the invasion value appears
to be higher than when starting in the least connected node, i = 165
(Figure 1E). This somehow counterintuitive behavior has a simple
explanation: starting from the most connected site, the
concentration invades most of the graph because of diffusion,

which, meanwhile, causes the concentration to fall below the
threshold since it has not had time to grow enough due to the
reaction term, and the dynamic breaks down. On the other hand,
starting from the least connected site, the reaction acts before
diffusion, and when the concentration reaches enough nodes
through diffusion, it has high values that allows it to survive and
invade the entire graph. See Figure 1F for a graphical representation
of the number of nodes that are above the threshold θc.

A similar behavior is shown in Figures 1G and H, referred to as the
strong Allee effect, with the presence of a minimal invasion
concentration below which there is no invasion of the connectome.
The most evident difference is in the spreading time of the
concentration. The strong Allee effect has a negative growth rate for
concentrations below the threshold that causes a slowdown in the
evolution dynamics. The time taken to invade all the connectomes,
when the initial concentration is above the invasion value, is much
longer than that in the neutral Allee effect. Moreover, when the initial
concentration is below the invasion value, the concentration in the
connectome disappears (due to the negative growth rate); it also occurs
if, initially, the concentration had invaded a good portion of the
connectome (see Figure 1I). This may be consistent with a
physiological situation, in which a brain injury heals itself or with
the recovery from a brain disease.

An example of a graphical representation of the propagation
dynamics in the brain is given in Figure 2. Each node is a ROI of the

FIGURE 2
Three snapshots of the concentration dynamics in the brain at times t = 0.0, t = 0.3, and t = 5.0 in the case of a neutral Allee effect (10) for θ0 = 0.1. In
the first row, the dynamics starts from the most connected node i = 53, while in the second row, the dynamics starts from the least connected node i =
165. (A) Initial substance concentration, starting from themost connected node i= 53. (B) Substance concentration at time t = 0.3, starting from themost
connected node i = 53. (C) Substance concentration at time t = 5.0, starting from the most connected node i = 53. (D) Initial substance
concentration, starting from the least connected node i= 165. (E) Substance concentration at time t= 0.3, starting from the least connected node i= 165.
(F) Substance concentration at time t = 5.0, starting from the least connected node i = 165.
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brain, and the concentration in a node is pictorially represented by
an intensity of red. Below the concentration threshold, the ROI is
not colored, while above the concentration threshold, the intensity
of red increases to saturation at a concentration given by 10θc. The
reaction dynamics and the initial conditions are the same as in
Figure 1F, i.e., a neutral Allee effect is considered with θc = 0.001, and
the initial condition is θ0 = 0.1, starting from two different nodes, the
most connected and the least connected. We show three snapshots
of the dynamics at t = 0, t = 0.3, and t = 5 (the time unit is arbitrary)
for the two initial nodes. As discussed for Figure 1F, starting from
the most connected node, there is an initial wide spread of
concentration but with a low concentration value. Diffusion then
brings the concentration below Allee’s threshold, and propagation is
inhibited (see Figures 2A–C). Starting from the least connected
node, the initial spread of concentration is not very wide, but, with a
high concentration value, it continues to increase and propagates
throughout the brain (see Figures 2D–F).

4 Discussion

Network diffusion models are able to describe the process of
diffusion of substances within a medium whose structure can be
schematized with a network, namely, a graph, where the nodes
represent the basic elements of the medium, which can be, for
example, the regions of the brain, and the edges represent the link
between different nodes, for example, the structural or functional
interactions between brain regions. A crucial feature of network
diffusion models is that the substance in the medium is conserved
as it spreads across the network. This means that the quantity M(t) is
fixed, and asymptotically, the concentration of the substance in the
network becomes constant, θ(t→∞) = θ0/N. This is a strong constraint
that makes these models not realistic in many contexts, such as in cases
of traumatic brain injuries or progressive brain diseases. On the other
hand, reaction–diffusion models on networks are more flexible since
they can describe the propagation of substances through the medium
using different reaction dynamics, which can model different types of
injury or disease evolution, without the constraint of the conservation of
substances. As shown in the examples provided in the Results section,
different choices of the reaction terms and the initial conditions
(starting from the most or the least connected node) provide very
different phenomenology, making these models highly flexible. In this
work, we considered only the logistic non-linearity and Allee effects,
which were usually used to describe the spreading of biological
population and wave propagation. However, the reaction term can
be modified by considering different nonlinear functions which could
be more fitted for the description of different neurodegenerative
diseases. Reaction–diffusion models comprise a huge variety of
behaviors, and the choice of reaction terms must be guided by the
phenomena of interest, which, in the case of neurodegenerative diseases,
will be observed on different types of patient data. Although not
presented in this work, a wide phenomenology can be observed by
letting the reaction term and the other parameters of the model vary.
We believe that any brain disease evolution can be described by a
reaction–diffusion model using a particular reaction term, accurately
calibrated model parameters, and a given initial condition, which could
be, for example, the magnitude of the trauma in the case of a traumatic
brain injury, or the extent of the disease in the case of a degenerative

brain disease. In order to test the predictive ability of reaction–diffusion
models for a specific brain disease, it is necessary to consider ad hoc
experimental data (i.e., MRI or CT scans performed at different time
intervals), which requires collaboration with hospital research centers
and robust statistical methodology for calibrating the model parameters
(both scalar, such as the reaction rate, diffusion rate, or the Allee
threshold, and functional, such as the specific shape of the reaction
term). All of this goes beyond the aim of this work, which is an
important first step in introducing a complete modeling framework for
studying the evolution of various progressive degenerative diseases and
traumatic brain injuries.

Reliable models for brain pathologies are fundamental in the
healthcare system. For traumatic brain injuries, these models could
represent a supporting tool to medical staff, being instruments that
provide predictions about the evolution of a trauma and, in turn,
about the extent of the brain damage. In the examples shown in the
Results section, we reported cases in which different positions of an
initial trauma cause very different injury evolution. For degenerative
brain diseases, as well as predicting the timing of disease
progression, these models could help healthcare professionals to
quantify the benefit of using a particular drug to treat a particular
patient as drug use can be incorporated into the reaction model.

Finally, the network reaction–diffusion models proposed in this
work can be extended by considering a weighted adjacency matrix
and non-constant system parameters, allowing, for example,
different reaction and diffusion rates in different brain regions.
In terms of applications for brain pathologies, these models can
consider a connectome with weighted links and variable reaction
rates that take into account both the strength of the connection
between brain regions and the different rates of progression of
pathologies for a realistic description of brain diseases.
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