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Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide
and accounts for more than 90% of primary liver cancer. The advent of immune
checkpoint inhibitor (ICI)-related therapies combined with angiogenesis
inhibition has revolutionized the treatment of HCC in late-stage and
unresectable HCC, as ICIs alone were disappointing in treating HCC. In
addition to the altered immune microenvironment, abnormal lipid metabolism
in the liver has been extensively characterized in various types of HCC. Stains are
known for their cholesterol-lowering properties and their long history of treating
hypercholesterolemia and reducing cardiovascular disease risk. Apart from ICI
and other conventional therapies, statins are frequently used by advanced HCC
patients with dyslipidemia, which is often marked by the abnormal accumulation
of cholesterol and fatty acids in the liver. Supported by a body of preclinical and
clinical studies, statins may unexpectedly enhance the efficacy of ICI therapy in
HCC patients through the regulation of inflammatory responses and the immune
microenvironment. This review discusses the abnormal changes in lipid
metabolism in HCC, summarizes the clinical evidence and benefits of stain
use in HCC, and prospects the possible mechanistic actions of statins in
transforming the immune microenvironment in HCC when combined with
immunotherapies. Consequently, the use of statin therapy may emerge as a
novel and valuable adjuvant for immunotherapies in HCC.

KEYWORDS

HCC, immunotherapy, statins, cholesterol, ICI, inflammation

1 Introduction

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, and its
incidence, along with associated morbidity and mortality, is increasing globally (Podlasek
et al., 2023). The majority of HCCs are secondary to chronic Hepatitis B or C infections
(Coffin and He, 2023), which mostly lead to cirrhosis, a chronic stage of liver lesion before
HCC where scar tissue replaces liver cells (Omar et al., 2023). Accumulating findings
indicate that cellular and acellular components in the tumor microenvironment (TME) can
reprogram tumor initiation, growth, invasion, metastasis, and response to therapies (Jin and
Jin, 2020), through interactions among various cell types, including the tumor cells,
immune cells, stromal cells, and blood vessels (Sangro et al., 2021; Llovet et al., 2022;
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Hosonuma and Yoshimura, 2023). In recent years, a more
comprehensive understanding of the TME has facilitated the
development of immunotherapies for various cancers (Hosonuma
and Yoshimura, 2023). Compared to conventional therapies such as
chemotherapy and radiation therapy, immunotherapies have
demonstrated striking efficacy and much less adverse effects
(Kamrani et al., 2023). Major immunotherapy strategies include
immune checkpoint blockers or inhibitors (ICB/ICIs) and adoptive
cell transfer (ACT), in addition to vaccines and virotherapy, the
clinical value of which has not yet been fully validated. Despite
promising and often unprecedented response rates with ICI therapy,
a substantial portion of patients fail to benefit from this therapy.
Consequently, applications of combinational therapies or precision
medicine, biomarker discoveries, and efforts in overcoming drug
resistance and reducing adverse effects also emerge endlessly
(Kamrani et al., 2023).

Key nutrients such as glucose and amino acids maintain
metabolic homeostasis within immune cells and tumor cells
present in the TME (Zou and Green, 2023). Metabolic
reprogramming in the TME alters tumor immunity leading to
changes in immunotherapeutic response observed in tumor-
bearing mice and patients with cancer (Zou and Green, 2023).
Recently, the importance of lipid accumulation has been
particularly underscored in different immune cell subsets and
tumor cells in the TME; for instance: tumor-associated
macrophages (TAMs) show increased levels of the scavenger
receptor CD36, leading to accumulated intracellular lipid and
elevated fatty acid oxidation (FAO), which in return contributes
to pro-tumor TAM polarization (Su et al., 2020). Similarly, high
expression of fatty acid transporter protein 2 in tumor-associated
neutrophils causes augmented uptake of arachidonic acid and
synthesis of immunosuppressive molecule prostaglandin E2
(PGE2) (Veglia et al., 2019). In addition, cholesterol metabolism
has also been involved in regulating CD8+ T cells in the TME.
Suppression of acetyl-CoA acetyltransferase 1 (ACAT1) responsible
for cholesterol esterification or cholesterol transporter proprotein
convertase subtilisin/kexin type 9 (PCSK9) improves the anti-tumor
performance of CD8+ T cells and potentiates ICB therapy (Yang
et al., 2016; Liu et al., 2020).

Statins are widely used as cholesterol-lowering drugs in clinical
practice and were originally discovered as potent inhibitors of the
rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase (HMGCR) in the mevalonate pathway
(Lee et al., 2014). Besides the canonical effects on cholesterol
levels, statins show pleiotropic effects on various cellular
activities, such as proliferation, cell adhesion and migration,
immune regulation, and endothelial functions (Pedersen, 2010).
Concerning the synthesis of sterols and isoprenoids resulting
from the mevalonate pathway are shown to be crucial for tumor
growth, statins are proven to reduce the risk of HCC in plenty of
meta-analyses and observational studies (Zhong et al., 2016; Wong
et al., 2021). A recent meta-analysis including 24 studies
demonstrated a 46% decrease in HCC risk among statin users,
which indicate the high potential effects of statins as an alternative
option in chemoprophylaxis of high-risk HCC population (Islam
et al., 2020). The underlying mechanisms of the protective effects of
statins may involve inhibition of oncogene MYC, protein kinase B
(AKT), and NF-κB pathways by statins, leading to the enhanced

cytokine production of interleukin-6 (IL-6), tumor necrosis factor-α
(TNF−α), and transforming growth factor-β1(TGF-β1) (Li et al.,
2020a). Therefore, modulation of the tumor immune
microenvironment (TIME) through cytokines or chemokines by
statins now has been extensively recognized. Statins inhibit
chemokine (C-C motif) ligand 3 (CCL3) secretion by primary
lung cancer cells and suppress IL-6 and CCL2 production by
mesenchymal stromal cells (MSCs), and disrupt the
communication between lung cancer cells and MSCs (Galland
et al., 2020). As a result, statins negatively affect the proliferation
of primary lung cancer cells, inspiring the reuse of statins in
targeting the TIME (Galland et al., 2020). In addition, statin
therapy has surprisingly increased the sensitivity and function of
natural killer (NK) cells, enhancing the spontaneous killing of tumor
cells in colon cancer and melanoma (Janakiram et al., 2016; Zhu
et al., 2021). More recently, immune-based therapeutic mechanisms
of simvastatin in HCC are offering broad opportunities for its
applications in HCC patients (Yu et al., 2022). These findings
together have highlighted the beneficial role of statins in
cancer therapy.

Most of cancers progress from the chronic diseases or
symptoms, and in this context, initially prescribed drugs against
the chronic disease such as statin and metformin might be
continually administrated during cancer treatment. Emerging
studies have reported the impacts of adjunct use of commonly
prescribed drugs on the outcome of ICI therapy (Vos et al., 2022).
For example, in a multicenter observational retrospective study,
statins were being used by 19.4% of the patients with various types of
cancer following PD/PD-L1 therapy, and the baseline use of statins
was independently related to an increased objective response rate
(ORS), but not with progression-free survival (PFS) and overall
survival (OS) (Cortellini et al., 2020). In two cohorts of patients with
non-small-cell lung cancer (NSCLC) and malignant pleural
mesothelioma, the concomitant use of statins was significantly
related to improved OS and PFS in patients received ICIs (Zhang
et al., 2021). Similarly, a recent study also showed improved OS with
statin use in PD/PD-L1 inhibitor-treated patients with NSCLC
(Singh et al., 2022). To date, these conclusions have mostly been
drawn from retrospective studies and meta-analyses, and
prospective studies are warranted to validate these findings. In
this review, we introduce advances in immune
microenvironment-driven immunotherapies for HCC, describe
varieties of aberrant lipid metabolism in the liver that guide the
application of statin as a cholesterol-lowering agent in HCC
treatment, and discuss the potential use of stain in future
immune therapy strategies for combinational treatment, based on
observations mostly from long-term population studies and
clinical trials.

2 Lipid metabolism in HCC

2.1 Tumor microenvironment in HCC

The complexity and homeostasis in TME during the tumor
occurrence and development have now been well recognized, and
cancer cells evolve to escape from immune surveillance by
establishing a TME, which manifests remarkable immune
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suppression and promotion on tumor progression and metastasis.
The architecture of a characteristic TME consists of the extracellular
matrix (ECM) elements, fibroblasts, myofibroblasts, adipose cells,
immune and inflammatory cells, endothelial cells, and pericytes,
supplemented with secreted cytokines, chemokines and enzymes
(Yang et al., 2011; Chen et al., 2015a). In a such milieu, interactive
crosstalk among these components together determines how the
tumor mass grows (Yang et al., 2011). The recent advent of ICI
therapy for cancer has revolutionized the treatment of HCC and led
to new therapeutic standards, as well as a more profound
understanding of tumorigenesis, indicating that cancer treatment
should not only target cancer cells but also the surrounding TME. It
is noted that all components in TME are not independently existed,
and their intrinsic interconnections are usually way more complex
than described. Many reviews have also comprehensively discussed
the architecture of TME in HCC (Sangro et al., 2021; Llovet et al.,
2022; Sas et al., 2022). In particular, recent studies using single-cell
profiling and multiomic techniques have greatly advanced our
knowledge of the ecosystem in primary, metastatic, and early-
relapse HCC, as well as how immune system and tumor cells
respond to HCC status, immune evasion, and immunotherapies
(Zheng et al., 2017; Sun et al., 2021; Lu et al., 2022; Liu et al., 2023;
Murai et al., 2023).

2.1.1 Cellular components in TME of HCC
Typical cellular components in TME of HCC consist of hepatic

stellate cells (HSCs), cancer-associated fibroblasts (CAFs),
endothelial cells, NKs, regulatory T cells (Tregs), myeloid-derived
suppressor cell (MDSCs) and TAMs (Figure 1) (Tahmasebi Birgani
and Carloni, 2017). HSCs are a significant component in HCC-TME

and are pivotal mediators of immunosuppression and pathogenesis
of cirrhosis and HCC. HSCs provide an immunosuppressive niche
for HCC by promoting the infiltration of Tregs and MDSCs (Zhao
et al., 2014). MDSCs are important in immune suppression induced
by inflammatory cytokines (e.g., PGE2), andMDSCs could affect the
induction and function of Tregs. The inhibition of HSCs-derived
PGE2 suppresses MDSCs accumulation induced by HSCs and HCC
growth (Xu et al., 2016). CAFs secrete a higher amount of hepatocyte
growth factor than the normal fibroblasts, and the secretion capacity
of CAFs around HCC is positively correlated with the tumor size (Jia
et al., 2013). CAFs-secreted C-C motif chemokine ligand proteins,
CCL2, CCL5, CCL7, and CXCL16, promote the migration and
invasion of HCC cells and enhance their metastasis to other
organs by activation of the TGF signaling pathway (Liu et al.,
2016). Alternatively, CAFs in TME also secrete PGE2 to suppress
the NK cell function in HCC (Li et al., 2012). Tumor endothelial cells
promote tumor angiogenesis and regulate cytotoxic T cells in the
TME (Sakano et al., 2022; Feng et al., 2023b). In HCC, tumor
endothelial cells could induce tumor-infiltrating T-cell exhaustion
and induce the suppression of tumor growth via silencing
glycoprotein non-metastatic melanoma protein B expression
(Sakano et al., 2022). Like other cancers, liver malignancies and
HCC progression are also facilitated by TAMs at TME of HCC
(Shirabe et al., 2012). A high abundance of M2macrophage has been
shown to correlate with aggressive phenotypes of HCC (Dong et al.,
2016). These alternatively activated macrophages release high levels
of pro-metastatic cytokines in the circulation of HCC patients, such
as IL-6, IL-1, and TNF-α (Ataseven et al., 2006). TAMs, by activating
the STAT3 signaling in HCC cells, are associated with large tumor
size, intrahepatic metastasis, and a high rate of HCC recurrence

FIGURE 1
Simplified cellular components in TME of HCC. Typical cellular components in the tumormicroenvironment (TME) of HCC consist of hepatocellular
carcinoma (HCC) cells, hepatic stellate cells (HSCs), cancer-associated fibroblasts (CAFs), NK cell, regulatory T cells (Tregs), myeloid-derived suppressor
cell (MDSCs), endothelial cells and tumor-associated macrophages (TAMs) M2, etc.
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(Peng et al., 2005; Mano et al., 2013). Taken together, the complex
cellular components in TME of HCC dynamically interact through
cell-cell contacts and cytokine signaling and exhibit considerable
influences on tumor immune responses (Chen et al., 2023a).

2.1.2 Non-cellular components in TME of HCC
ECM containing extracellular substances, tumor vasculature

system, exosomes, and cytokines are major non-cellular
components in TME of HCC (Tahmasebi Birgani and Carloni,
2017). Matrix metalloproteinases (MMPs) are remodeler enzymes
responsible for the degradation and remodeling of the ECM.
Increased expression of MMP-9 was detected around the tumor
capsule in HCC and was strongly correlated with tumor size, capsule
status, tumor stage, and HCC recurrence risk (Arii et al., 1996; Sun
et al., 2005). An upregulated level of pro-inflammatory cytokine IL-6
was found in the serum of HCC patients (Xu et al., 2021), and the IL-
6/STAT3 signaling pathway has been frequently shown to be
constitutively activated in HCC patients, which is associated with
poor prognosis (Li et al., 2023a), affecting activities of anti-
apoptosis, angiogenesis, proliferation, invasion, metastasis, and
drug resistance of HCC cells (Xu et al., 2021). IFN-γ produced
by mucosa-associated invariant T (MAIT) cells was reduced in the
peripheral blood and liver of HCC patients than in the controls
(Huang et al., 2021). Moreover, increased vascular endothelial
growth factor (VEGF) in the serum of HCC patients strongly
dictates the severities of tumor invasiveness, metastasis, and poor
prognosis of patients (Li et al., 1999; Poon et al., 2004; Lacin and
Yalcin, 2020), while suppression of VEGFmitigates the angiogenesis
and prevents the proliferation and growth of HCC cells (Raskopf
et al., 2008).

2.2 Abnormal lipid metabolism
(dyslipidemia) in HCC

As another critical target for cancer therapy, cancer metabolism
is regulated by cell-intrinsic factors and metabolite availability in the
TME. Key modulations are dependent on tumor cell metabolism,
cell interactions in TME, tumor heterogeneity, and whole-body
metabolism homeostasis (Elia and Haigis, 2021). Consequently,
specific metabolic adaptations by TMEs drive further cancer
progression. Aberrant lipid metabolism in HCC generally
manifests as alternations in lipid uptake and efflux, dysregulated
endogenous lipid synthesis, elevated cholesterol esterification, and
disruptions in lipid oxidation. These alterations are intimately linked
with tumor activities in HCC (Feng et al., 2023a).

2.2.1 Lipid metabolism in the normal liver
The liver is the second largest organ in the body where a variety

of metabolic activities take place. In this review, other than protein
metabolism and glucose metabolism, we briefly discuss lipid
metabolism in normal liver and HCC. Lipids in the body include
triglycerides, phospholipids, and cholesterol, and the first two are
composed of fatty acids. Triglycerides are mainly used as an energy
store in case of high energy demand, whereas cholesterol and
phospholipids are the source materials for the synthesis of the
cell membrane and steroid hormones, respectively (Borén and
Taskinen, 2022). Lipogenesis occurs in the fat cells and

hepatocytes by converting excess acetyl CoA generated by
glycolysis into fatty acids, triglycerides, cholesterol, steroids, and
bile salts (Desoye and Herrera, 2021). When energy is needed from
the fat stored in adipose tissue, the process of lipolysis initiates by
hydrolyzing triglycerides into fatty acids and glycerol which further
enter the circulation to be transported to tissues such as the liver.
Then in the liver, glycerol enters the glycolysis pathway after
converted into glycerol-3-phosphate and fatty acids undergo β-
oxidation and enter the tricarboxylic acid cycle to release ATP
(Feng et al., 2023a).

2.2.2 Fatty acid metabolism in HCC
Increased uptake of extracellular fatty acids promotes epithelial-

mesenchymal transition, cell growth, and proliferation in HCC by
mechanisms that induction of CD36/fatty acid translocase is
strongly engaged (Nath et al., 2015; Pascual et al., 2017). In line
with this, the synthesis of fatty acids in HCC cells is atypically higher,
due to the disrupted expression or activities of key enzymes involved
during the synthesis process, including malonyl-CoA, acetyl-CoA,
and fatty acid synthase (FASN). Overexpression of FASN was
evidenced to promote the carcinogenesis of HCC (Wang et al.,
2022). Inactivation of FASN impairs hepatocarcinogenesis driven by
AKT and pharmacological blockade of FASN might be highly useful
in the treatment of human HCC (Li et al., 2016). β-oxidation of fatty
acids (FAO), a process of lipolysis taking place at the mitochondria,
is found deficient in HCC (Fujiwara et al., 2018). Peroxisome-
proliferator-activated receptors (PPARs) are transcription factors
that are activated by endogenous fatty acids and fatty acid
derivatives. PPARα is a major transcriptional regulator of fatty
acid oxidation and extended PPARα activation causes HCC in
rodent mice by mechanisms that involve perturbation of the cell
cycle and production of ROS [reviewed by Michalik et al. (2004)].
Overall, the extracellular uptake, biosynthesis, and degradation of
fatty acids are reinforced in HCC progression.

2.2.3 Cholesterol metabolism in HCC
Given the low expression of low-density lipoprotein receptor

(LDLR), the transmembrane receptor for cholesterol, facilitates
upregulated cholesterol synthesis, the expression of LDLR seems
to be notably lower than that in normal cells surrounding the tumor
in HCC (Chen et al., 2021). In addition to the LDLR-mediated
cholesterol uptake, the efflux of cholesterol has also been shown to
be downregulated in HCC (Cui et al., 2020). Upregulated cholesterol
esterification is another indication of HCC-associated cholesterol
metabolism. Cholesterols are stored as cholesterol esters after
cholesterol esterification and provide a critical energy supply for
tumor cells (Tosi and Tugnoli, 2005). Alternatively, cholesterol can
be oxidized into oxysterols which later impact the TME by
promoting immunosuppression and assist tumor metastasis (Xia
et al., 2021).

3 Lipid-targeting statins in HCC

HMG-CoA inhibitors statins are a class of small bioactive
molecules designed decades ago to reduce cholesterol levels and
therefore are routinely used to tackle many cardiovascular diseases
(CVD). Accumulating evidence has demonstrated the multifaceted
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TABLE 1 Representative observational studies regarding statins use in HCC and other cancers.

Study Therapy Cancer
type

Study type Patient
number

Findings

Zeng et al. (2023) Statins HCC Meta-analysis 1,774,476 Statin use was associated with reduced HCC
risk (HR: 0.52; 95% CI, 0.37–0.72)

Khazaaleh et al.
(2022)

Statins HCC Meta-analysis 2,668,497 Significant risk reduction of HCC among all
statin users with a pooled OR of 0.573 (95% CI:
0.491–0.668, p < 0.05) compared to non-statin
users

Vahedian-Azimi
et al. (2021)

Statins HCC Meta-analysis 195,602 Statin use was associated with lower risk of
mortality in people with HCC or cirrhosis, but
it was not significant due to the large
confidence interval [OR (95% CI) = 0.32 (0.09,
1.15), p = 0.210]

Islam et al. (2020) Statins HCC Meta-analysis 59,703 Statin use was associated with a reduced risk of
HCC development (risk ratio, 0.54; 95% CI,
0.47–0.61) compared with non-statin users,
supporting the beneficial inhibitory effect of
statins on HCC incidence

Li et al. (2020b) Statins HCC Meta-analysis 62,273 Statin use was associated with a reduced all-
cause mortality in HCC patients [risk ratio
(RR): 0.81, 95% CI: 0.74–0.88, p < 0.001]

Santoni et al. (2022) Statins Kidney cancer Retrospective
cohort study

219 Statin use was associated with an apparently
longer median OS (34.4 versus 18.6 months,
p = 0.017) and PFS (11.7 versus 4.6 months, p =
0.013)

Nayan et al. (2017) Statins Kidney cancer Meta-analysis 18,105 Statin use was not significantly associated with
PFS (pooled HR 0.92, 95% CI, 0.51–1.65);
however, statin use was associated with marked
improvements in cancer-specific survival
(pooled HR 0.67, 95% CI, 0.47–0.94) and
overall survival (pooled HR 0.74, 95% CI,
0.63–0.88) in patients with kidney cancer

Allott et al. (2020) Statins Prostate cancer Prospective cohort
study

44,126 Current statin use was associated with lower
risk of PTEN-null and lethal prostate cancer
(HR, 0.40; 95% CI, 0.19–0.87; and HR, 0.76;
95% CI, 0.60–0.96; respectively)

Jespersen et al.
(2014)

Statins Prostate cancer Case-control study 42,480 The use of statins was associated with a risk
reduction of overall prostate cancer (adjusted
OR, 0.94; 95% CI, 0.91–0.97) and specifically
with advanced prostate cancer (adjusted OR,
0.90; 95% CI, 0.85–0.96)

Cardwell et al.
(2015)

Statins (after cancer diagnosis) Breast cancer Retrospective
cohort study

17,880 Statin use after a diagnosis of breast cancer
reduced mortality due to breast cancer
(adjusted HR, 0.84; 95% CI, 0.68–1.04)

Ahern et al. (2011) Statins (simvastatin being the mostly
prescribed lipophilic statin)

Breast cancer Prospective cohort
study

18,769 Simvastatin was associated with a reduced risk
of breast cancer recurrence among Danish
women diagnosed with stage I–III breast
carcinoma (adjusted HR = 0.70, 95% CI,
0.57–0.86)

Takada et al. (2022) Statins Lung cancer Propensity score-
matched analysis

390 Statin use was associated with a significantly
longer in the OS (p = 0.0433), but not the PFS
(p = 0.2251) than those who did not receive
statin therapy

Rossi et al. (2021) Statins Lung cancer Retrospective
cohort study

162 Statin use was associated with an apparently
longer Median PFS (17.57 vs. 9.57 months,
p = <0.001) and median OS was superior in the
statin-users group, with a statistically
significant difference (19.94 vs. 10.94 months,
p = <0.001)

Ung et al. (2018) Lung cancer Retrospective
cohort study

19,974 Overall baseline statin exposure was associated
with a decrease in mortality risk for squamous-

(Continued on following page)
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TABLE 1 (Continued) Representative observational studies regarding statins use in HCC and other cancers.

Study Therapy Cancer
type

Study type Patient
number

Findings

Atorvastatin, simvastatin, lovastatin,
pravastatin, and rosuvastatin (both
pre- and post- cancer diagnosis)

cell carcinoma patients (HR, 0.89; 95% CI,
0.82–0.96) and adenocarcinoma patients (HR,
0.87; 95% CI, 0.82–0.94), but not among those
with SCLC. Post-diagnostic statin exposure
was associated with prolonged survival in
squamous-cell carcinoma patients (HR, 0.68;
95% CI, 0.59–0.79) and adenocarcinoma
patients (HR, 0.78; 95% CI, 0.68–0.89).
Baseline or post-diagnostic exposure to
simvastatin and atorvastatin was associated
with extended survival in NSCLC cancer
subtypes

Cho et al. (2015) Statins (before cancer diagnosis) Non-Hodgkin
lymphoma

Case-control study 18,657 Previous statin administration was associated
with a reduced risk of subsequent non-
Hodgkin lymphoma (adjusted OR, 0.52; 95%
CI, 0.43–0.62)

Cote et al. (2019) Statins (before cancer diagnosis) Glioblastoma Prospective cohort
study

280,455 Ever statin use (HR, 1.43, 95% CI, 1.10–1.86)
was significantly associated with increased
glioma risk

Sperling et al. (2017) Statins (before cancer diagnosis) Endometrial
cancer

Case-control study 77,509 The use of statins was not associated with the
risk of endometrial cancer (OR, 1.03; 95% CI,
0.94–1.14). In addition, endometrial cancer
risk did not vary substantially with duration or
intensity of statin use

Li et al. (2021) Statins Colorectal cancer Meta-analysis 387,518 The use of statins was significantly associated
with a decrease in overall mortality (HR, 0.81;
95% CI, 0.76–0.86) and cancer-specific
mortality (HR, 0.78; 95% CI, 0.72–0.85) of
colorectal cancer

Cho et al. (2021) Statins Gastric cancer Retrospective
cohort study

80,271 Statin use was associated with a reduction of
gastric cancer mortality in the general
population but not with gastric cancer
incidence

Nielsen et al. (2012) Statins (before cancer diagnosis) 13 cancer types Retrospective
cohort study

295,925 Statin use in patients with cancer was
associated with reduced cancer-related
mortality. Multivariable-adjusted HR for statin
users, as compared with patients who had
never used statins, were 0.85 (95% CI,
0.83–0.87) for death from any cause and 0.85
(95% CI, 0.82–0.87) for death from cancer

Mei et al. (2017) Statins Miscellaneous Meta-analysis 1,111,407 Statin use was significantly associated with
decreased risk of all-cause mortality (HR, 0.70;
95% CI, 0.66–0.74) compared with non-statin
users. The observed pooled estimates were
retained for cancer-specific mortality (HR,
0.60; 95% CI, 0.47–0.77), PFS (HR, 0.67; 95%
CI, 0.56–0.81), recurrence-free survival (HR,
0.74; 95% CI, 0.65–0.83) and disease-free
survival (HR, 0.53; 95% Cl, 0.40–0.72)

Wang et al. (2016) Statins Miscellaneous Prospective cohort
study

146,326 In a cohort of postmenopausal women, regular
use of statins or other lipid-lowering
medications was associated with decreased
cancer death (HR, 0.78; 95% CI, 0.71–0.86),
regardless of the type, duration, or potency of
statin medications used

Emberson et al.
(2012)

Statins Miscellaneous Meta-analysis 175,000 A median of 5 years of statin therapy had no
effect on the incidence of, or mortality from,
any type of cancer (or the aggregate of all
cancer)

Abbreviations: HCC, hepatocellular carcinoma; HR, hazard ratio; OR, odds ratio; OS, overall survival; PC, placebo-controlled; PFS, progression-free survival; RR, response rate.
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impacts of statins on the metabolism of lipoproteins, such as
chylomicrons and high-density lipoproteins (HDLs) (Lamon-
Fava, 2013).

Notably, the development and application of statins have
ushered in a new era in the prevention and treatment of CVDs
such as coronary heart disease and hypertension. For the primary
and secondary prevention of coronary heart disease, statins have
been identified as the first choice for hypercholesterolemia. Statins
include lovastatin (Altoprev), pravastatin, simvastatin (Zocor),
fluvastatin (Lescol XL), atorvastatin (Lipitor), cerivastatin,
bervastatin, niavastatin, pitavastatin (Livalo) and rosuvastatin
(Crestor), etc. The first six statins have been approved by the
Food and Drug Administration (FDA), and the benefits and
advantages of statins have now been extensively recognized
(Pedersen, 2010; Adhyaru and Jacobson, 2018).

3.1 Anti-tumor effects of statins in HCC

A promising role of statins in the prevention and relapse protection
of HCC has been suggested by several retrospective observational trials
showing the efficacy of statins in reducing the risk and recurrence of
HCC and other cancers (Goh and Sinn, 2022) (Table 1). The
mechanisms of action are broadly categorized below into
inflammation and non-inflammation related functions (Figure 2).

3.1.1 Inflammation related mechanisms
The anti-tumor effects of statins in HCC have been attributed to

the inhibition of MYC oncogene (Cao et al., 2011), protein kinase B
(AKT) (Roudier et al., 2006; Ghalali et al., 2017), andNF-κB pathways,

as well as decreased production of pro-inflammatory cytokines (Wang
et al., 2006; Li et al., 2020a). Fluvastatin blocked the activation and
hepatic fibrogenesis of steatosis-induced HSCs by suppressing the
generation of reactive oxygen species (ROS), NF-κB activity, and
expression of pro-inflammatory genes (Chong et al., 2015).
Rosuvastatin also decreases hepatic inflammation through
downregulated expression of pro-inflammatory cytokines such as
TNF-α, IL-6, and TGF-β1 and other tumor-associated growth
factors (Yokohama et al., 2016). Nonalcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH) could be
treated and prevented with statins owing to the diverse properties
of statins via prevention of the liver from inflammation and fibrosis
(Ahsan et al., 2020). Some animal studies indicate that statins
significantly improve NASH-associated hepatic lipotoxicity,
oxidative stress, inflammatory responses, and fibrosis (Park et al.,
2016; Schierwagen et al., 2016; Ahsan et al., 2020). In NAFLD/NASH
patients, the pleiotropic effects of statins are elaborated by decreased
inflammation and fibrosis via modulation of cell proliferation, anti-
oxidant, and anti-thrombotic activities (Chong et al., 2015).

3.1.2 Non-inflammation related mechanisms
The anti-angiogenic effects of statins have been widely disclosed.

Statins show a protective role against HCC as they decrease hepatic
expression of angiogenic factors like VEGF receptor, epidermal
growth factor receptor (EGFR), and platelet-derived growth
factor (PDGF) (Dulak and Józkowicz, 2005; Yokohama et al.,
2016). Simvastatin has been found to lessen tumor cell growth
and impair tumor cell adhesion and invasion (Relja et al., 2011).
Hepatic fibrosis is blocked by simvastatin via RhoA/Rho kinase and
Ras/ERK pathways (Schierwagen et al., 2016). Atorvastatin use also

FIGURE 2
Multifacetedmechanisms of actin of statin in HCC. LDL-C, low-density lipoprotein cholesterol; LDLR, low-density lipoprotein receptor; HMGCR, 3-
Hydroxy-3-Methylglutaryl-CoA reductase.
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TABLE 2 Representative intervention clinical studies regarding statins use in HCC.

Intervention Cancer
type

Trial ID Study type Patient
number

Overall
benefits

Findings

Pravastatin (40 mg/day) plus
TAE and 5-FU

HCC NR Randomized trial 91 Positive Pravastatin prolonged the survival of
patients with advanced HCC (median
survival, pravastatin group vs. controls,
18 months vs. 9 months, p = 0.006)
(Kawata et al. (2001))

Pravastatin (20–40 mg/day)
plus TACE

HCC NR Randomized trial 183 Positive Pravastatin plus TACE prolonged the
survival of patients with advanced HCC
(median survival, pravastatin plus
TACE group vs. TACE alone group,
20.9 months vs. 12.0 months, p = 0.003)
(Graf et al. (2008))

Atorvastatin (A, 10 mg/day)
and metformin (M) in
combination (SAM) with
Sorafenib (S)

HCC CTRI/2018/07/
014,865

Phase I, sequential
cohorts

40 Positive
regarding the
adverse effects

The SAM combination in HCC patients
with predominantly unfavorable
baseline disease characteristics showed a
marked reduction in sorafenib-related
side effects. The median OS for patients
without early hepatic decompensation
(n = 31) was 8.9 months (95% CI:
3.2–14.5 months) (Ostwal et al. (2022))

Pravastatin (40 mg/day) plus
sorafenib

HCC NCT01075555 Phase III,
randomized trial

312 Negative Addition of pravastatin to sorafenib did
not improve survival in patients with
advanced HCC, with no difference in
median OS between sorafenib-
pravastatin and sorafenib groups
(10.7 months vs. 10.5 months; HR =
1.00; p = 0.975) (Jouve et al. (2019))

Pravastatin (40 mg/day),
sorafenib, their combination or
supportive care

HCC NCT01357486 Phase II,
randomized trial

160 Negative In the overall Child–Pugh B population,
neither sorafenib nor pravastatin
seemed to provide benefit. Median OS
was similar between the four arms: 3.8
(95% CI: 2.4–6.5), 3.1 (95% CI: 1.9–4.3),
4.0 (95% CI: 3.2–5.5) and 3.5 months
(95% CI: 2.2–5.4) in four arms,
respectively (Blanc et al. (2021))

Pravastatin (40 mg/day) plus
sorafenib

HCC NCT01418729 Phase II,
Randomized,
Double-Blind, PC
trial

216 No results
posted

The purpose of this study was to
evaluate the OS in order to assess the
efficacy and safety of pravastatin as
adjuvant treatment to sorafenib

Atorvastatin (10 mg/day) plus
sorafenib

HCC NCT03275376 Phase II,
Randomized

34 No results
posted

The aim of this study was to evaluate
whether statins improve the tumor
responses and overall survival for
patients who receive sorafenib therapy
for advanced HCC by a prospective
randomized controlled study

Atorvastatin (10 mg/day) HCC NCT03024684 Phase IV, double-
blind, randomized
PC trial

Recruiting No results
posted

The aim of this study was to evaluate the
effect of atorvastatin for preventing
HCC recurrence after curative
treatment. The primary endpoint was to
compare the 3-year cumulative
incidence of recurrent HCC between the
intervention group and control
counterpart

Pravastatin (40 mg/day) plus
sorafenib

HCC NCT01903694 Phase III,
Randomized

474 No results
posted

The aim of this study was to evaluate the
effect of the combination
pravastatin—sorafenib versus sorafenib
alone on overall survival in patients with
hepatocellular carcinoma developing on
Child-Pugh A cirrhosis who are
unsuitable for curative treatment

Pravastatin plus sorafenib HCC NCT01075555 Phase III,
Randomized

323 No results
posted

The aim of this study was to investigate
sorafenib tosylate given together with
pravastatin to see how well it works

(Continued on following page)
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reduces HSC activation via the production of sterol regulatory
element-binding protein 1 (SREBP1) and peroxisomal
proliferator-activated receptor (PPAR) (Marinho et al., 2017), in
addition to the reduction in fibrosis and portal hypertension via
non-canonical Hedgehog signaling (Uschner et al., 2015). In
addition, statins also decrease isoprenoid biogenesis that is
essential for cell survival (Schierwagen et al., 2016), resolve
crown-like cholesterol crystals (Ioannou et al., 2015), and
inactivate HSCs (Wang et al., 2013). In line with these findings,
by downregulating the oxidative stress, statins decrease hepatic
steatosis through increased hepatic antioxidant paraoxonase 1
(PON1) activity (Samy and Hassanian, 2011), and increase
mitochondrial and peroxisomal oxidation, as well as expression
of an FAO regulator PPAR-alpha (Park et al., 2016). Furthermore,
statins ameliorate fibrogenesis in NASH through reestablishment of
liver sinusoidal endothelial cell and HSCs phenotype and increasing
endothelial nitric oxide synthase (eNOS) activity (Abraldes et al.,
2007; Marrone et al., 2013; Rodríguez et al., 2017).

In summary, the pleiotropic anti-tumor effects of statin in HCC
are not exclusively dependent on its impacts on HMGCR and
downstream cholesterol biosynthesis, instead, via complex
crosstalk, they interact frequently. For instance, cholesterol
synthesis is not only directly downregulated by statin via the
mevalonate pathway, but also modulated by SREBP1 and PPAR
which are also suppressed by statin, in addition, NF-kB-induced
inflammation can be ameliorated by direct effects of statin, as well
indirect effects due to reduced cholesterol synthesis.

3.2 Clinical use of statins in HCC

3.2.1 Monotherapy use of statins in HCC
Intriguingly but somehow disappointingly, indications from

prospective interventional trials and studies remain inconclusive,
although association of statin use with a decreased risk of HCC
carcinogenesis and recurrence has been described (Table 2) (Chiu
et al., 2011; Tsan et al., 2012; Butt et al., 2015; Kawaguchi et al., 2017;
Khazaaleh et al., 2022). In virus-independent liver lesions, atorvastatin
use (10 mg/day) in NASH patients indicated an improvement in liver
functions by 74%, along with a rise in serum protein and lipid
metabolism regulator adiponectin (Hyogo et al., 2008; Athyros
et al., 2017). Sustained virologic response and lower risk of
cirrhosis progression were consistently found among statin users
(Butt et al., 2015). These evidences together indicate a general liver
protective function of statin use.

A case-control study using the Taiwan National Health Insurance
ResearchDatabase has suggested that statinsmay reduce the risk of liver
cancer (Chiu et al., 2011). Later, using the same database, a study has
shown that statin use may dose-dependently decrease the risk of HCC
in hepatitis B virus (HBV)-infected patients (Tsan et al., 2012);
moreover, a similar conclusion with protective effects of statin use
was drawn with hepatitis C virus (HCV)-infected patients in this cohort
(Tsan et al., 2013). Despite the strong associative indications, further
mechanistic evaluation is required. Consistently, statin users with each
yearly increment of cumulative defined daily doses (cDDDs) reported a
dose-dependent response and reduced HCC risk by 23.6%
(Pinyopornpanish et al., 2021). Furthermore, a meta-analysis
combining data from 24 studies also demonstrated that statin users
showed a 46% decrease in HCC risk, indicative of the potential use of
statins as chemoprophylaxis (Islam et al., 2020; Lange et al., 2021).
Multiple clinical centers consistently and independently reported the
chemo-preventive effects of statins use in HCC among the general
population, regardless of the locations of those studies (Björkhem-
Bergman et al., 2014; McGlynn et al., 2015; Tran et al., 2020). Statin
users have also shown suppressed HCC development in addition to
improved liver function and lower cirrhosis risk (Butt et al., 2015).
Another study enrolling 1,072 patients with NASH-related advanced
liver fibrosis also reported a notable effect of statin in preventing HCC
from deterioration (Pinyopornpanish et al., 2021). In summary, the
above studies strongly demonstrate the role of statin use in protecting
both the general population and HCC risk cohort from HCC
occurrence and HCC progression.

Ongoing efforts are driven to further understand the direct
effects of statins on the earlier stage of HCC and the prognosis of
HCC. The secondary protective effects of simvastatin in cirrhosis are
being evaluated in a Phase II clinical trial (NCT02968810).
Combined treatment of simvastatin and atorvastatin has
decreased the comorbidities for HCC in an Asian cohort (OR =
0.31 and 0.29; 95% CI = 0.14–0.67 and 0.15–0.57, respectively)
(Chen et al., 2015b). At present, a multi-center double-blinded
randomized trial (Phase IV) has been initiated attempting to
determine the potential prevention of atorvastatin for HCC
recurrence after curative treatment (SHOT trial; NCT03024684).

3.2.2 Combination of statins with other therapies
in HCC

Owing to the comorbidities and other chronic conditions in
HCC patients, statins are not used alone but often prescribed
together with other frequently or even daily used medications
such as aspirin and metformin. A retrospective study of

TABLE 2 (Continued) Representative intervention clinical studies regarding statins use in HCC.

Intervention Cancer
type

Trial ID Study type Patient
number

Overall
benefits

Findings

compared with giving sorafenib tosylate
alone in treating patients with liver
cancer and cirrhosis

Simvastatin (40 mg/day) High-Risk
Compensated
Cirrhosis

NCT03654053 Phase III,
randomized,
double-blind, PC
trial

Recruiting No results
posted

The aim of this study was to test whether
simvastatin can lower the risk of hepatic
decompensation (developing symptoms
of cirrhosis) in United States

Abbreviations: HCC, hepatocellular carcinoma; HR, hazard ratio; NR, not reported; OS, overall survival; PC, placebo-controlled; CI, confidence interval; SAM, Sorafenib (S) + Atorvastatin (A)

+ metformin (M); TAE, transcatheter arterial embolization; TACE, transarterial chemoembolization.
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521 patients demonstrated that the combination use of aspirin and
statin is associated with a lower incidence of HCC and this
association remained significant in the multivariable model
(Singh et al., 2022). Simvastatin, atorvastatin, or rosuvastatin, in
combination with metformin, also showed decreased HCC risk
among diabetic patients in an Asian cohort; in addition, as for
HCC, in particular, only the metformin and simvastatin
combination among these combos suggested significantly
decreased comorbidities of HCC (Chen et al., 2015b). NAFLD is
known to develop liver inflammation and progress to NASH,
fibrosis, cirrhosis or HCC. For the treatment of NAFLD/NASH
at high risk of CVD or HCC, statins alone or together with anti-
diabetic PPAR-gamma agonist pioglitazone and other drugs, were
primarily recommended for the primary or secondary prevention of
CVD, in addition to cirrhosis avoidance, liver transplantation, and
HCC, according to a statement from official guidelines (Athyros
et al., 2017).

For intermediate-stage HCC, transarterial chemoembolization
(TACE) is the most common bridging therapy as a standard local-
regional treatment before liver transplantation. Compared to
chemoembolization alone, combination therapy of
chemoembolization and pravastatin greatly improves survival of
advanced HCC (Graf et al., 2008). During the 5-year observation of
HCC patients, 23.7% of patients treated by TACE alone and 36.5% of
patients treated by TACE plus pravastatin survived, and median
survival was significantly longer in HCC patients treated by the
combination than in patients treated by TACE alone (Graf et al., 2008).

Currently, a body of clinical trials addressing the interventional
impacts of statins alone or with non-immunotherapy treatment in
HCC have been initiated (Table 2). So far, 6 of the 11 trials have not
reported any results, and one trial has indicated benefits of
atorvastatin in reducing sorafenib-related side effects. In the rest
4 trials, all trials used pravastatin as treatment for advanced HCC,
and pravastatin plus conventional transcatheter arterial
embolization (TAE) (plus 5-FU) or TACE in 2 of the trials have
observed prolonged survival of patients with advanced HCC
(Kawata et al., 2001; Graf et al., 2008); however, the other 2 trials
concluded more recently (2019 and 2021) using pravastatin in
combination with sorafenib showed no benefits in OS, and even
the protective effects of sorafenib seem to disappear or be very subtle
(Jouve et al., 2019; Blanc et al., 2021), which is difficult to interpret as
a whole. Treatment strategies among these trials differ, and the
sample size for conclusion and the subpopulation at various disease
stages or with varying liver function, even though all patients at
advanced HCC, could contribute to the unexpected ineffectiveness.
More results from the rest ongoing trials are being anticipated.

3.3 Adverse effects of statins in HCC

Statin-associated cardiovascular benefits, including declined
risks of major coronary events and revascularization as well as
the risk of stroke, far outweigh the potential risks. However, after
statins have been prescribed for clinical use for several decades,
statin is shown to be not all good. Statin-associated muscle
symptoms (SAMS) are the most common toxicity of statins, as
shown by manifestations of myalgia, myopathy, myositis with
increased creatine kinase (CK), or rhabdomyolysis (Ward et al.,

2019), and SAMS risk appears to link with systemic exposure to
higher doses of statins (Armitage et al., 2010). As reported in a
randomized controlled trial, two patients with advanced liver
disease, out of 69 patients in the simvastatin group, receiving
simvastatin 40 mg/day experienced rhabdomyolysis, with no such
sign found in the placebo group (Abraldes et al., 2016).

Although the statins-induced liver injury is relatively
uncommon (<1.2/100,000 users) and likely idiosyncratic in
nature (Björnsson et al., 2012), the risk of hepatotoxicity has
been reported from time to time in statin users, therefore
physicians should be cautious when prescribing statins to
patients with liver diseases (Rzouq et al., 2010; Blais et al., 2016).
An earlier assessment indicates that decompensated cirrhosis or
acute liver failure, rather than chronic liver disease or compensated
cirrhosis, are contraindications for statin use (Bays et al., 2014).
Mechanistically, individuals with advanced cirrhosis are challenged
with elevated drug exposure resulting from delayed statin clearance,
deficiency of cytochrome P450 3A4 which is responsible for drug
metabolism in the liver, and disrupted transporter activity (Pose
et al., 2019), therefore facing a higher risk of SAMS.

Despite the harmful impacts on muscle and liver with statin
therapy, concerns have emerged regarding statin-related risk of
new-onset diabetes mellitus, cognitive impairment, and
hemorrhagic stroke, as well as the risk of extremely low levels of
LDL cholesterol (LDL-C) (Adhyaru and Jacobson, 2018). For
instance, the incidence of new-onset diabetes mellitus is
approximately 0.1% per year and 0.2% per year with moderate-
intensity and high-intensity statin therapy, respectively.
Consequently, balancing the clinical benefits and potential risks,
statins should be provided diligently and wisely to patients to ensure
that they adhere to therapy regimens (Adhyaru and Jacobson, 2018).

4 TIME and targeted therapies in HCC

4.1 The TIME of HCC

When the liver lesions develop from liver cirrhosis to HCC,
numerous immune cells progress to dysfunction, in a manner of being
either abnormally inactivated or overactivated. As a result, TIME is
formed as a key component of TME, bridging the interplay between
tumor cells and immune cells, which is crucial for HCC development and
somehow dictates the immunotherapy outcomes. Characterizing the
immunological networks present in the TIME of HCC will facilitate
the understanding of liver immunity and the principal mechanisms of
both spontaneous and therapy-induced immune responses.

The activation of dendritic cells (DCs) contributes to the activation
of CD8+ T-cells, while regulatory B-cells (Bregs) inactivate CD8+

T-cells (Kotsari et al., 2023). In HCC, decreased antigen
presentation is found in DCs (Hilligan and Ronchese, 2020; Kotsari
et al., 2023). In primary HCC patients, TAM density predicts poor
prognosis related to vascular invasion, tumor multiplicity, and fibrous
capsule formation (Oura et al., 2021). Pro-inflammatory cytokines
induced by toll-like receptor (TLR) ligand and Th1 response index,
such as IFN-α/β, and IFN-γ, could activate M1 macrophages to
differentiate into M2 macrophages (Oura et al., 2021), which
enhances the recruitment and growth of Tregs, resulting in an
aggressive phenotype, poor OS, and rapid recurrence (Dong et al.,
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2016), by downregulating CD8+ T cells, DCs, and NK cells HCC
(Langhans et al., 2019). Tumor-associated neutrophils (TANs)
produced chemokines such as CCL2 and CCL17, which later
recruited TAMs and Tregs and promoted tumor growth in HCC
(Zhou et al., 2016). CAFs could produce inflammatory cytokines,
growth factors, and chemokines to promote HCC development and
metastasis (Foerster et al., 2022; Xu et al., 2022); moreover, CAFs
activate TANs and promote the differentiation of monocytes into
MDSCs (Kotsari et al., 2023). The number of B-cells in HBV-positive
HCC correlates with smaller tumor size, compromised vascular
invasion, and augmented infiltration of CD8+ T lymphocytes,
furthermore, an increased population of B-cell subsets notably
prolonged HCC patients’ survival (Zhang et al., 2019; Kotsari et al.,
2023), suggestive of protective benefits of B cell in HCC. These above-
described immunocomponents, alongside the tumor cells, and a variety
of inflammatory molecules compose a complex microenvironment for
immune response and regulation, advances of which have greatly
facilitated the immunoregulation directed therapies, certainly not
limited to HCC. In recent years, immunotherapies in combination
with conventional treatments such as anti-angiogenic drugs in HCC
have achieved extraordinary success, although the effects of
immunotherapy alone as treatment have been of relatively
infrequent benefit. Here we only briefly introduce the most popular
and well-accepted immunotherapies [reviewed elsewhere (Oura et al.,
2021; Li et al., 2023a)] in HCC.

4.2 Immunotherapies in HCC

After tumors escape from immune control, immunotherapies
pioneered by ICIs and related applications are aiming to activate the
immune system to recognize, target, and eliminate cancer cells. In
addition to ICIs, other immunotherapies such as ACT and cancer
vaccines also demonstrate promising efficacy in HCC.

4.2.1 Immune checkpoint inhibitor (ICI) therapies
in HCC

In recent years, ICI therapies have been well recognized as a main
component in systemic first-line treatment of HCC due to considerably
less systemic side effects and more durable responses compared with
other conventional therapies (He and Xu, 2020). Programmed cell death
protein-1 (PD-1), programmed death ligand-1 (PD-L1) and cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) signaling represent the most
prominent and well-studied immune checkpoints. By inhibiting these
immunoreceptors, ICIs boost the antitumor activities of host immune
cells to prevent themetastasis of cancer cells (He and Xu, 2020). PD-1 on
the surface of immune cells binds to PD-L1 in tumor cells, leading to
tumor immune evasion (Chen et al., 2023b). Blocking the PD1/PD-
L1 interaction so far appears to be one of themost effective immunologic
treatments for cancers (Llovet et al., 2022; Zhang et al., 2023). The
immune checkpoint regulator CTLA-4 is exclusively expressed in T cells
and impedes the effector functions of these T cells (Bulaon et al., 2023).
Although the response to immunotherapy in HCC is limited due to
several reasons, the safety and efficacy of these ICI-based therapies have
beenwidely confirmed inHCC-relevant trials (Borghaei et al., 2015; Ribas
and Wolchok, 2018; Li et al., 2023a). Major inhibitors relating these
immunoreceptors, in the format of monoclonal antibodies, include PD-1
inhibitors nivolumab, pembrolizumab and sintilimab, PD-L1 inhibitor

atezolizumab and durvalumab, and CTLA-4 blocker tremelimumab and
ipilimumab, etc. (Li et al., 2023a; Shannon et al., 2023).

The effects of ICI monotherapy were first investigated in HCC
and have been approved by the FDA. The efficacy of anti-PD-
1 monoclonal antibody nivolumab in advanced HCC has been
assessed in a phase I/II study, which showed an objective
response rate (ORR) of 20%, a disease control rate (DCR) of 64%
and a median OS of 13.2 months (El-Khoueiry et al., 2017). Another
phase II trial showed that in patients with advanced HCC who had
been previously treated with a multi-target kinase inhibitor
sorafenib for HCC, PD-1 inhibitors pembrolizumab suggested an
ORR rate of 17% and 77% of patients demonstrated sustained
response for more than 9 months (Zhu et al., 2018).

Conventional treatments such as VEGF inhibitors and multi-
kinase inhibitors are usually offered as a foundational treatment
when the efficacy of additional ICI therapies is evaluated. A phase
II/III study assessed the efficacy of PD-1 inhibitor sintilimab plus
IBI305, a bevacizumab (VEGFmonoclonal antibody) biosimilar, versus
sorafenib, as a first-line therapy for unresectable HBV-associated HCC.
As a result, patients in the sintilimab and IBI305 combination group
indicated a significantly longer median PFS (4.6 months) than
sorafenib group patients (2.8 months) (Rossi et al., 2021). Similarly,
the IMbrave 150 clinical trial demonstrated that PD-L1 inhibitor
atezolizumab combined with bevacizumab had improved PFS and
OS versus sorafenib treatment in HCC patients (Finn et al., 2020; Roy,
2022). It is worth noting that these updated results from this key study
confirm the combination as the first-line standard of care for advanced
HCC (Finn et al., 2020; Roy, 2022).

Combined ICI immunotherapies have also been widely explored
in HCC. PD-1 inhibitor nivolumab monotherapy has been provento
improve prognosis in HCC, and the addition of CTLA-4 inhibitor
ipilimumab seemed to augment the impact, suggested by elevated
ORR and OS in the combination group (Yau et al., 2022). In line
with that, another CheckMate 040 clinical trial also suggested
nivolumab plus ipilimumab had manageable safety, promising
ORS, and durable responses (Yau et al., 2020). A phase III
HIMALAYA clinical trial has also shown that combination
therapy of PD-L1 inhibitor durvalumab and CTLA-4 blocker
tremlimumab correlates with improved ORR and OS compared
with sorafenib treatment (Abou-Alfa et al., 2022).

4.2.2 Non-ICI therapies
Chimeric antigen receptor (CAR)-T cells and T cell receptor

(TCR) engineered T cells are 2 cell types of ACT therapy that are
applied in the therapy of HCC. Currently, about 24 clinical trials
related to CAR-T cell therapy for HCC are in phase I/II (Gao and
Zuo, 2023). Among these, glypican-3 (GPC3) is the main target. In
addition, other targets include alpha-fetoprotein (AFP), NK group 2,
member D ligand, mucin 1 glycoprotein 1, claudin18.2, CD147,
CD133, etc. Efficient multi-epitope peptide vaccines against HCC
have started to be designed. As the main target of adoptive T cell
therapy for HCC, GPC3, and AFP have been employed in designing
HCC vaccines. A phase I trial in advanced HCC has demonstrated
that GPC3 peptide vaccine-induced GPC3-specific CTLs that could
infiltrate into the HCC tissues, leading to improved OS induced by
GPC3-based vaccine in advanced HCC (Tsuchiya et al., 2017).
Besides, an AFP-based vaccine has been designed for the
treatment of AFP-positive HCC (Lu et al., 2023). Recently, most
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of cancer vaccines were generated against HCC, such as the VEGF
vaccine, the DC-based nano-vaccine, as well as a combination of
vaccines and ICIs, and all applications have demonstrated the
capacity to halt HCC progression (Gao and Zuo, 2023; Lu et al.,
2023). Virotherapy presents a novel immunotherapy modality for
HCC. Oncolytic virotherapy (OVT) effectively induces antitumor
responses through selective replication of oncolytic virus in
cancerous tissues and killing HCC cells (Li et al., 2023b).

5 Interaction of statin treatment and
immunotherapy in HCC

5.1 Crosstalk of TIME and lipid metabolism
in HCC

In TIME, molecules related to lipid metabolism and their
metabolites may directly or indirectly impact the state of tumor
immune responses. Low expression of transmembrane protein
coiled-coil domain containing 25 (CCDC25) on HCC cells leads to
metabolic disorders such as dysregulation of FA, and CCDC25is shown
to affect the sensitivity of HCC to targeted therapy, infiltration of

immune cells as well as expression of immune checkpoints. Moreover,
CCDC25 abundance positively correlates with the infiltration of CD8+

T cells, macrophages, and DCs, but is negatively associated with
infiltration of Tregs and expression levels of immune checkpoints
such as CTLA4 (Dickson, 2020; Yang et al., 2020; Deng et al.,
2022). Blockade of immune escape of tumors also involves
CCDC25 via recruiting more tumor killer cells, inactivating
immunosuppressive cells, and direct inhibition of immune
checkpoints (Dickson, 2020; Oura et al., 2021; Deng et al., 2022;
Liang et al., 2023a). As a significant component of membrane lipids,
cholesterol plays a vital part in the formation of immune synapses of
T cells and thereby regulates the functions of the T cell receptor (Molnár
et al., 2012). In contrast, the upregulated production of oxysterols that
are oxidized from cholesterols in turn inhibits the T cell functions
through the liver X receptor signaling (Figure 3) (Huang et al., 2020).

5.2 Effects of statins on immune
microenvironment in HCC

Apart from the above-mentioned anti-tumor effects of statins in
HCC involving inflammation and non-inflammation pathways, the

FIGURE 3
Engagement of immune cells and related molecules and cytokines in anti-tumor functions of statins in HCC. Upward red arrows indicate activation
or increased expression, whereas downward blue arrow indicates inhibition or suppressed expression. LSEC, liver sinusoidal endothelial cells.
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impacts of statins on the immune microenvironment would guide
the delicate interplays between immune cells and tumor cells;
furthermore, this knowledge may also provide mechanistic
insights and clues if statins could favor or boost the development
of future immunotherapy in HCC.

Simvastatin has been shown to indirectly regulate the
recruitment and activation of dozens of relevant immune cells
(Figure 3). Transcript expression and protein expression of
chemokine CXCL16 are augmented by simvastatin in liver
sinusoidal endothelial cells (LSEC) SK-Hep1 in a dose-dependent
manner. However, although simvastatin alone fails to alter the
activity of natural killer T (NKT) cells, CXCL16 overexpression
induced by simvastatin recruits and potentiates NKT cells to the
liver, and later simvastatin upregulates CD69 and IFN-γ expression
in the NKT cells when SK-Hep1 and NKT cells are co-cultured, and
thoroughly activates NKT cells (Yu et al., 2022). Further evidence
shows that simvastatin treatment increased the production of the
immunostimulatory cytokines such as CXCL16, IFN-γ, and TNF-α,
while suppressing the expression of immunosuppressive cytokines
including CXCL9, IL-6, and TGF-β in HCC tumor tissues (Yu et al.,
2022). Pitavastatin treatment can change the cytokine
microenvironment by inhibiting the cytokine production in
HCC, partially due to NF-κB activation and subsequent
downstream IL-6 expression triggered by TNF-α in HCC cells
(Figure 3) (Wang et al., 2006).

Fos-dependent inflammation contributes to HCC progression.
Knockout of c-Fos in hepatocytes protects the liver against HCC
initiation, while overexpression of c-Fos in the liver accelerates the
malignant transformation of HCC, as manifested by necrotic foci,
accumulated CD45+ cells, reduced NK and B cells, increased
circulating leukocytes, infiltration of immune cells and
accumulated lesions in hepatocytes. In this manner, c-Fos-
dependent HCC progression is blocked by statin treatment,
which has also modulated the components of the immune system
in the TIME of HCC (Figure 3) (Bakiri et al., 2017).

5.3 Combinational effects of statins and
immunotherapies in non-HCC cancers

Dyslipidemia often takes place either before the onset of cancer
in chronic condition or as a concomitant outcome as metabolic
dysfunction after cancer initiation, therefore, cholesterol-lowering
statins are a regularly prescribed medication that has to be
continuously used (Lamon-Fava, 2013; Adhyaru and Jacobson,
2018; Ward et al., 2019). In this respect, the association of statin
treatment with available immunotherapies in cancers such as lung
cancer, breast cancer, advanced renal cell carcinoma, head and neck
cancer, etc., has been broadly investigated.

Takada et al. (2022) examined 390 patients with advanced or
recurrent non-small-cell lung cancer (NSCLC) who were treated
with anti-PD-1 therapy in clinical practice and found that patients
receiving anti-PD-1 therapy combined with statin treatment have
much longer OS than those without statin treatment. However,
another study showed that when the two groups of PD-L1 treatment
with or without statin were compared, median PFS was
17.57 months and 9.57 months in the statin group and non-statin
group, respectively (p < 0.001); median OS was significantly (p <

0.001) higher in the statin group than the non-statin group
19.94 and 10.94 months, respectively (Rossi et al., 2021).
Although further prospective randomized trials are required,
these strong associations together confirm that ICI treatment
combined with statins in NSCLC patients may remarkably
improve survival and prognosis, suggesting that the antitumor
functions of statins synergize the benefits of ICI therapy in
prevalent lung cancer.

In a cohort of metastatic renal cell carcinoma receiving PD-1
inhibitor nivolumab, 27% were statin users and 73% were non-statin
users. The median OS and PFS were longer in the statin user group
than in the non-statin users. Interestingly, in both patients
aged ≥70 years and <70 years, the longer median OS and PFS
were associated with longer statin exposure (Santoni et al., 2022).
In conclusion, overall clinical benefits were greater in the statin user
group than non-statin user group (71% and 54%), again strongly
supporting the benefit of statin in PD-1-directed immunotherapy
(Santoni et al., 2022).

Furthermore, in breast cancer, atorvastatin promotes cytotoxic
T-cell activity, inhibits the immune evasion of T cells, and enhances
antitumor immune response, thereby boosting the efficacy of anti-
PD-L1 therapy (Choe et al., 2022). In addition, daily oral simvastatin
or lovastatin combined with PD-1 blockade in mice promoted
tumor control and extended survival, notably, lovastatin plus
anti-PD-1 treatment leads to rejection of oral cancer tumors of
the head and neck cancer in 30% of mice. The underlying protective
effects are likely owing to that combination therapy enhances T cell
activation and promotes predominant shifts of macrophage from
M2 to M1 status, therefore, exerting resistance against head and
neck cancer (Kansal et al., 2023) (Figure 3). In summary, these
evidences together imply a consistent advantage of statin use in
improving the therapeutic response of immunotherapy in multiple
cancer types, via interacting with a range of immune cells, although
detailed mechanisms are still lacking.

5.4 Combination of systemic therapy and
immunotherapy in HCC

Before ICI immunotherapy had modified the management of
HCC in the past few years, around 50% of patients with HCC
received systemic therapies, generally, sorafenib or lenvatinib in the
first line, followed by regorafenib, cabozantinib or ramucirumab as
the second. Combinational regimens have been widely shown to
yield significantly improved OS and superior PFS, thereby receiving
rapid FDA approval (Llovet et al., 2022). For instance, generally used
tyrosine kinase inhibitors (TKIs) for systemic treatment including
sorafenib and lenvatinib, in combination with ICIs including
nivolumab and pembrolizumab have been approved for the
treatment of advanced HCC because of their noteworthy
antitumor efficacy (Lee et al., 2022). Advances and benefits of
immunotherapies along with other conventional treatment
strategies have been well discussed in a broad therapeutic view in
cancers including but not limited to HCC (Llovet et al., 2022).

Typical TKI, sorafenib, combined with PD-1-based ICIs for
advanced HCC has been proven to be safe and effective, as the
median PFS of combination treatment was greatly longer than the
PD-1 monotherapy, The median OS of the combination treatment
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group (21.63 months) was also longer than the PD-1 group
(16.43 months) (Qin et al., 2022). Another TKI Lenvatinib, also
an angiogenesis inhibitor, in combination with ICI therapy has
demonstrated a synergistic antitumor effect, as VEGFA inhibition
promotes the infiltration and survival of CTLs, and the meantime
mitigates recruitment of Treg lymphocytes, leading to the more
advantageous immune microenvironment for antitumor activity of
ICI therapy (Hilmi et al., 2019). Lenvatinib was also found to be
superior to sorafenib as the first-line treatment of HCC in regard to
OS improvement (Kudo et al., 2018). Lenvatinib and anti-PD-
1 antibody together robustly suppressed tumor growth, induced
vascular normalization, and improved anti-PD-1 therapeutic
efficacy in HCC (Yang et al., 2023). In a cohort of 139 male
Chinese patients with advanced HCC, the median OS in the
combined treatment group (PD-1 inhibitor sintilimab plus
Lenvatinib) and Lenvatinib monotherapy group were
21.7 months and 12.8 months, and the median PFS were
11.3 months and 6.6 months, respectively. This combination
regimen has shown acceptable efficacy and safety in practice and
obviously improved long-term outcomes than monotherapy with
either Lenvatinib or PD-1inhibitor (Zhao et al., 2022). Novel TKI
regorafenib also augments the effects of ICI therapy against HCC
(Xie et al., 2023). Afatinib, a second-generation EGFR-TKI, exhibits
considerable inhibitory impacts on liver cancer cells and enhances
the PD-L1 presentation in tumor cells. Afatinib combined with anti-
PD1 treatment also notably enhances the immunotherapeutic effect
in HCC (Yu et al., 2023).

Besides TKI-based therapies for HCC, there are many preclinical
studies showing other non-TKI compounds are also potential
candidates for adjuncts of immunotherapy in HCC. In particular,
many of these drugs, similar to statins, are regularly seen and
prescribed for chronic metabolic syndromes. The effect of
metformin plus anti-PD-1 is enhanced than anti-PD-1 therapy
against liver tumors in NASH-HCC murine models (Wabitsch
et al., 2022). Aspirin enhanced the anti-PD-
L1 immunotherapeutic efficacy, and combination therapy
significantly induced HCC tumor regression and extended the
lifespan of tumor-bearing mice (Lin et al., 2023). Moreover,
abrine, a specific inhibitor of indoleamine-2,3-dioxygenase 1
(IDO1) and also a major player in immunosuppression in
tumors, exerts profound liver-protective functions in
immunotherapy. The combination of abrine and anti-PD-
1 antibody treatment synergistically repressed the tumor growth
in HCC by inducing CD4+ or CD8+ T cells, decreasing Foxp3+ Treg
cells, and inhibiting immune-suppressive molecules such as IDO1,
CD47, and PD-L1(Liang et al., 2023b). Taken together, notable
successes have been obtained in clinical trials when HCC is treated
with immunotherapies combined with systemic monotherapy that
has been used alone in the past.

5.5 Effects of statins on immunotherapies
in HCC

Recently, although statins have already been applied in other
non-HCC cancers as adjuncts of immunotherapy, and obvious
benefits have been attained, such applications in the clinical
treatment of HCC are still lacking. Preclinical studies in HCC

mice revealed that either simvastatin or PD-L1 antibody alone
indicated a slight but significant influence in tumor suppression
(p < 0.01), whereas the combination of simvastatin and PD-L1
antibody significantly inhibited HCC tumor progression (p < 0.001),
and the OS in the combination therapy were prolonged almost
2 times compared with the non-drug control (p < 0.001) (Yu et al.,
2022). Furthermore, simvastatin treatment combined with PD-L1
antibody could not only improve the prognosis of the intrahepatic
inoculation HCC model but also achieve satisfactory therapeutic
efficacy in model of advanced HCC (Yu et al., 2022). Inspired by
other combinations of statin use with immunotherapy in other
cancer types, data from this study, although from a preliminary
study, has underlined the great potential of statins as adjuncts for
immunotherapy in HCC.

Furthermore, a prospective observational trial designed to
evaluate the safety and efficacy of ICI therapy in combination
with statins in treating NSCLC is now recruiting patients. We
anticipate that preclinical and clinical explorations of statin/ICI
therapy regimens for both HCC and non-HCC cancers will soon,
embrace unprecedented new opportunities, certainly facing
concomitant challenges ahead.

In addition to statins, other lipid-lowering drugs, such as
PCSK9 inhibitors, fibrates, and ezetimide, may also impact or
potentiate ICI therapy. In particular, immunomodulatory effects
of PCSK9 inhibition are being studied shortly in cardiovascular
disease and inflammation-related conditions, in addition to a phase
II trial in NSCLC aiming to evaluate the anti-tumor activity of the
combination of anti-PCSK9 and anti-PD-1 antibody therapy.

6 Conclusion and future perspectives

In the past decades, statins, traditionally used because of their
cholesterol-lowering properties, have demonstrated multifaceted
effects on the immune system in general cellular homeostasis,
including modulation of T cell responses and anti-inflammatory
properties. The exploration of statins as potential adjuncts in
immunotherapies for HCC and other cancer types has yielded
promising results. By enhancing immune responses via cytokine
stimulation, statins can enhance the efficacy of immunotherapies
such as ICIs in HCC. Such a combination approach, by
incorporating statins into the existing immunotherapeutic
regimens, may the hold key to improving treatment outcomes in
HCC. However, it’s crucial to acknowledge that more extensive
preclinical investigations are prerequisites to provide more
mechanistic basis for future clinical trials, before adding statins
into immunotherapy regimens in HCC.

Such an integration strategy for HCC represents an exciting
avenue from several future perspectives. First, future trials should
assess the safety and efficacy of combining statins with various
immunotherapeutic agents, with a focus on patient stratification to
identify those who might benefit most. In addition, mechanistic
studies should delve deeper into the immunomodulatory effects of
statins in HCC, to resolve the precise pathways and cellular
interactions that contribute to enhanced outcomes of
immunotherapies. Furthermore, the development of novel statin
derivatives with improved bioavailability and reduced side effects
could broaden the feasibility of combination therapy. Lastly,
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predictive biomarkers to identify HCC patients who are most likely
to respond favorably to statin-immunotherapy combinations could
be a priority to investigate. In conclusion, the future of statins in
immunotherapies for HCC holds great promise, likely to refine the
treatment landscape for this challenging malignancy and improve
the treatment outcomes in patients.
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