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Accurately identifying novel indications for drugs is crucial in drug research and
discovery. Traditional drug discovery is costly and time-consuming.
Computational drug repositioning can provide an effective strategy for
discovering potential drug-disease associations. However, the known
experimentally verified drug-disease associations is relatively sparse, which
may affect the prediction performance of the computational drug
repositioning methods. Moreover, while the existing drug-disease prediction
method based on metric learning algorithm has achieved better performance,
it simply learns features of drugs and diseases only from the drug-centered
perspective, and cannot comprehensively model the latent features of drugs and
diseases. In this study, we propose a novel drug repositioning method named
RSML-GCN, which applies graph convolutional network and reinforcement
symmetric metric learning to predict potential drug-disease associations.
RSML-GCN first constructs a drug–disease heterogeneous network by
integrating the association and feature information of drugs and diseases.
Then, the graph convolutional network (GCN) is applied to complement the
drug–disease association information. Finally, reinforcement symmetric metric
learningwith adaptivemargin is designed to learn the latent vector representation
of drugs and diseases. Based on the learned latent vector representation, the
novel drug–disease associations can be identified by the metric function.
Comprehensive experiments on benchmark datasets demonstrated the
superior prediction performance of RSML-GCN for drug repositioning.
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1 Introduction

Due to the high time cost, significant investment, and laborious of the traditional
drug discovery process, it is challenging to meet the needs of people facing increasingly
prevalent complex diseases such as cancer, diabetes, and cardiovascular disease (Chong
and Sullivan, 2007; Tamimi and Ellis, 2009). Therefore, more accurately and effectively
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capturing drug-related indications in drug development is of
great significance. Drug repositioning, or the new use of old
drugs, is an attractive means for discovering the new therapeutic
potential for existing drugs that have already been approved by
the Food and Drug Administration (FDA) for the treatment of
diseases (Novac, 2013), so it has the advantages of reduced drug
risk, a shortened clinical evaluation cycle, cost-effectiveness, and
efficiency (Pushpakom et al., 2019; Luo et al., 2020). Many
computational drug repositioning methods have been
proposed to identify candidate indications of drugs (Lotfi
Shahreza et al., 2017). These methods can be broadly classified
into three major categories: (i) machine learning-based drug
repositioning methods; (ii) network-based drug repositioning
methods; and (iii) recommendation system-based drug
repositioning methods.

Machine learning-based methods mainly utilize support vector
machine (SVM) (Napolitano et al., 2013), logistic regression (Gottlieb
et al., 2011; Qabaja et al., 2014), Naïve Bayes (Yang and Agarwal,
2011), and random forest (Oh et al., 2014) for classification and
prediction tasks in drug repositioning. However, these traditional
methods rely significantly on input data with features that have been
artificially set up well to represent drug and disease characteristics,
which results in a high level of implementation complexity (Yadav
and Jadhav, 2019). As an extension of machine learning, deep learning
has been popularly used in drug repositioning because it possesses
inestimable advantages in automatically capturing nonlinear features
from raw data. Zeng et al. (2019) put forward a network-based deep
learningmethod, deepDR, which uses amultimodal deep autoencoder
to learn nonlinear features of drugs from the heterogeneous networks.
Network-based methods analyze the relationship between entities via
message passing in different paths constructed bymultiple data on the
network structure, which is interpretable. Martínez et al. (2015)
designed a heterogeneous network-based prioritization method to
predict new drug-related diseases. Luo et al. (2016) proposed a bi-
random walk (BiRW) algorithm on the drug–disease heterogeneous
network to identify potential drug–disease associations. Recently,
deep learning technologies have been successfully applied to drug
repositioning and drug combination prediction. For example,
Dehghan et al. proposed a novel multimodal deep learning-based
approach called TripletMultiDTI, which incorporated multiple
sources of information and used a new architecture to predict
drug–target interaction affinity labels (Dehghan et al., 2022). Rafiei
et al. presented a deep learning approach called DeepTraSynergy,
which is designed to predict the synergistic effects of drug
combinations in cancer treatment by utilizing various data
including drug–target interactions, protein-protein interactions,
and cell-target interactions to predict the synergistic effects of drug
combinations in cancer treatment (Rafiei et al., 2023).

Recommendation system-based methods perform well in
various recommend related domains including social media,
e-commerce platforms, and personalized reading (Da’u and
Salim, 2020). Similar to the recommendation of preferring items
to users, the problem of predicting drug–disease associations can be
modeled as the problem of recommending potential drugs as
potential treatment to diseases (Yang et al., 2019a; Meng et al.,
2022). Recently, recommended methods based on matrix
factorization and matrix completion have been applied with
considerable success to drug repositioning (Yang et al., 2020).

Luo et al. (2018) proposed a drug repositioning recommendation
system (DRRS) that uses a fast singular value threshold (SVT)
algorithm (Cai et al., 2010) to fill out the unknown entries in the
drug–disease adjacency matrix. Yang et al. (2019b) used the
generalized matrix factorization method (GMF) involved in the
collaborative filtering process to uncover the potential therapeutic
relationship between drugs and diseases. Methods based on matrix
factorization or matrix completion can be applied flexibly but are
inefficient for large-scale data owing to complex matrix operations.
In particular, the inner product operation used in the most typical
matrix factorization technology violates the triangle inequality rule,
potentially leading to suboptimal performance in the recommended
models (He et al., 2017). In addition, this simple linear combination
overlooks the modeling of the drug–drug and disease–disease
relationship in a manner, and only measures the drug–disease
relationship. Hence, metric learning is proposed to offset gaps in
matrix factorization to enhance the expressiveness of the model.
Metric learning methods have been introduced to drug repositioning
in the latest studies. For instance, Luo et al. (2021) proposed a
collaborative metric learning approach (CMLDR) for drug
repositioning. CMLDR projected drugs and diseases into a joint
metric space and then predicted the potential drug–disease pairs
from the learned vectors by metric learning. While CMLDR has
achieved better prediction performance, it concentrated solely on
drug-centric learning to learn representations of drugs and diseases
based on drug–disease association information.

Graph convolutional network (GCN) (Kipf et al., 2017) extends the
convolutional neural network to solve non-Euclidean space problems.
It uses structural information on the constructed network by applying
convolutional operation to learn network topology preserving
node-level feature embeddings to reflect complex biological entity
interactions. Recently, GCN has been applied to network analysis to
efficiently extract network topology feature. For drug repositioning,
GCN can be utilized to extract drug and disease features from the drug-
disease heterogeneous network. Then, the extracted features can be
further used to calculate drug-disease association scores.

In this study, we proposed a novel computational framework for
drug repositioning based on reinforcement symmetricmetric learning
and GCN. First, in order to alleviate the sparsity problem of
drug–disease association data, we utilized Graph Convolutional
Network (GCN) on drug–disease heterogeneous network to learn
the features of drugs and diseases. The drug–disease association scores
can be calculated based on the learned features and are used to further
complement the drug–disease association matrix, which can improve
the prediction performance of the model. Then, a reinforcement
symmetricmetric learningmethodwith adaptivemargins is proposed,
which combines with drug-centric and disease-centric learning
simultaneously to learn the vector representation of drugs and
diseases to predict new potential drug–disease associations. Finally,
we propose to integrate reinforcement symmetric metric learning and
GCN model to identify potential therapeutic indications of drugs,
which can provide new insights for promoting drug repositioning.

The major contributions of this study are as follows.

• This study proposed a novel framework RSML-GCN, which
integrated the symmetric metric learning algorithm and GCN
model to identify potential therapeutic indications for drugs,
which provides insights into promoting drug repositioning.
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• To relieve the problem of the sparsity of drug–disease
association data, RSML-GCN applied GCN to complement
drug–disease association information.

• The symmetric metric learning algorithm incorporating drug-
centric and disease-centric learning is proposed to predict
novel potential drug–disease associations.

2 Materials and methods

In this study, we model the drug–disease association prediction as
a recommendation problem and propose a new drug repositioning
approach, RSML-GCN, to predict new therapies for diseases. The
method combines GCN and metric learning to construct a novel
framework for accurately discovering potential drug-disease
associations, as shown in Figure 1. The proposed framework
mainly consists of three modules including drug-disease network
construction module, drug-disease complementation module and
reinforcement symmetric metric learning-based prediction module.
First, a drug–disease heterogeneous network is constructed based on
the features and association information of drugs and diseases. Then,
the low-dimensional embeddings of drugs and diseases are encoded
by applying GCN, and a decoder is trained to generate an completed
drug-disease associationmatrix by predicting drug-disease association
scores. Finally, the latent representations of drugs and diseases are
learned based on the reinforcement symmetric metric learning to
predict novel drug-disease associations.

2.1 Construction of the drug–disease
heterogeneous network

In this work, the similarity of drug pairs is calculated based on
the Jaccard similarity coefficient, and the similarity of disease pairs is
obtained by calculating the semantic similarity using medical subject
descriptors.The detailed calculations are provided in Supplementary
Material. A drug similarity network R and disease similarity
network D can be constructed based on drug similarity and
disease similarity, and the edge weight is derived from the
similarity value. Ar � r1, r2, . . . , rM{ } denotes the set of M drugs,
and Ad � d1, d2, . . . , dN{ } denotes the set ofN diseases. Sr ∈ RM×M

denotes the adjacency matrix of the drug similarity network, and
Sd ∈ RN×N denotes the adjacency matrix of the disease similarity
network. A drug–disease association network Srd can be constructed
based on the known association information between drugs and
diseases. An edge exists between ri and dj if there is a known
association between drug ri and disease dj. The binary association
matrix Y ∈ 0, 1{ }M×N corresponds to Srd, the entry yij of the matrix
Y is 1 if there is an edge between drug ri and disease dj, otherwise
yij � 0 which does not mean that there is no association between the
drug ri and disease dj, but that there may be a potential association
that has not yet been identified. For each drug ri, this study aims to
identify diseases that are potentially associated with ri. The
drug–disease heterogeneous network is constructed by integrating
three networks: drug–drug similarity network, disease–disease
similarity network, and drug–disease association network.

FIGURE 1
The workflow of the proposed method RSML-GCN.
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2.2 Complement drug–disease associations
based on GCN

To solve the problem of the sparse verified drug-disease
associations in drug repositioning, we can leverage the related
information of drugs and diseases to predict potential indications
of drugs to complement the drug–disease association data. GCN
learns the low-dimensional representations of nodes from the
irregular graph structure, and each of its layers aggregates the
neighboring node information of the target node and uses the
output of the previous layer as the input of the next layer, which
is a process of continuously recursively aggregating neighborhood
features. In this work, GCN is introduced by applying the similarity
and association information to predict new drug–disease associations,
which can complete the drug–disease association matrix from the
biological network perspective and be used as a pre-training step to
predict the likelihood of drug–disease associations.

First, the adjacency matrix G corresponding to the drug–disease
heterogeneous network is defined. S′r � E−1/2

r SrE−1/2
r and S′d �

E−1/2
d SdE−1/2

d are the normalized drug similarity matrix and disease
similarity matrix, respectively, where Er � diag(ΣjSrij) and Ed �
diag(ΣjSdij) (Srij or Sdij is (i, j)th entry of the similarity matrix)
are the degree matrices of the drug and disease similarity matrices,
respectively. The introduction of an appropriate degree of similarity
contribution can better learn the embedding representation of drugs
and diseases. Thus, a similarity penalty factor μ is introduced to
control the contribution of similarity information, which can be
expressed as Ŝ

′
r � μ*S′r, Ŝ

′
d � μ*S′d. Then, the adjacency matrix of

the drug-disease heterogeneous network is represented by

G � Ŝ
′
r Y

YT Ŝ
′
d

⎡⎢⎢⎣ ⎤⎥⎥⎦ (1)

Given the matrix G, the general process of the convolution
operation based on the GCN encoder according to the study of Yu
et al. (2020a) can be described as

Hl+1 � f G,H,W( ) � σ E−1
2GE−1

2HlWl( ) (2)

Here,Hl+1 is represented as the embeddings of nodes encoded at
layer l + 1, E(E � diag(ΣjGij)) is the degree matrix of the adjacency
matrixG, andHl represents the embeddings encoded at layer l, which
is used as the input at layer l + 1.W is a learnable weight matrix, and
σ is a nonlinear activation function (e.g., RELU activation function).

Following the rule of Eq. 2, the GCN recursively learns node
features. After l layers of iterations (l � 1, 2, . . . , L), the GCN
captures information about different structures of the heterogeneous
network at different layers. To enable theGCN to fully learn the features
of the nodes, we use the attention mechanism to connect the
embeddings of different layers of GCN learning. Different attention
weights are set at different layers. The final embeddings of the obtained
drugs and diseases are denoted as [HR HD ]T � ∑ βlH

l. Here, βl is
initialized to 1/(l + 1),HR ∈ RM×k andHD ∈ RN×k represent the final
embeddings of the drugs and diseases, respectively.

To complement the drug–disease association matrix, we feed the
final drugs and diseases embeddings into a bilinear decoder (Li et al.,
2020b) for link prediction between drugs and diseases. Thus, the
reconstruction of the drug–disease association matrix can be
represented by ~Y � ρ(HRW′HDT ), where ρ is the sigmoid activation

function, andW′ is the trainable weight matrix. Entry yij
′ in thematrix ~Y

represents the predicted score between the drug ri and the disease dj.
Ultimately, we use a binary cross-entropy loss function as the

objective function to optimize the drug–disease association continuously.

Loss � − 1
N × M

η × ∑
i,j( )∈Y+

logyij
′ + ∑

i,j( )∈Y−
log 1 − yij

′( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (3)

where (i, j) indicates the drug–disease pair, and η � |Y−|/|Y+|
indicates the ratio of the number of positive drug–disease pairs
to the number of negative drug–disease pairs to balance positive and
negative sample data.

We complement the drug–disease association information to
alleviate the data sparsity problem by adopting GCN to implement
pre-training on the drug–disease heterogeneous network. An entry
of 1 in the drug-disease association matrix indicates that the disease
is an indication for the drug and is a known association confirmed in
clinical trials. In contrast, an entry of 0 means that there may be a
potential association that has not yet been identified. GCN is utilized
to preprocess unknown drug–disease associations to obtain more
promising association information for subsequent prediction tasks.
A threshold θ is set to screen highly confident drug indications.
Specifically, we retain the original value if the drug–disease
prediction score is greater than or equal to θ. Otherwise, we set
it to 0 because a more considerable value suggests a stronger
association between the drug and disease. Then, a preprocessed
complemented drug–disease association matrix is obtained.

2.3 Reinforcement symmetric
metric learning

Previous studies based onmetric learning have considered drug-
centric metrics (Hsieh et al., 2017; Park et al., 2018), neglecting to
model drug–disease relationships from the disease perspective,
which may lead to biased learning of latent vector representation
of drugs and diseases, and limit the predictive performance of the
model. Therefore, we take the drug- and disease-centric metrics into
account for our reinforcement symmetric metric learning algorithm,
which not only considers the relationships between drugs and
diseases, but also implicitly establishes drug–drug and
disease–disease relationships, thus enhancing the representation
learning of drugs and diseases.

The goal of metric learning is to learn a metric function that pulls
similar entities closer together and pushes dissimilar ones farther apart
(Park et al., 2018; Wu et al., 2020). For example, when identifying
possible favorite items for users in the recommendation system, metric
learning assigns smaller distances to users and items with existing
interactions and larger distances to users and items with unknown
interactions. Similarly, it can be applied to the issue of predicting
potential possible indications for drugs. The metric learning algorithms
project drugs and diseases into the unified vector space and encode the
latent vectors of drugs and diseases based on associations between drugs
and diseases. This way, distances between drugs and diseases with
known associations are closer than that between drugs and diseases
without associations or with unknown associations. The likelihood of
drug–disease associations is measured by the position of drugs and
diseases in the unified metric vector space. Unvalidated diseases are
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sorted in descending order by prediction scores for a given drug, and
top-k disease recommendations can be obtained.

2.3.1 Problem formalization
In this work, the problem of recommending new indications for

drugs is formulated as below. Ar and Ad denote the set of drugs and
diseases, respectively, as described above. All known drug–disease
associations can be designated as Γ � (r, d)|r ∈ Ar, d ∈ Ad{ }, and
N+

i � dj|dj ∈ Γ and yij � 1{ } represents the set of diseases with
known associations with drug ri. N−

i � dj|dj ∉ N+
i and yij � 0{ }

represents the set of diseases without known associations with
drug ri.

Based on the completed drug–disease associations, the metric
learning projects drugs and diseases into a unified n-dimensional
metric vector space. In the unified metric vector space, αr ∈ Rn is the
latent vector of drug r and βd ∈ Rn is the latent vector of disease d.
The association probability of drug r and disease d is measured by a
simple and efficient Euclidean distance, defined as

d r, d( )�‖αr − βd‖22, (4)

where ‖ *‖2 represents the L2-normalization. The calculated
Euclidean distance for known drug–disease associations should
be smaller than that without known associations.

2.3.2 The drug-centric metric
Drug-centric metric learning is defined based on the completed

drug–disease association matrix. For a given triple (r, d, �d), (r, d) ∈ Γ
represents a known association, which is considered a positive sample,
and (r, �d) ∉ Γ represents a negative sample, which is an unknown
drug–disease pair that is randomly selected. Metric learning is a
similarity measure based on distance, where a closer distance means
two entities are more similar. Thus, the measure of similarity can be
used for the measure of correlation. Distance and correlation are two
opposite concepts in drug–disease association prediction. A closer
distance indicates a more possible therapeutic behavior of the drug
for the disease. To ensure better learning of latent vectors of drugs and
diseases, we set a margin (safe distance) m and let m> 0 (Li et al.,
2020a). We use the following formula to ensure that the distance
between drug r and negative disease �d is larger than the distance
between drug r and positive disease d:

d r, d( ) +m≤ d r, �d( ) (5)

Figure 2 illustrates the drug-centric metric learning method in a
two-dimensional space, where themargin is designed to separate positive
and negative pairs. Specifically, drugs and diseases are represented as
latent vectors in a drug–disease metric space. If the predicted drug
associated with one disease, the gradient directionmoves inward to limit
the disease within the safe margin, otherwise, the gradient direction
moves outward to keep the disease away from the drug until it exceeds
the safetymargin. Note that the positive disease is inside the ball centered
on drug r. However, the negative disease is outside this ball centered on
drug r. This guarantees that distances between drugs and positive
diseases are smaller than that between drugs and negative diseases,
and maximizes the correlation between drugs and associated diseases.

As a result, we adopt triple loss (Schroff et al., 2015) as the
objective function for drug-centric metric learning:

LR � ∑
r,d( )∈Γ

∑
r,�d( ) ∉ Γ

d r, d( ) − d r, �d( ) +m[ ]+ (6)

where [x]+ � max(x, 0) denotes the standard hinge loss, which is a
widely used loss function in the field of recommendation systems.

2.3.3 The disease-centric metric
Drug-centric metric learning considers drug–disease

associations from the drug perspective, thus bringing diseases
associated with the targeted drug closer and having no
association farther away. It is not sufficient to accurately locate
the positions of drugs and diseases in the unified metric vector space
to obtain their latent vectors only from the drug perspective.
Moreover, drugs and diseases can be projected into the unified
metric space based on the assumption that similar diseases are
related to similar drugs (Xuan et al., 2019). Consequently, we
introduce the disease-centric metric to explore the relationship
between drugs and diseases from the disease perspective.
Similarly to the drug-centric metric, for targeted disease, drugs
with known associations with it are positioned close to it, or else
far away. d and �r are uncorrelated according to the assumption of
the distance metric, so they should not be closer together and should
meet d(d, �r)> d(d, r). Likewise, a margin n is set, and n> 0. The
following equation is used to ensure that the distance between
disease d and negative drug �r is larger than the distance between
disease d and positive drug r:

d d, r( ) + n≤ d d, �r( ). (7)

Because the Euclidean distance possesses symmetry, the disease-
centric learning strategy can be replaced by d(r, d) + n≤ d(d, �r).
Figure 3 depicts the symmetric metric learning approach centered
on drugs and diseases under the explicit treatment relationship. The
disease-centric metric predicts the associated drugs from the
perspective of disease and uses the safety margin for gradient
learning. Obviously, the objective of symmetric metric learning is
to push drugs or diseases that are not associated out of the ball and
pull drugs or diseases that are associated or have potential
associations into the ball. Thus, distances of known drug–disease
pairs are smaller than distances between unknown pairs.

Ultimately, the objective function for the disease-centric
learning is defined as below:

LD � ∑
r,d( )∈Γ

∑
d,�r( ) ∉ Γ

d r, d( ) − d d, �r( ) + n[ ]+ (8)

FIGURE 2
An illustration of drug-centric metric learning.
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In this work, we aimed to identify the relationship between drugs
and diseases from the standpoint of drugs and diseases rather than
directly utilizing drug-centric metric learning.

2.3.4 Adaptive margin
Previous studies (Johannessen Landmark, 2008; Kingsmore

et al., 2020) have found that one drug may treat multiple
diseases, and that one disease may also be treated with various
drugs. Considering the inconsistency of drug–disease and
disease–drug association strengths, different margins are
introduced for drugs and diseases. To simulate complicated
drug–disease relationships better, we learn personalized margins
through adaptive training. In the learning process, we set mr and nd
as margins of the drug and disease, respectively. We prefer to use
larger mr and nd to reduce variations. Particularly for drugs or
diseases with fewer associations, more significant margins should be
given to avoid overfitting, thus pushing drugs and diseases without
associations farther to improve the accuracy of recommendations.
Adaptive margins in the objective function can be expressed as

LAM � − 1
M| |∑r mr + 1

N| |∑d nd⎛⎝ ⎞⎠ (9)

2.3.5 Optimization
The number of unknown associations in the drug and disease-

related data is significantly higher than the number of known
associations. Therefore, we optimize the model by negative
sampling. Based on known drug–disease associations, for each
drug (disease), we randomly select P diseases (drugs) that are not
associated with it as negative samples during the training process,
and P is set as the minimum value of the number of drugs and
diseases. By combining drug-centric and disease-centric metric
learning losses, we obtain the final loss function for RSML-GCN
as follows:

L � LR + LD( ) + γLAM � ∑
r,d( )∈Γ

∑
r,�d( ) ∉ Γ

d r, d( ) − d r, �d( ) +mr[ ]+
+ ∑

r,d( )∈Γ
∑

d,�r( ) ∉ Γ
d r, d( ) − d d, �r( ) + nd[ ]+

+ γLAM s.t., mr ∈ 0( , l], nd ∈ 0( , l] (10)

where l is used to prevent margins from being too large to affect the
performance of the prediction. Additionally, to avoid the curse of
dimensionality caused by the data points spread too widely, we apply

l2-norm clipping to the latent vectors of drugs and diseases learning,
so that they are confined to the Euclidean ball with the size of l
(‖α*‖2≤ l and ‖β*‖2≤ l). The objective function is then optimized by
using the AdaGrad to control the learning rate to update latent
vectors continuously until convergence (Duchi et al., 2011). After
the training procedure is completed, Euclidean distance is used to
compute the association probabilities between drugs and diseases. A
complete description about the procedure of RSML-GCN is
presented in Algorithm 1.

Input: The matrix of known drug–disease associations

Y ∈ 0,1{ }M×N; The drug similarity matrix Sr ∈ RM×M;The

disease similarity matrix Sd ∈ RN×N; Hyper parameters

k, L, lr1, n, lr2 and γ.

Output: The predicted drug-disease association matrix

Ŷ.

1: Normalize drug similarity matrix S′
r and normalized

disease similarity matrix S′
d and initialize

drug–disease heterogeneous graph G.

2: repeat

3: for l � 1,2, . . . ,L do

4: Learn node features Hl with Eq. 2;

5: end for

6: Combine nodes embeddings Hl with ∑ βlH
l,

obtain the final embeddings of drugs HR

and the final embeddings of diseases HD;

7: Obtain the prediction matrix ~Y with ρ(HRW′HDT );
8: Update parameters by optimizing Eq. 3;

9: until Eq. 3 is converged, get ~Y;

10: ~Y* is obtained by screen ~Y using a threshold θ;

11: for (r,d) ∈ sampled drug–disease associations in ~Y* do

12: sample a negative drug–disease (r, �d) pairs to

build a triplet (r,d, �d);
13: Compute LR with Eq. 6;

14: sample a negative disease-drug (d, �r) pairs to

build a triplet (d,r, �r);
15: Compute LD with Eq. 8;

16: End for

17: While not converged do

18: Compute gradients;

19: Update αr and βd with AdaGrad on Eq. 10;

20: Compute the predict probability;

21: P�‖αr − βd‖22;
22: Check whether the model converges on the

validation set;

23: End while

24: Ŷ � P;

25: Return Ŷ;

Algorithm 1. RSML-GCN Algorithm.

3 Results and discussion

3.1 Comparison with other methods

To verify the effectiveness of our method in predicting
drug–disease associations, we compared RSML-GCN with

FIGURE 3
Symmetric metric learning in two-dimensional space.
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five state-of-the-art drug repositioning methods based on
recommendation system and GCN including GRGMF
(Zhang et al., 2020), DRWBNCF (Meng et al., 2022), LAGCN
(Yu et al., 2020b), DRHGCN (Cai et al., 2021) and CMLDR (Luo
et al., 2021). These methods are detailed below.

• GRGMF establishes a generalized matrix factorization model
that obtains the latent representation of each node by
adaptively learning the neighborhood information of each
node, and it introduces external similarity information to
facilitate the prediction of potential links.

• DRWBNCF is a neural collaborative filtering method
that proposes a new weighted bilinear graph convolution
operation to integrate the information of the known
drug–disease association, drug’s and disease’s
neighborhood, and neighborhood interaction into a unified
representation to infer novel potential drug–disease
associations.

• LAGCN is a layer attention GCN that uses GCN to learn
embeddings of drugs and diseases from the drug–disease
heterogeneous network. The learned embeddings are then
integrated by an attention mechanism to predict new
associations.

• DRHGCN uses GCN to extract inter-domain and intra-
domain feature information of drugs and diseases to find
new drug indications based on different network topology
information of drugs and diseases in different domains.

• CMLDR is a collaborative metric learning algorithm that
predicts the association probability of drugs and diseases by
applying metric learning. The latent vectors of drugs and
diseases are learned based on the known related
information of drugs and diseases and used to identify
candidate drug–disease associations.

For a fair comparison, we ran these competing methods with
the optimal parameters suggested in the original papers on
benchmark datasets. The complete evaluation of all methods
was performed under 10-fold cross-validation. The specific
experimental settings are described in Supplementary Material.
Also, we conducted parameter analysis and selected the best
parameters as the recommended settings for RSML-GCN
in this work.

3.2 Parameter setting

Considering that hyperparameters could affect model
performance, we further investigate the influence of
hyperparameters including that used in GCN, such as the
latent vector dimension n, the marginal value strengths γ, and
weight variables. The specific hyperparameter settings are given
in Supplementary Material. According to the previous study (Yu
et al., 2020a), we set the parameters for GCN with the embedding
dimension k � 64, number of layers L � 3, initial learning rate
lr1 � 0.008, node discard rate β � 0.6, regularize discard rate
ξ � 0.4, and penalty factor μ � 6. Moreover, we have

investigated the effect of the latent vector dimension n by
varying its value from 30 to 400, and examined the influence
of the marginal value strengths γ by varying its value from 0.01
to 100. The optimal parameters were determined by the grid
search method, and detailed information is provided in the
Supplementary Material. Finally, the latent vector dimension
of drugs and diseases in the metric space was fixed at 250, the
initial learning rate lr2 was 0.05, and the batch size was 512. In
terms of variables, refer to the settings of Li et al. (2020a), all
weight variables followed a uniform distribution [-0.01, 0.01]
and were randomly initialized, and all latent vectors (such as αr,
βd) that follow a normal distribution (mean: 0.1, variance: 0.03)
were randomly initialized. More detailed parameter settings are
described in Supplementary Figures S1–S4.

3.3 Performance of RSML-GCN in
cross-validation

To evaluate the performance of RSML-GCN, we conducted
extensive experiments on two benchmark datasets Cdataset and
Fdataset in Supplementary Table S1 and compared RSML-GCN
with five state-of-the-art association prediction methods. The
performance evaluation results of all methods under 10 times
10-fold cross-validation were reported in Table 1. The
experimental results show that RSML-GCN had good
performance in relevant metrics and was superior to other
methods. In terms of the primary metric, AUPR, RSML-GCN
achieved the highest average value of 0.7941, which surpasses
GRGMF by 33.7%, and the average AUPR values of
DRWBNCF, LAGCN, DRHGCN and CMLDR were 0.4992,
0.1562, 0.5480, and 0.2607, respectively. Additionally, RSML-
GCN outperformed other methods in terms of AUC, with an
average AUC value of 0.9077. This was 0.20% higher than the
second-best method, DRHGCN. DRWBNCF, GRGMF, LAGCN
and CMLDR have AUCs of 0.8642, 0.8994, 0.7874 and 0.7999,
respectively.

We have performed 10 times 10-fold cross-validation and
obtained AUC and AUPR values for all methods. The paired
t-test is applied to statistically test the significance between the
proposed method and other existing methods in terms of AUPR
values, which have been conducted in previous studies. The
paired t-test results including the p-values are showed in
Table 2. It can be observed that RSML-GCN is statistically
significantly better than other methods (p < 0.05).

The drug–disease prediction problem was formulated as a
top-k recommendation problem, where potential therapeutic
diseases are recommended for a specific drug. Therefore, we
used top-k prediction results as evaluation metrics, specifically
precision@K (p@K) and recall@K (r@K), which are widely used
in recommendation domains. The performance of different
models in predicting the top-k drug–disease associations on
Cdataset was reported in Supplementary Figure S5. RSML-
GCN outperformed other models in terms of r@5, r@10, p@5,
and p@10. Additionally, in Supplementary Figure S6, we can find
that RSML-GCN also achieves excellent performance in the recall
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and precision values of the top-k predictions on Fdataset, which
is much better than collaborative filtering-based, GCN-based,
and metric learning-based methods. Notably, the performance
indicators of LAGCN in these results were inferior to those of
other methods, potentially due to GCN exhibiting over-
smoothing issues stemming from dataset imbalances. The
prediction results of the matrix factorization method GRGMF
were lower than RSML-GCN, indicating that the metric learning
method can effectively compensate for the shortcomings of
matrix factorization. In contrast, CMLDR yielded significantly
lower results than our proposed method, which suggests the
usefulness of increasing the disease-centric auxiliary reuse
learning for improving the drug-centric metric. The superior
performance of RSML-GCN can be attributed to the following
aspects. First, deep learning method is utilized to learn the
potential representations of drugs and diseases and generate
high confident drug–disease associations. This effectively
alleviates the sparsity problem of drug–disease association data
and improves the performance of subsequent task predictions.
Second, we designed a reinforcement metric learning method to
learn the metric between drugs and diseases from both drug and
disease aspects, which can improve previous metric learning
methods. Finally, by integrating the deep learning method and
metric learning method, the proposed method can achieve better
performance than other drug–disease prediction methods.
Furthermore, we have avoided excessive integration of
biological data, as improper handling of such data can
introduce noise and adversely affect prediction results. These
results comprehensively demonstrate the effectiveness of our
proposed method in identifying drug–disease associations.

3.4 Ablation experiment

To evaluate the model performance of RSML-GCN, we set up
a variant of RSML-GCN, named as RSML. In RSML, we used only
reinforcement symmetric metric learning to predict drug–disease
association scores, which removes the pre-training step of
complementing the drug–disease association matrix using
GCN. In order to check the contribution of the pre-training
component, we compared RSML-GCN with RSML based
on Cdataset.

Based on the drug–disease association matrix, the RSML
projected drugs and diseases to the unified metric vector space
and learned their latent vectors based on the push–pull
mechanism. The Euclidean distance was adopted to obtain
the potential treatment probabilities of drugs for diseases. As
can be seen in Supplementary Table S2, incorporating GCN in
RSML-GCN as a pre-training step to complement the
drug–disease association matrix resulted in improved
predictive performance. The average AUPR of RSML-GCN
was 6.45% higher than that of RSML, while maintaining a
comparable AUC. Additionally, significant enhancements
were observed across all top-k prediction evaluation metrics,
as depicted in Supplementary Figure S7. This improvement can
be attributed to GCN’s ability to integrate similarity information
from drug–disease associations, enabling the learning of more
comprehensive representations and acquiring more confident
drug–disease association information. Consequently, this
approach helps address the imbalance between positive and
negative samples to serve downstream tasks better and
improve the predictive potential of metric learning method.
The results generally indicate the reliability of RSML-GCN for
predicting drug-related diseases.

3.5 Predicting candidates for new drugs or
new diseases

To assess the ability of RSML-GCN in predicting potential
indications for new drugs, we removed the associated diseases of
the test drug and predicted indications for it on Cdataset. To
more accurately display the top-k recommendation
performance of the model, we selected drugs associated with

TABLE 1 Results of different methods under 10 iterations of 10-fold cross-validation.

Datasets DRWBNCF GRGMF LAGCN DRHGCN CMLDR RSML-GCN

AUPR

Cdataset 0.4821 0.5611 0.1946 0.5562 0.1088 0.8580

Fdataset 0.5163 0.6269 0.1178 0.5397 0.4125 0.7302

Avg 0.4992 0.5940 0.1562 0.5480 0.2607 0.7941

AUC

Cdataset 0.8480 0.8638 0.8358 0.8756 0.7650 0.9309

Fdataset 0.8803 0.9350 0.7389 0.9362 0.8348 0.8846

Avg 0.8642 0.8994 0.7874 0.9059 0.7999 0.9077

TABLE 2 The statistical significance of performance improvements
achieved by RSML-GCN.

Paired t-test Fdataset Cdataset

RSML-GCN vs. DRWBNCF 8.44E-25 4.11E-29

RSML-GCN vs. GRGMF 3.92E-22 2.48E-32

RSML-GCN vs. LAGCN 1.81E-23 2.0E-28

RSML-GCN vs. DRHGCN 4.36E-17 4.83E-33

RSML-GCN vs. CMLDR 5.11E-29 2.48E-39
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at least 50 diseases to evaluate the performance of RSML-GCN
for new drug prediction. After training, the latent vectors of
drugs and diseases in the training samples were learned. For a
new drug without any known association, RSML-GCN could
obtain latent vectors of the drug by utilizing similarity
information from its h-nearest neighbors in the training set
to predict the potential drug-related diseases. In the experiment,
empirically, h was set to 5 to simplify the model.

The results of predicting unknown diseases for new drugs
are presented in Supplementary Table S3, RSML-GCN
exhibited the best performance in the primary metric AUPR
(average AUPR = 0.5555), which is higher than GRGMF and
CMLDR based on recommendation system by 49.0% and 74.4%
(AUPR value), respectively. In terms of AUC, RSML-GCN had
an average AUC of 0.6985, which is higher than that of these
state-of-the-art prediction methods. The recall and precision of
top-k recommendations of RSML-GCN for predicting potential
indications for new drugs were reported in Figure 4, which
shows the performance of RSML-GCN over other methods for
different values of K. For the average recall value, our RSML-
GCN performed better than other methods under most K
values. For example, when K = 10 and K = 50, RSML-GCN
achieved the best average recall values, 0.0807 and 0.3191,
respectively. In particular, when K = 10, DRWBNCF,
LAGCN, DRHGCN, and CMLDR obtained recall values of
0.0245, 0.0356, 0.0428 and 0.0565, respectively, the recall
values of GRGMF and RSML-GCN were almost comparable.

In addition, when K = 10 and K = 50, RSML-GCN attained
average precision values of 0.7451 and 0.6072, respectively,
which is higher than most competitive methods. Overall, the
comprehensive results demonstrate that RSML-GCN has an
excellent ability to predict related diseases for new drugs.

For a new disease without any known associations, RSML-
GCN can use the similarity information of diseases to predict
potential candidate drugs for new diseases. We also conducted
the experiments, in which all relationships for each disease were
removed to predict candidate drugs for new diseases. The results
compared with state-of-the-art methods were reported in
Supplementary Table S4 and Supplementary Figure S8.
RSML-GCN was the second-best, significantly better than
DRWBNCF, LAGCN, DRHGCN, and CMLDR. The recall and
precision of RSML-GCN also achieved the second-best
performance. The reason is that the input of GRGMF
contains both drug–drug similarity and disease–disease
similarity, while the input of RSML-GCN only contains
known drug–disease associations.

3.6 Independent test experiments

We also investigated the performance of these prediction
methods on the independent test set, another dataset released
by Luo et al. (2016) is used to assess the performance of
methods. By removing the drugs not included in Fdataset, we

FIGURE 4
The recall values (A) and precision values (B) of various methods in predicting top-k diseases new drugs.

TABLE 3 Results on independent test set.

Methods DRWBNCF GRGMF LAGCN DRHGCN CMLDR RSML-GCN

AUPR 0.0353 0.0140 0.0220 0.0520 0.0459 0.3030

AUC 0.6218 0.5313 0.6215 0.7783 0.5355 0.6842
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obtained an independent test set consisting of 89 drug–disease
associations involving 71 drugs and 313 diseases. This test set
was used to assess the performances of all prediction methods in
predicting the drug–disease associations on the Fdataset.
Overall, the performance of all the methods moderately
deteriorates relative to the 10-fold cross-validations. RSML-
GCN remained the best method, which achieved an AUPR value
of 0.3030 and an AUC value of 0.6842. DRWBNCF and LAGCN
achieved AUC values of 0.6218 and 0.6215, respectively
(Table 3). We also show the ability to correctly predict
drug–disease associations concerning given top-k thresholds,
as shown in Figure 5. Accordingly, RSML-GCN can predict
drug–disease associations more accurately than all other five
methods on almost every top-rank threshold.

3.7 Case study

In this section, we conducted a case study to further evaluate
the reliable ability of RSML-GCN to predict novel drug–disease
associations. For the analysis, we chose three representative drugs
for the treatment of high-incidence diseases, Atorvastatin Calcium,
Etoposide, and Riluzole. Atorvastatin Calcium is a commonly used
lipid-lowering drug in the clinic, which is mainly used to treat
mixed hyperlipidemia and hypercholesterolemia (Egom and
Hafeez, 2016). These diseases have a high incidence, are
difficult to diagnose and treat, and can potentially induce
Cardio-cerebrovascular disease (Yao et al., 2019). Therefore, the
analysis of Atorvastatin Calcium is of great significance. Etoposide
is a cell cycle specific antitumor drug that is primarily effective
against small cell lung cancer (Mascaux et al., 2000), acute
leukemia, and malignant lymphoma. Given cancer is
complicated and difficult to cure, it is valuable to analyze
whether Etoposide can treat other similar diseases in drug
reuse. Riluzole is a central nervous system drug that plays a
pivotal role in the treatment of Alzheimer’s disease, Parkinson’s

disease, and brain injury, which have a serious impact on patients.
Therefore, it is necessary to analyze the new therapeutic potential
for this drug to treat a variety of neurological degenerative diseases.
Specifically, we applied RSML-GCN to predict candidate diseases
for three drugs. For each of the three drugs, all predicted candidate
disease scores were ranked by priority, and then we excluded all
known drug–disease associations from the primary dataset to
generate a new top-ranked list of drug–disease associations.
Finally, we used highly reliable sources and clinical trials
(i.e., DrugBank (DB) (Law et al., 2013), CTD (Davis et al.,
2016), PubChem (Kim et al., 2015), DrugCentral (Avram et al.,
2020), and ClinicalTrials) as references to examine the predicted
drug–disease associations. Table 4 presents the predicted results of
the top 10 candidate diseases for three drugs. The results show
Atorvastatin Calcium can also be shown to treat lung disease, left
ventricular dysfunction, and is also associated with kidney failure,
which are supported by CTD, ClinicalTrials, and DrugCentral. The
discovery of Etoposide can be verified in all clinical trials, which
shows that Etoposide not only has a good therapeutic effect on a
variety of tumors but also can be used to treat Exanthema and drug
eruption. In addition, Riluzole was also found to be related to heart
failure, drug-induced liver injury, and arrhythmia. To sum up,
most of our predictions can be verified by reliable sources and
clinical trials. The case study results further demonstrate the
effectiveness of RSML-GCN in predicting novel drug–disease
associations.

4 Conclusion

In this study, we proposed a new framework for drug–disease
association prediction by incorporating GCN and reinforced
symmetric metric learning, named RSML-GCN. Firstly, in order
to alleviate the sparsity problem of drug–disease association data, the
GCN was applied to capture the structure of network topology on
the heterogeneous network constructed by the biological knowledge

FIGURE 5
The recall and precision values of the top-k recommended drug–disease associations are achieved by different methods on the independent
test set.
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TABLE 4 The top-10 candidate diseases predicted by RSML-GCN for three drugs.

Drug Rank Disease Evidences Rank Disease Evidences

Atorvastatin Calcium 1 Liver Diseases CTD/ClinicalTrials/DrugCentral 6 Headache CTD

2 Ventricular Dysfunction, Left CTD 7 Hyperalgesia CTD

3 Liver Neoplasms CTD/ClinicalTrials/DrugCentral 8 Renal Insufficiency CTD/ClinicalTrials/DrugCentral

4 Vomiting CTD 9 Edema CTD/ClinicalTrials

5 Dizziness NA 10 Weight Gain CTD

Etoposide 1 Exanthema CTD 6 Carcinoma, Squamous Cell CTD/ClinicalTrials

2 Drug Eruptions CTD 7 Skin Neoplasms CTD/ClinicalTrials

3 Uterine Cervical Neoplasms CTD/ClinicalTrials 8 Leukemia CTD/ClinicalTrials/DB/PubChem/
DrugCentral

4 Carcinoma, Transitional Cell CTD/ClinicalTrials 9 Lung Diseases, Interstitial CTD/ClinicalTrials/DrugCentral

5 Lymphoma, Large CTD/ClinicalTrials/DB/PubChem/
DrugCentral

10 Cerebellar Diseases CTD/ClinicalTrials

Riluzole 1 Heart Failure CTD 6 Drug-Related Side Effects and Adverse Reactions CTD

2 Chemical and Drug Induced Liver Injury CTD/DrugCentral 7 Myocardial Infarction CTD

3 Acute Kidney Injury CTD 8 Hypotension CTD/ClinicalTrials

4 Arrhythmias, Cardiac CTD/ClinicalTrials 9 Rhabdomyolysis NA

5 Kidney Diseases NA 10 Brady-cardia CTD
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and known association information of drugs and diseases to
complement the missing drug–disease association information,
which improves the prediction performance of the model.
Secondly, the current metric learning algorithm only learns in a
single way centered on drugs, ignoring the influence of diseases.
Therefore, a reinforcement symmetric metric learning algorithm
combined with drug-centric and disease-centric learning was
developed to project drugs and diseases into a unified metric
space, and learn their latent vector representations based on
push–pull mechanisms to identify potential indications for
known drugs and new drugs. Based on the assumption that
similar drugs can treat similar diseases, the disease-centric metric
learning mechanism was introduced symmetrically, which
improved on the previous approach. Moreover, the adaptive
margin strategy helped the model select the appropriate margin
for different drugs and diseases. Thirdly, this study proposes a new
framework integrating reinforcement symmetric metric learning
algorithm and GCN model to identify potential therapeutic
indications of drugs, which provides new insights for promoting
drug repositioning. The results of extensive experiments
demonstrated that RSML-GCN performed well and outperformed
other drug–disease association prediction methods.

RSML-GCN only utilized drug–disease association data and the
single feature information of the drug and the disease to predict
potential associations. However, there exists various drug and
disease related biological data, and the use of multiple data may
help to learn potential indications for drugs. Therefore, in the future
of work, more biological data including genes, targets, or miRNAs
can be considered and integrated to build a more comprehensive
heterogeneous network with multiple relationship types. In
addition, the metric learning algorithm only uses known
drug–disease association information as input. Future research
should design an effective way to integrate related biological data
into its learning process to predict potential drug–disease
associations.
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