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Drugs that modulate the GABAA receptor are widely used in clinical practice for
both the long-term management of epilepsy and emergency seizure control. In
addition to older medications that have well-defined roles for the treatment of
epilepsy, recent discoveries into the structure and function of theGABAA receptor
have led to the development of newer compounds designed to maximise
therapeutic benefit whilst minimising adverse effects, and whose position
within the epilepsy pharmacologic armamentarium is still emerging. Drugs
that modulate the GABAA receptor will remain a cornerstone of epilepsy
management for the foreseeable future and, in this article, we provide an
overview of the mechanisms and clinical efficacy of both established and
emerging pharmacotherapies.
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1 Introduction

Epilepsy is a common neurological disorder characterised by an excess of excitatory
activity within neural circuits and a predisposition to seizures. GABA is the primary
inhibitory neurotransmitter in the mammalian brain and therefore plays a central role in
the maintenance of normal excitation-inhibition balance and the pathophysiology
of epilepsy.

GABA exerts much of its inhibitory influence through GABAA receptors which
comprise a diverse group of ligand-gated ion channels that serve as common targets for
antiseizure medications (Perucca et al., 2023a; Perucca et al., 2023b; Bryson et al.,
2023). Indeed, some of the earliest developed antiseizure medications such as
potassium bromide and phenobarbital act primarily through positive allosteric
modulation of the GABAA receptor and, more recently, there has been great
interest in the development of novel compounds that precisely modulate inhibitory
pathways through specific GABAA receptor subtypes (Engin et al., 2018; Owen et al.,
2019; Jankovic et al., 2021; Cerne et al., 2022; Witkin et al., 2022). The development of
these novel compounds has emerged from a growth in understanding of the structure
and function of GABAA receptors and insights into complex inhibitory effects
mediated by receptor subtypes exhibiting variation in cellular location and regional
distribution.
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In this mini review we will first provide a brief overview of key
aspects of the GABAergic system most relevant to pharmacological
modulation in epilepsy, and then discuss both long-standing and
newer or emerging drugs whose primary mechanism of action is via
modulation of GABAA receptor neurotransmission.

2 Background: GABAA receptor
transmission and relevance in epilepsy

2.1 Structure and distribution of
GABAA receptors

GABAA, GABAB and GABAC receptors have been well
characterised and form the basis of GABAergic
neurotransmission in the mammalian nervous system. Both
GABAA and GABAC receptors are ligand gated ion channels,
with the latter being largely confined to the retina and possessing
no known role in the pathogenesis or pharmacological
management of epilepsy (Enz and Cutting, 1999; Sieghart
et al., 1999; Olsen and Sieghart, 2009; Sigel and Steinmann,
2012). GABAB receptors are G-protein coupled receptors that
exert both post and pre-synaptic effects, in part through
activation of inward-rectifying K+ channels and
hyperpolarisation of the neuronal membrane (Bowery et al.,
2002). No established antiseizure medications, and
comparatively few drugs in wider clinical use, act primarily
through modulation of the GABAB receptor. GABAA

receptors, the focus of this review, are cys-loop
heteropentameric ligand gated ion channels permeable to
chloride and bicarbonate (Chuang and Reddy, 2018; Bryson
et al., 2023). The subunits comprising the quaternary structure
are denoted α-, β-, δ-, γ-, π-, θ-, ρ-, ε-, with genes encoding these
subunits located on chromosomes 4, 5, 15, and X (Chuang and
Reddy, 2018). To date, 19 subunits have been cloned termed α1-6,
β1-3, δ1, γ1-3, π1, θ, ρ1-3 and ε1, which are assembled as
heteropentamers within the endoplasmic reticulum before
being trafficked to the neuronal cell membrane (Sieghart et al.,
1999; Sigel and Steinmann, 2012; Chuang and Reddy, 2018).
Given the number of possible subunit arrangements, there is
potential for great diversity of GABAA receptors possessing a
range of physiological and pharmacological properties. The
majority of GABAA receptors in the mammalian brain are
composed of α1β2γ2 subunits (50%–60%) with the next most
prevalent (25%–35%) being composed of combinations of α1 or
2, β1,2 or 3 and γ2 (Olsen and Sieghart, 2008; 2009).

α1β2γ2 GABAA receptors are located within the synaptic cleft
and possess rapid activation and desensitisation kinetics upon
GABA binding which are ideal for fast neurotransmission
(Gingrich et al., 1995). Although α2 and α3 containing receptors
are also concentrated within the synaptic cleft they have differing
regional and cellular distributions which carries relevance for
subunit-specific drug development. GABAA receptors distributed
within the extra-synaptic membrane tend to contain α4, α5 and
α6 subunits and possess slower activation kinetics and incomplete
desensitisation upon GABA binding (Glykys and Mody, 2007).
α4 and α6 subunits preferentially co-assemble with δ-subunits,
and these receptors are emerging as an important

pharmacological target given their sensitivity to neurosteroids
and their diverging physiological role compared to synaptic
receptors (MacKenzie and Maguire, 2013).

Recently, a number of protein complexes that co-localise and
interact with ligand-gated ion channels, including the GABAA

receptor, have been identified (Maher et al., 2017). The auxillary
subunits LHFPL4 (Davenport et al., 2017) and Cltpm1 (Ge et al.,
2018) have been shown to regulate the stabilisation and trafficking of
post-synaptic GABAA receptors, respectively, and Shisa7 interacts
with α1, α2 and γ2 containing GABAA receptors to ehance
trafficking and expression at synaptic and extrasynaptic sites
(Han et al., 2019; Han et al., 2021). Shisa7 has also been shown
to modulate GABAA receptor decay kinetics and, interestingly,
enhance diazepam-potentiated inhibitory currents in
hippocampal neurons. Although it is currently unknown if
Shisa7 exerts a similar influence upon other compounds acting
upon the GABAA receptor, is raises the intriguing possibility that
auxiliary subunits may serve as future pharmacological targets.

2.2 Phasic and tonic GABAergic transmission

GABAA receptors mediate two main forms of
neurotransmission which are subject to pharmacological
modulation: phasic and tonic transmission. Phasic transmission
occurs when GABA released from presynaptic axon terminals
bind GABAA receptors clustered in the post-synaptic membrane.
This results in a spatially precise and rapid change in chloride
conductance which, due to higher postnatal expression of the
potassium-chloride cotransporter, usually causes
hyperpolarisation of the post-synaptic membrane in mature
neurons (Farrant and Nusser, 2005; Farrant and Kaila, 2007;
Kaila et al., 2014). At the cellular level phasic inhibition can exert
multiple effects on neuronal function determined by the subcellular
location of GABAA receptors and variation of the intracellular
chloride gradient (Farrant and Nusser, 2005). For example,
dendritic inhibitory inputs can suppress dendritic spikes and
backpropagating action potentials and regulate coincidence
detection of excitatory inputs (Tang et al., 2011; Groen et al.,
2014). In contrast somatic and axonal inputs may co-ordinate
spike timing and pyramidal cell synchronisation (Tremblay et al.,
2016). The presence of GABAA receptor subunit variation across
subcellular compartments raises the possibility of targeted
pharmacological modulation of these physiological processes.

Tonic inhibition is a more persistent form of neurotransmission
mediated by extracellular GABA activating extra-synaptic GABAA

receptors. As such, tonic inhibition exerts a more non-specific
inhibitory influence upon both neurons and glia and across
subcellular regions including the axon, dendrites and cell body
(Farrant and Nusser, 2005). Tonic inhibition plays a crucial role
in normal brain development (Valeyev et al., 1993; LoTurco et al.,
1995; Owens et al., 1999; Demarque et al., 2002) and, in the mature
CNS, has been shown to exert an important modulatory role within
the hippocampus (Semyanov et al., 2003), cerebral cortex (Vardya
et al., 2008), thalamocortical relay networks (Porcello et al., 2003),
midbrain (Tossell et al., 2021) and cerebellum (Hausser and Clark,
1997). Despite the diffuse actions of tonic inhibition more targeted
effects may arise through localised extracellular GABA release from
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neurogliaform cells and cellular variation in extrasynaptic GABAA
receptor subtype expression which may also be leveraged through
pharmacologic manipulation (Olah et al., 2009; Tremblay
et al., 2016).

2.3 GABAA receptor mutations and epilepsy

The relevance of GABAA neurotransmission in both the
pathophysiology and treatment of epilepsy is underscored by the
discovery of an expanding number of GABAA receptor mutations
associated with forms of genetic epilepsy. These discoveries have
also raised interesting pharmacotherapeutic issues. Mutations of the
γ2 subunit (encoded by the GABRG2 gene) were the earliest
identified and have since been comprehensively examined
(Baulac et al., 2001; Wallace et al., 2001). These loss of function
monogenic variants have been shown to cause developmental and
epileptic encephalopathies (DEEs) including Dravet Syndrome and
Lennox-Gastaut Syndrome, in addition to milder phenotypes such
as Febrile Seizures and Genetic Generalized Epilepsies (Baulac et al.,
2001; Wallace et al., 2001; Harkin et al., 2002; Kananura et al., 2002;
Tian et al., 2013; Huang et al., 2014; Todd et al., 2014; Kang et al.,
2015; Warner et al., 2019; Qu et al., 2021). Since the γ2 subunit
contributes to the benzodiazepine binding site these variants may be
associated with benzodiazepine insensitivity which carries
implications for appropriate drug treatment (Fedi et al., 2006).
Mutations of GABRA1/2/3/5, GABRB1/2/3 and GABRD, which
encode the α1,2,3,5, β1,2,3 and δ subunits, respectively, have also
been implicated in a spectrum of epilepsies, including severe DEEs,
although variants of GABRA1 and GABRB2/3 mutations are most
frequently encountered which likely reflects the prevalence of their
expression in the CNS (Absalom et al., 2023). Interestingly, although
most GABAA receptor variants show loss-of-function traits,
characterization of several β3, δ and α4 variants revealed gain-of-
function features including enhanced sensitivity to GABA and were
associated with more severe early-onset phenotypes (Komulainen-
Ebrahim et al., 2019; Mierzewska et al., 2021; Absalom et al., 2022;
Ahring et al., 2022; Johannesen et al., 2022; Maillard et al., 2022)
Importantly, the discovery of gain-of-function mutations carries
treatment implications as drugs which enhanced GABAA receptor
transmission tended to be more effective in loss-of-
function variants.

3 Established GABAA receptor
pharmacotherapy in epilepsy.

Drugs that act on GABAA receptors have been used for the
management of epilepsy for over a century and remain important
treatment tools for acute and chronic seizure control (Rho and
White, 2018).

3.1 Phenobarbital

Phenobarbital is a barbiturate and sedative-hypnotic agent, and
one of the earliest discovered antiseizure medications introduced in
1912. Phenobarbital enhances both phasic and tonic inhibition

through positive allosteric modulation of GABAA receptors and
exhibits minimal subunit specificity. It has a long half-life of
75–120 h, is ~25% renally excreted and is a broad hepatic
enzyme inducer which is of relevance for administration in the
intensive care setting in the context of status epilepticus and
polypharmacy (Brodie and Kwan, 2012). Phenobarbital is used in
both focal and generalised epilepsies and, in two meta-analyses, was
found to have similar efficacy to both phenytoin and carbamazepine
for time to 12-month seizure remission and first breakthrough
seizure in these conditions, although carbamazepine was
associated with lower rates of seizure recurrence and drug
cessation (Nolan et al., 2013). Chronic use of phenobarbital is
limited by concerns regarding sedation and cognitive adverse
effects; however it retains an important role in resource-limited
settings (Brodie and Kwan, 2012). Phenobarbital also has an
established role in refractory status epilepticus (SE). In
benzodiazepine-resistant SE, a systematic review and network
meta-analyses suggested that phenobarbital was more effective
for terminating seizures compared to phenytoin, lacosamide,
valproate and levetiracetam (Brigo et al., 2022), and as first-line
therapy it was found to have comparable efficacy to lorazepam
(Treiman et al., 1998). Again, however, the use of phenobarbital in
acute management is limited by adverse effects, including
hypotension and respiratory depression, and a slow rate of
administration, and it is often reserved as third-line therapy for
SE in the intensive care setting.

3.2 Benzodiazepines

Benzodiazepines (BZDs) are widely prescribed for the acute
management of seizures and status epilepticus. They are used less
frequently as add-on therapy for the management of refractory
chronic epilepsy. BZDs act as positive allosteric modulators of the
GABAA receptor and bind at the interface of the γ2 and α1, α2, α3 or
α5 subunits. Given the preferential localisation of γ2 subunit
containing receptors at the post-synaptic membrane they
augment phasic inhibition but have minimal effect on tonic
inhibition (Benson et al., 1998).

The 1,4-benzodiazepines lorazepam, midazolam, and diazepam
are used for a variety of clinical indications, including procedural
sedation, anxiety, and alcohol withdrawal, and have established
efficacy for the suppression of seizures (Kienitz et al., 2022). In
addition to oral and intravenous formulations, midazolam and
lorazepam are available as intranasal formulations, and
midazolam as intramuscular and buccal formulations. Both
lorazepam and diazepam have high oral bioavailability (over
90%) compared to midazolam (~40–50%, due to metabolism in
the intestinal epithelium) with peak concentrations reached between
30 and 120 min (Kienitz et al., 2022). Faster peak concentrations are
achieved with buccal (~30 min) and intranasal (7–15 min)
midazolam, and so these routes have been investigated for the
out-of-hospital management of seizures. Importantly,
benzodiazepines have greatly varying half-lives with midazolam
shortest (1.5–3 h) followed by lorazepam (8–25 h) and diazepam
(24–48 h) (Kienitz et al., 2022). Comparative studies in the
management of SE suggest that intravenous lorazepam is more
effective than intravenous diazepam for pre-hospital termination of
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seizures (Alldredge et al., 2001) and a comparison of intravenous
lorazepam to intramuscular midazolam found higher rates of seizure
cessation on arrival to hospital with midazolam (Silbergleit et al.,
2012) likely due to faster rates of administration. Finally, buccal
midazolam has been associated with faster rates of out-of-hospital
seizure termination compared to rectal diazepam in paediatric and
residential care patients (Scott et al., 1999; Nakken and Lossius,
2011) and intranasal midazolam has been found to have comparable
effectiveness to intravenous diazepam for terminating seizures in the
paediatric population (Lahat et al., 2000; Mahmoudian and
Zadeh, 2004).

Clobazam is a 1,5-benzodiazepine and possesses a different
molecular structure to classical 1,4- benzodiazepines such as
diazepam. This confers greater selectivity to GABAA receptors
possessing the α2 subunit which may be implicated in the
anticonvulsant effects of BZDs, and is associated with other
favourable properties such as improved tolerability (Stephens
et al., 2017; Engin, 2022). Consequently, clobazam has a more
established role in the long-term management of epilepsy, with
robust evidence in the treatment of the DEE Lennox-Gastaut
Syndrome. In a randomised phase 2 trial clobazam exhibited a
dose-dependent reduction in the frequency of atonic seizures with
reductions of non-drop seizures also observed in the high-dose
(1 mg/kg/day) group Kienitz et al., 2022 #292}and, in an open label
extension, it was found that in over 80% of patients who had a
favourable response this benefit was sustained by year three (Conry
et al., 2014). Although trial evidence is limited, clobazam also
appears to have efficacy as add-on therapy in the management of
refractory focal epilepsy. The improved tolerability of clobazam has
motivated the search for more targeted positive allosteric GABAA

modulators to mitigate the side effects associated with classical
benzodiazepine.

3.3 Vigabatrin

Vigabatrin is a structural analogue of GABA and was developed
in 1974 using a rational drug design approach to inhibit GABA
breakdown through the targeting of GABA-transaminase. This
raises the intracellular concentration of GABA and leads
indirectly to enhanced phasic and tonic GABAA receptor
transmission by augmenting both vesicular release and extra-
synaptic extrusion via GABA-transporters (GATs) (Ben-
Menachem, 2011). Vigabatrin has a short half-life (5–7 h) and
achieves low CSF concentrations, but, since it acts as an
irreversible GABA-transaminase inhibitor, it is biological effect of
increasing GABA levels within the brain can persist for over 1 week.
Vigabatrin has efficacy in both infantile spasms and as add-on
therapy for focal seizures in adults. It has been shown to rapidly
decrease the frequency of infantile spasms within 5 days compared
to placebo (Appleton and Montiel-Viesca, 1993; Appleton et al.,
1999) and exhibits a dose-dependent increase in spasm cessation
(Elterman et al., 2001; Elterman et al., 2010). Similar findings have
been observed in adults with refractory focal seizures, with several
randomised controlled trials showing a dose-dependent decrease in
the number of median monthly seizures, and an increase in the
proportion of subjects with over 50% seizure reduction (French
et al., 1996; Dean et al., 1999). A particular concern with vigabatrin

use is the development of an irreversible peripheral visual field
defects. This occurs with a prevalence of 20%–25% in adults and
approximately 15% in children, with onset observed within
9 months after commencement.

3.4 Tiagabine

Like vigabatrin, tiagabine indirectly enhances GABAA receptor
transmission, and was strategically developed in the 1990s to act as a
GAT blocker thereby enhancing the availability of GABA at the
synaptic cleft. Tiagabine exhibits approximately 2.5-fold greater
specificity for GAT1 which mediates glial and neuronal reuptake
in the vicinity of the synaptic cleft which reflects its physiological
impact of prolonging the duration of inhibitory post-synaptic
currents. Tiagabine is metabolized through the CYP3A4 system
and has a half-life of 5–9 h which is shortened with the concomitant
use of hepatic enzyme inducing agents. Several studies have
confirmed the benefit of tiagabine in refractory focal epilepsy in
adults, including a placebo-controlled cross-over trial
demonstrating a 54% response rate (over 50% reduction in
seizure frequency) compared to 24% for placebo (Richens et al.,
1995), and moderate-to-high doses of tiagabine (32 and 56 mg/day)
showing greater response than low dose (16 mg/day) and placebo
(Uthman et al., 1998). In the paediatric population there is also
evidence for efficacy in focal epilepsy but there is the possibility of
exacerbating certain generalised seizures types, including myoclonic
seizures and primary generalised tonic-clonic convulsions (Uldall
et al., 2000). Adverse effects, including fatigue and dizziness, and
concerns raised about provoking seizures, in particular absence
seizures associated with generalised spike-wave discharges, have
limited its clinical use.

3.5 Valproate

Although valproate possesses several mechanisms of action,
including sodium channel blockade, modulation of excitatory
neurotransmitters and inhibition of histone deacetylase, it is
thought to achieve its anti-seizure effects at least in part through
augmenting GABAA transmission (Davies, 1995), and so will be
considered in further detail. Valproate does not appear to act directly
on GABAA receptors but has shown to increase brain GABA levels
through several pathways, including preferential inhibition of
GABA-transaminase within neurons and enhancing glutamate
decarboxylase (GAD) activity (Luder et al., 1990; Loscher, 1999).
It is possible that valproate may also enhance GABA synaptic release
and modulate metabolic pathways, such as the inhibition of alpha-
ketoglutarate, to increase activity through the GABA shunt.
Valproate has a half-life of 9–18 h and is metabolized through
the hepatic CYP450 system and glucuronidation, and co-
administration with hepatic enzyme inducers shorten its half-life.
It is highly protein bound and inhibits hepatic metabolism, both of
which can increase the levels of other antiseizure medications
including lamotrigine, phenytoin, carbamazepine, and
phenobarbital. Valproate has efficacy in both focal and
generalised forms of epilepsy, and in the Standard and New
Antiepileptic Drugs (SANAD) trial, which compared valproate to
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lamotrigine and topiramate in generalized and unclassified epilepsy,
it was found to be more effective than lamotrigine for 12-month
seizure remission, and superior to topiramate for time-to-treatment
failure (Marson et al., 2007). The SANAD 2 trial compared valproate
to levetiracetam as first-line treatment in patients with genetic/
idiopathic generalised epilepsy, demonstrating superiority of
valproate for both 12-month remission and time to first seizure
(Marson et al., 2021). In patients with childhood absence epilepsy,
valproate has been shown to have superior efficacy to lamotrigine,
and is equivalent to ethosuximide, although was associated with
higher rates of attentional deficits (Glauser et al., 2010). Despite its
efficacy in a broad range of syndromes, a significant concern relates
to teratogencitiy with high rates of congenital malformation and
autism, and lower IQ in exposed infants necessitating careful
counselling.

4 Emerging and novel GABAA receptor
pharmacotherapy

4.1 Cenobomate

Cenobomate is a newer antiseizure medication that recently
gained FDA and European Medicines Agency approvals for the
treatment of refractory focal onset seizures in adults (Roberti et al.,
2021). Cenobomate modulates both GABAA receptors (Sharma et al.,
2020) and voltage gated sodium channels, with a preferential effect on
channel inactivation leading to a reduction of the persistent sodium
current (Nakamura et al., 2019). Cenobomate acts as a positive
allosteric modulator of GABAA receptors through non-
benzodiazepine binding sites. Although cenobomate acts upon
both synaptic and extra-synaptic GABAA receptors, the half
maximal effective concentration in a non-neuronal expression
system was higher for α4, α5 and α6 containing GABAA receptor
subtypes which are associated with extrasynaptic localisation, and in
dissociated CA1 neurons cenobomate exerted a more pronounced
effect on baseline GABA holding current than spontaneous inhibitory
post synaptic currents. Together, these findings suggest that
cenobomate preferentially modulates of tonic inhibition (Sharma
et al., 2020).

In two randomised placebo-controlled Phase 2 trials in patients
with refractory focal seizures, cenobomate at doses of 200 or
400 mg per day were associated with over 50% reduction in
seizure frequency during treatment maintenance compared to
placebo (Chung et al., 2020; Krauss et al., 2020; Rosenfeld et al.,
2021). Notably, high rates (11%–26%) of seizure-freedom were also
observed at these doses, and a post hoc analyses of two open-label
phase 3 trials suggest that responder and seizure-free rates persist
beyond 12 months (Aboumatar et al., 2022; Rosenfeld et al., 2021).
A more recent cohort study in highly active (over 20 seizures/
month) or ultra-refractory patients (over six anti-seizure
medication failures), most of whom had undergone previous
epilepsy surgery or vagal-stimulators insertion, showed clinically
significant reductions seizure severity and frequency (Pena-
Ceballos et al., 2023). Five percent of this cohort achieved
seizure freedom and 70% of patients had a 50%–99% reduction
in seizure frequency, most of whom were treated with over 250 mg
of cenobomate (Pena-Ceballos et al., 2023).

Dose related adverse effects from cenobomate include
somnolence, dizziness, fatigue, and coordination difficulties.
Interestingly, adverse effects were more frequently reported in a
patient cohort that was concurrently treated with a sodium channel
blocking drug, perhaps due to the overlapping mechanism of action
(Krauss et al., 2020). A rare severe side effect of Drug Rash with
Eosinophilia and Systemic Symptoms (DRESS) was observed in one
of the phase 2 trials (Krauss et al., 2020) but in studies using a slower
dose titration no further cases were identified (Krauss et al., 2020;
Lattanzi et al., 2020).

4.2 Darigabat

Darigabat is an imidazopyridine-related molecule that was
developed to act selectively upon GABAA receptors containing
α2,α3 and α5 subunits (Owen et al., 2019). Darigabat is a positive
allosteric modulator and binds the benzodiazepine site of α1, α2, α3,
and α5 subunit containing GABAA receptors, but its efficacy at α1-
containing receptors is weak which may reduce unwanted side
effects such as sedation and abuse potential whilst maintaining
antiseizure and anti-anxiolytic properties which are be mediated
primarily through α2 and α3-containing receptors (Engin et al.,
2018; Nickolls et al., 2018; Owen et al., 2019; Cerne et al., 2022).

Darigabat has shown antiseizure efficacy in a range of preclinical
epilepsy models in animals, including the kainic acid model of
mesial temporal lobe epilepsy where it produced a statistically
significant reduction in hippocampal paroxysmal discharges with
comparable efficacy to diazepam (Owen et al., 2019; Bialer et al.,
2020; Gurrell et al., 2022). Phase 1 clinical trials demonstrated safety
and tolerance with only mild somnolence and dizziness reported in
subjects (Nickolls et al., 2018; Bialer et al., 2022). In a small study of
patients with photosensitive epilepsy, darigabat abolished the
photoparoxysmal response in 6 of 7 patients following single
doses between 17.5mg and 52 mg (Gurrell et al., 2019). There
was no difference in suppression of photoparoxysmal responses
between lower and higher doses of darigabat and efficacy was similar
to that of lorazepam (Gurrell et al., 2019). Currently a large
multicentred Phase 2 trial is underway (NCT04244175) to assess
the safety and efficacy of darigabat as adjunctive therapy for
refractory focal and generalised seizures, the results of which are
unpublished (Cerne et al., 2022; Gurrell et al., 2022).

4.3 Padsenovil

Padsenovil was developed out of a rational drug discovery
program to modulate both synaptic vesicle protein 2 (SV2) and
GABAA receptors, thereby exerting an effect on both pre-synaptic
and post-synaptic targets (Niespodziany et al., 2020). At the GABAA

receptor, padsevonil binds at the benzodiazepine site and acts as a
positive allosteric modulator and partial agonist which may reduce
complications associated with full agonists (Leclercq et al., 2020). In
vitro studies demonstrated greatest potency on α1 and α5 compared
to α2 and α3 subunit containing receptors (Wood et al., 2020).
Padsevonil showed promising results in several acute and chronic
seizure models, including greater protection from seizures in the
chronic 6 Hz seizure model compared to diazepam and the existing
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SV2 modulators levetiracetam and brivaracetam, and in a Phase
2 proof-of-concept trial showed significant reductions in weekly
seizure frequency for treatment-resistant focal epilepsy. However, a
randomised dose-finding trial and Phase 3 trial failed to observe a
significant reduction in seizure frequency at any dose compared to
placebo leading to discontinuation of drug development
(Rademacher et al., 2022).

4.4 Alprazolam

Alprazolam is a short-acting and non-selective
1,4 benzodiazepine with an established role in the treatment of
anxiety disorders. Despite animal studies showing potent antiseizure
effects comparable to other benzodiazepines, alprazolam has
historically not been used for the management of acute seizures
(Jenck et al., 1992; De Sarro et al., 1996) and is unsuitable for the
treatment of chronic epilepsy due to tolerance and drug dependence.
However, alprazolam is being repurposed as an acute rescue
medication for seizures in the outpatient setting via inhalation
with the Staccato device as it achieves rapid onset of action
combined with a relatively convenient administration route
(French et al., 2019). In a proof-of-concept study, inhaled
alprazolam supressed the photoparaxysmal response on
electroencephalography within minutes and maintained its effects
for up to 4 hours (French et al., 2019), and in a randomised trial of
hospital inpatients Staccato alprazolam led to higher rates of seizure
termination within 2 minutes compared to placebo (French et al.,
2023). A phase 3 trial to test efficacy in the outpatient setting is now
recruiting.

4.5 Stiripentol

Stiripentol is a structurally unique antiseizure medication
that has been shown to modulate GABAA receptors in addition to
several other secondary mechanisms, including inhibition of
lactate dehydrogenase (LDH) (Nickels and Wirrell, 2017).
Stiripentol acts independently of the benzodiazepine binding
site, promotes increased GABAA receptor open time duration
and its effects are blocked by phenobarbital, which together
suggest a barbiturate-like effect (Quilichini et al., 2006).
Stiripentol acts upon both synaptic and extrasynaptic GABAA

receptor subtypes and has a propensity for α3 subunit-containing
receptors which are expressed during embryonic and early post-
natal development (Nickels and Wirrell, 2017). It enhances the
delay constant of inhibitory post-synaptic potentials and
augments tonic inhibition via activation of δ-containing
receptors (Nickels and Wirrell, 2017). Stiripentol undergoes
extensive hepatic metabolism and drug levels are reduced with
co-administration of enzyme-inducing antiseizure medications
such as phenytoin, carbamazepine and phenobarbital.

Stiripentol has efficacy in paediatric forms of epilepsy, in
particular the severe developmental and epileptic encephalopathy
Dravet Syndrome. Following promising results in an open-label
adjunctive-therapy study, two placebo-controlled studies
demonstrated impressive responder rates (over 50% reduction in
seizure frequency) of 71% and 67% compared to placebo, and

although the study sizes were small a significant proportion of
participants achieved seizure freedom. In an open-label extension
responder rates were maintained at over 50% (Chiron et al., 2000)
although an important consideration is that clobazam, which also
has benefit in Dravet syndrome, can increase stiripentol levels by
inhibiting hepatic metabolism. Stirpentol also appears to carry
benefit as adjunct therapy in childhood focal epilepsies and
several case studies suggest a potential role as rescue therapy in
refractory status epilepticus which may relate to modulation of
extra-synaptic GABAA receptors (Nickels and Wirrell, 2017).

4.6 Neurosteroids

Neurosteroids such as allopregnanolone,
allotetrahydrodeoxycorticosterone (THDOC) and androstanediol
are endogenously produced metabolites of the steroid hormones
progesterone and corticosterone (MacKenzie and Maguire, 2013).
Neurosteroids are synthesised within the brain and fluctuations in
their concentration are linked to physiological states such as the
menstrual cycle, the postpartum period and increased stress states
(Purdy et al., 1991; MacKenzie and Maguire, 2013; Reddy and Estes,
2016; Chen et al., 2019). There is also evidence that they play a
pivotal role in several neuropsychiatric disorders including anxiety,
pre-menstrual dysphoric disorder, anxiety (MacKenzie and
Maguire, 2013; Sikes-Keilp and Rubinow, 2023) and epilepsy
(Reddy, 2013).

Neurosteroids are potent GABAA receptor positive allosteric
modulators and bind within the transmembrane domain of α and β
subunits to activate both synaptic and extrasynaptic receptors
(Hosie et al., 2007; Chen et al., 2019). δ-subunit containing
receptors that mediate tonic inhibition are particularly sensitive
to neurosteroids, and this mechanism of action has attracted
significant interest for a potential role in refractory epilepsy and
status epilepticus as there is evidence for synaptic receptor
downregulation in these conditions (Belelli et al., 2002; Belelli
et al., 2009; MacKenzie and Maguire, 2013).

Ganaxolone is an orally administered synthetic analogue of
allopregnanolone and has been shown to supress seizure activity
in numerous acute and chronic animal models (Carter et al., 1997;
Kaminski et al., 2003; Reddy and Rogawski, 2009; 2010; Saporito
et al., 2019). In humans, Ganaxolone has most robust evidence for
the management of seizures associated with CDKL5 deficiency, a
rare DEE associated with early-onset seizures and developmental
impairment, and for which ganaxolone is approved in the US.
Following encouraging results in a small open-label study,
adjunctive ganaxolone was found to produce a 30.7% reduction
in major seizures compared to 6.9% for placebo in a randomised
placebo-controlled trial (Knight et al., 2022). Although ganaxolone
has also been trialled in refractory adult focal epilepsy the observed
benefits have been modest, and a phase 3 study did not show a
significant reduction in seizure frequency compared to placebo
(Meng et al., 2023). In a small dose-finding study for
management of refractory status epilepticus, administration of
intravenous ganaxolone as third-line therapy showed encouraging
results with no subjects requiring intravenous anaesthesia within
24 h after treatment (Vaitkevicius et al., 2022). Although over 50% of
cases comprised non-convulsive status epilepticus, a phase
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TABLE 1 Summary of established and emerging GABAA active medications used in epilepsy.

Drug Action on
GABAA

receptors

Route of
administration

Pharmacokinetics Clinical use/
Trial

Notable
adverse effects

and drug
interactions

References

Phenobarbital Synaptic and
extrasynaptic
GABAA receptor
PAM via non-
benzodiazepine
binding site.
GABAA receptor
agonist at higher
doses

Intravenous Half-life 50–150 h Refractory status
epilepticus

Somnolence, lethargy Brodie and Kwan
(2012), Nolan
et al. (2013)

Oral (primidone
metabolised to
phenobarbital)

Elimination via hepatic
metabolism (predominantly
CYP2C9) and renal
excretion (up to 25%)

Focal and generalised
epilepsy in resource
poor settings

Reduced plasma levels
of drugs metabolised
by CYP450 system

1,4 benzodiazepines
(midazolam,
diazepam, lorazepam,
Clonazepam)

Synaptic GABAA

receptor PAM.
Intravenous,
intramuscular
(midazolam), oral,
buccal (midazolam),
intranasal (midazolam,
lorazepam), rectal
(diazepam)

Half-life 1.5–3 h
(midazolam), 8–25 h
(lorazepam), 24–48 h
(diazepam). Diazepam
converted to active
metabolite
N-Desmethyldiazepam.
Eliminated via hepatic
metabolism

Rescue medication in
prolonged
generalised and focal
seizures, status
epilepticus.
Clonazepam: add-on
drug for maintenance
of focal and
generalised epilepsies

Sedation, dizziness,
ataxia, tolerance and
drug dependence

Kienitz et al.
(2022)

Clobazam
(1,5 benzodiazepine)

Synaptic GABAA

receptor PAM via
benzodiazepine
binding site.
Preferential
selectivity for
α2 subunit
containing
receptors

Oral Converted to active
metabolite
N-desmethylclobazam via
CYP450 system. Half-life
10–30 h (clobazam),
36–48 h
(N-desmethylclobazam).
Elimination via hepatic
metabolism

Add-on therapy for
refractory focal and
generalised
epilepsies. Lennox-
Gastaut Syndrome

Sedation, dizziness,
ataxia, tolerance and
drug dependence
(thought less
compared to
1,4 benzodiazepines)

Conry et al.
(2014)

Vigabatrin Irreversible
GABA-
transaminase
inhibitor

Oral Half-life 5–7 h. Eliminated
via renal excretion

Infantile epileptic
spasms. Add-on
therapy for refractory
focal epilepsy

Peripheral visual field
deficits (20%–25%)

Ben-Menachem
(2011)

Appleton and
Montiel-Viesca
(1993), Appleton
et al. (1999)

Tiagabine Inhibition of
GABA re-uptake
via preferential
GAT1 blockade

Oral Half-life 5–9 h. Eliminated
via hepatic metabolism
(predominantly CYP3A4)

Add-on therapy for
refractory focal
epilepsy

Dizziness, fatigue,
tremor. Possible
seizure exacerbation in
idiopathic generalized
epilepsies

Richens et al.
(1995)

Valproate Enhanced GABA
synthesis via
increased GAD
activity. Reduced
GABA breakdown
via GABA
transaminase
blockade

Oral, Intravenous Half-life 9–18 h. Eliminated
via hepatic metabolism

First line therapy for
idiopathic
generalised
epilepsies. Also
effective for focal
epilepsy. Status
epilepticus

Tremor, sedation.
High teratogenic risk.
Increased plasma
levels of antiseizure
medications
undergoing hepatic
metabolism (e.g.,
lamotrigine,
phenobarbital,
carbamazepine)

Loscher, 1999
#235; Luder et al.,
1990 #317}

Cenobomate GABAA receptor
PAM, preferential
activity at
extrasynaptic
receptors

Oral Half-life 50–60 h Refractory focal
epilepsy

Somnolence, dizziness Sharma et al.
(2020)

Stiripentol Synaptic and
extrasynaptic
GABAA receptor
PAM, preferential
activity for
α3 subunit
containing
receptors

Oral Half-life 4.5–13 h.
Eliminated via hepatic
metabolism

Dravet Syndrome.
Childhood focal
epilepsies

Increased plasma
levels of antiseizure
medications
metabolised via
CYP450 system (e.g.,
clobazam,
phenobarbital and
phenytoin)

Nickels and
Wirrell (2017)

(Continued on following page)
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TABLE 1 (Continued) Summary of established and emerging GABAA active medications used in epilepsy.

Drug Action on
GABAA

receptors

Route of
administration

Pharmacokinetics Clinical use/
Trial

Notable
adverse effects

and drug
interactions

References

Darigabat GABAA receptor
PAM with
preferential
activity at α2,
α3 and α5 subunit
containing
receptors

Oral Half-life ~11 h. Eliminated
via hepatic metabolism

Undergoing Phase II
testing for refractory
generalised and focal
seizures Efficacy in
photosensitive
epilsepy (small trial)

Somnolence, fatigue,
headache

Engin et al.
(2018), Owen
et al. (2019),
Cerne et al. (2022)

Padsenovil GABAA receptor
partial agonist and
PAM with
preferential
activity at α1 and
α5 subunit
containing
receptors.
SV2 modulation

Oral Half-life 6–7 h. Eliminated
via hepatic metabolism
(CYP450 system)

No reduction in
seizure frequency for
refractory focal
epilepsy in phase
3 trial

Somnolence,
dizziness, headache

Rademacher et al.
(2022)

Alprazolam
(1,4 benzodiazepine)

Synaptic GABAA

receptor PAM.
Intranasal via Staccato
device

Half-life 9–16 h. Eliminated
via hepatic metabolism
(CYP3A4)

Undergoing phase
3 testing as rescue
medication in the
outpatient setting

Cough, dysgeusia, oral
dysesthesia, sedation
somnolence

French et al.
(2019), French
et al. (2023)

Ganaxolone
(neurosteroid)

Synaptic and
extrasynaptic
GABAA receptor
PAM, preferential
activity at δ
subunits
containing
receptors

Oral Half-life 37–70 h.
Eliminated predominantly
via hepatic metabolism
(CYP3A4)

Epilepsy associated
with
CDKL5 deficiency.
Undergoing phase
3 testing in refractory
status epilepticus

Somnolence,
dizziness, fatigue

Knight et al.
(2022)

ETX155
(neurosteroid)

Synaptic and
extrasynaptic
GABAA

receptor PAM

Oral Half-life ~24 h Undergoing phase 1b
testing in refractory
focal epilepsy

Somnolence, fatigue,
dizziness, headache

Perucca et al.
(2023b)

ENX 101 GABAA receptor
PAM selective for
α2, α3 and
α5 subunit
containing
receptors

Oral Half-life ~20 h Undergoing phase
2 testing in refractory
focal epilepsy

Somnolence Jankovic et al.
(2021)

KRM-II-81 GABAA receptor
PAM selective for
α2 and α3 subunit
containing
receptors

Oral (presumed) In vivo data not available Efficacy in pre-
clinical animal
models only

Data not available Witkin et al.
(2022)

STK-001 Antisense
oligonucleotide
designed to
upregulate SCN1A
and expression of
NaV1.1 and
restore function of
GABAergic
interneurons

Intrathecal injection Data not available Undergoing phase
2 testing in Dravet
Syndrome
MONARCH trial
ADMIRAL trial

Vomiting, irritability,
raised cerebrospinal
fluid protein

Street et al. (2023)

ETX101 Upregulation of
SCN1A and
increased
GABAergic
interneuron
function via AAV-
vector based gene
therapy

Intra-
cerebroventricular
injection

Human data not available Phase 1 and 2 trials
planned for Dravet
Syndrome Inreased
SCN1A mRNA
transcripts in
GABAergic
internueorns in
Scn1a +/− mice and
primates

Human data not
available

Tanenhaus et al.
(2022)

Abbreviations: PAM, positive allosteric modulator; GAD, glutamic acid decarboxylase; IV, intravenous; SV2, synaptic vesical protein 2.
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3 randomised placebo-controlled trial is underway in light of these
findings. Beyond ganaxolone, ETX155 is another candidate
neurosteroid with efficacy for suppressing seizures in rodent
models of epilepsy, and has recently commenced Phase 1 trials in
photosensitive epilepsy (Perucca et al., 2023a).

4.7 Other subtype selective GABAA receptor
modulators and exploratory therapies

The prospect of maximizing therapeutic effects associated
with GABAA receptor modulation whilst minimizing drug
dependence and sedation has led to the development of several
subtype-selective compounds with promising pre-clinical
characteristics, some of which are undergoing clinical
development. ENX 101 is a α2, α3 and α5 subtype selective
positive allosteric modulator that was well-tolerated by subjects
in a Phase 1 study and is now undergoing Phase 2 testing for
refractory focal epilepsy (Castellano et al., 2020; Jankovic et al.,
2021; Perucca et al., 2023b). KRM-II-81 is an imidazodiazepine
that is also highly selective for α2 and α3 subunit containing
GABAA receptors. KRM-II-81 has shown efficacy that is
comparable or superior to diazepam across both acute
chemical and electrical seizure models, and chronic pharmaco-
resistant rodent models, but has not yet undergone trials in
humans (Witkin et al., 2022).

Beyond improved receptor selectivity, gene therapy looms as an
important component of epilepsy therapy in the future, and several
approaches in development are designed to augment GABAA

receptor transmission. ETX101 is a recombinant adeno-associated
viral (AAV) vector containing a GABA regulatory element designed
to upregulate SCN1A (encoding the voltage-gated sodium channel
NaV1.1) and restore interneuron function in patients with
Dravet Syndrome.

Similar to ETX101, STK-001 is an antisense oligonucleotide
designed to enhance the generation of wild-type SCN1A mRNA
transcripts to restore inhibitory function in Dravet Syndrome (Bialer
et al., 2020; Wengert et al., 2022). In mouse models, intraventricular
administration of STK001 was associated with restoration of
parvalbumin-positive interneuron firing, reduced seizures, and
prolonged survival (Han et al., 2020). Following promising findings
in Phase 1/2a studies in children with Dravet Syndrome, an open label
extension is underway with interim results demonstrating reductions in
seizure frequency and improvements in cognition and behaviour.

5 Conclusion

Modulation of the GABAA receptor has been a mainstay of the
antiseizure pharmacological armamentarium for over a century, and
older drugs such as barbiturates and classical benzodiazepines still
retain their place in clinical practice in both resource-scarce settings
and for the management of status epilepticus. The coming years will
see the introduction of novel agents with subunit specificity and gene
therapies (Table 1) that act to restore GABAA receptor transmission to
correct inhibitory deficits. These developments build upon advances
in our understanding of the complexities of the GABAergic system,
and represent important steps toward precision epilepsy treatments
that may improve efficacy whilst mitigating the adverse effects often
associated with older drugs.
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