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Ovarian cancer, often labeled a “silent killer,” remains one of the most compelling
and challenging areas of cancer research. In 2019 alone, a staggering
222,240 new cases of ovarian cancer were reported, with nearly 14,170 lives
tragically lost to this relentless disease. The absence of effective diagnostic
methods, increased resistance to chemotherapy, and the heterogeneous
nature of ovarian cancer collectively contribute to the unfavorable prognosis
observed in the majority of cases. Thus, there is a pressing need to explore
therapeutic interventions that offer superior efficacy and safety, thereby
enhancing the survival prospects for ovarian cancer patients. Recognizing this
potential, our research synergizes bioinformatics with a network pharmacology
approach to investigate the underlying molecular interactions of Saudi Arabian
flora (Onopordum heteracanthum, Acacia ehrenbergiana, Osteospermum
vaillantii, Cyperus rotundus, Carissa carandas, Carissa spinarum, and Camellia
sinensis) in ovarian cancer treatment. At first, phytoconstituents of indigenous
flora and their associated gene targets, particularly those pertinent to ovarian
cancer, were obtained from open-access databases. Later, the shared targets of
plants and diseases were compared to identify common targets. A
protein–protein interaction (PPI) network of predicted targets was then
constructed for the identification of key genes having the highest degree of
connectivity among networks. Following that, a compound–target
protein–pathway network was constructed, which uncovered that, namely,
hispidulin, stigmasterol, ascorbic acid, octopamine, cyperene, kaempferol,
pungenin, citric acid, d-tartaric acid, beta-sitosterol, (−)-epicatechin gallate,
and (+)-catechin demonstrably influence cell proliferation and growth by
impacting the AKT1 and VEGFA proteins. Molecular docking, complemented
by a 20-ns molecular dynamic (MD) simulation, was used, and the binding affinity
of the compound was further validated. Molecular docking, complemented by a
20-ns MD simulation, confirmed the binding affinity of these compounds.
Specifically, for AKT1, ascorbic acid showed a docking score of −11.1227 kcal/
mol, interactingwith residues Ser A:240, Leu A:239, Arg A:243, Arg C:2, and Glu A:
341. For VEGFA, hispidulin exhibited a docking score of −17.3714 kcal/mol,
interacting with Asn A:158, Val A:190, Gln B:160, Ser A:179, and Ser B:176. To
sum up, both a theoretical and empirical framework were established by this
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study, directing more comprehensive research and laying out a roadmap for the
potential utilization of active compounds in the formulation of anti-cancer
treatments.
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molecular docking, MD simulation

1 Introduction

Ovarian cancer is a prevalent malignancy among females
worldwide and is ranked eighth in terms of incidence (Kamilova
and Valijonova, 2023). Ovarian cancer ranks as the seventh leading
cause of cancer-linked mortalities, exerting a profound impact on
socioeconomic and community health at a global level (Torre et al.,
2017). Among gynecological malignancies, ovarian cancer exhibits
the highest mortality rate in developed countries across the world
(Raab et al., 2020). Additionally, ovarian cancer accounted for
approximately 3% of all cancers occurring in women. Currently,
the lifetime ovarian cancer risk is approximately 1 in 72 (Yang et al.,
2017; Lisio et al., 2019). Studies have reported that the pathogenesis
of ovarian cancer is affected by various endocrine factors such as
pituitary gonadotropins, namely, luteinizing hormone and follicle-
stimulating hormone, in addition to progesterone, androgens,
insulin-like growth factor 1, and estrogens (Choi et al., 2007; Li
et al., 2021). Moreover, the receptor expression of progesterone,
estrogen, and androgen receptors has been proposed as a possible
determinant for predicting the prognosis and chemosensitivity of
ovarian cancer patients toward platinum agents (Li et al., 2021).
Despite recent advancements inmedical science, individuals affected
by ovarian cancer continue to experience high morbidity rates, and
currently available treatment options do not provide satisfactory
outcomes. Consequently, higher death rates and the limited
availability of effective treatment strategies have garnered
significant attention from researchers worldwide. Given the grave
statistics, with an estimated 314,000 new cases of ovarian cancer and
207,000 deaths annually worldwide, ovarian cancer stands as the
most lethal gynecological malignancy (Sideris et al., 2024).
Alarmingly, in Australia, the incidence of ovarian cancer cases
and deaths is projected to increase by 42% and 55%, respectively,
by the year 2040, underscoring an urgent need for effective
therapeutic strategies. Therefore, researchers are increasingly
concentrating on pharmacological interventions that incorporate
natural agents. These agents present a promising avenue for ovarian
cancer treatment, offering the potential to overcome limitations
associated with current therapies, such as drug resistance and
adverse side effects. Phytochemicals, with their diverse bioactive
compounds, offer a rich repository for the identification of novel
anticancer molecules with minimal side effects compared to
conventional chemotherapy agents. The integration of
bioinformatics tools further enhances this process by enabling the
rapid and precise analysis of vast biochemical datasets, facilitating
the identification of potential lead compounds (Sharma et al., 2022;
Swain et al., 2023). These computational methods allow for the
prediction of compound–target interactions, bioactivity, and the
pharmacokinetic properties of phytochemicals, streamlining the
drug development process. Notably, bioinformatics applications

in network pharmacology and molecular docking studies provide
invaluable insights into the mechanistic pathways of cancer, helping
pinpoint specific targets for therapeutic intervention (Noor et al.,
2023). By leveraging the synergy between phytochemical potential
and advanced bioinformatic techniques, researchers can
significantly expedite the discovery and development of effective,
targeted treatments for ovarian cancer, setting the stage for the
establishment of novel lead molecules with optimized
therapeutic profiles.

Although the Arabian Peninsula is known for its arid climate
and limited biodiversity, the Kingdom of Saudi Arabia boasts a
diverse range of flora, encompassing a variety of trees, herbs, and
shrubs, including many edible and medicinal plants (Rahman et al.,
2004). The extensive land area of Saudi Arabia comprises diverse
geographical landscapes and climates, resulting in a wider range of
plant distribution throughout the country (Aati et al., 2019). The
indigenous uses and pharmacological activity of these plants in
Saudi Arabia demonstrate the strong relationship between local
remedies, diet, health, and traditional healing practices unique to
their cultures. Previous studies provide shreds of evidence that
indigenous plants in Saudi Arabia, including Onopordum
heteracanthum (Gouda et al., 2014), Acacia ehrenbergiana
(Makeen et al., 2020), Osteospermum vaillantii (Gouda et al.,
2014), Cyperus rotundus (AlQathama et al., 2022), Carissa
carandas (Alshehri, 2020), Carissa spinarum (AlQathama et al.,
2022), and Camellia sinensis (Dou et al., 2021), have anti-cancer
properties for ovarian cancer. Plants found in these regions have
been used by local inhabitants for treating a wide range of ailments.
However, the mechanism by which these plants exert their
therapeutic effects remains poorly understood.

Recognizing the potential of active compounds, Hopkins (2007)
introduced an innovative in silico approach known as “network
pharmacology” that recognizes the potential of active compounds
based on network perspectives. Network pharmacology has emerged
as a valuable tool in the drug-designing process, aiding the
resurgence of traditional knowledge (Noor et al., 2022a). This
method serves as a standard for the preliminary identification of
small molecules and the discovery of new treatment options, thereby
enhancing our understanding of the disease pathophysiology
(Batool et al., 2022; Noor et al., 2023). As a result, network
pharmacology had a profound impact on the revival of herbal
medicines, leading to a major transformation in the process of
pharmaceutical discovery. In summary, comprehending the
intricate landscape of network pharmacology is crucial to
successfully identifying candidate drugs (Noor et al., 2022b).

By merging network pharmacology with bioinformatics, an in-
depth examination of the therapeutic effects of local Saudi plants on
ovarian cancer was explored. This analysis was further validated
using docking methodologies to predict binding affinities among
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phytoconstituents and target proteins. Later, molecular dynamic
(MD) simulations shed light on intricate conformational shifts and
the potential interactions within molecular complexes. Notably, this
research offered groundbreaking revelations about the therapeutic
capacities of native flora in tackling ovarian cancer, serving as a
beacon for subsequent explorations in the domain.

2 Materials and methods

2.1 Screening of the plant-
derived compounds

Screening of plant-related small molecules is considered an
initial step in understanding the multi-target effect of medicinal
plants against diseases. In the current study, database and literature
search were carried out for obtaining the main active constituents of
plants. In the literature and databases, the search was confined to “O.
heteracanthum,” “A. ehrenbergiana,” “O. vaillantii,” “C. rotundus,”
“C. carandas,” “C. spinarum,” and “C. sinensis.” PubChem (https://
pubchem.ncbi.nlm.nih.gov/) and Google Scholar were considered
for the extensive literature survey, while the phytochemical
databases, including KNApSAcK (http://www.knapsackfamily.
com/KNApSAcK/) (Shinbo et al., 2006) and IMPPAT (https://cb.
imsc.res.in/imppat/home) (Mohanraj et al., 2018), were searched for
obtaining the active compounds of selected plants. After retrieval,
the drug-like potential of active compounds was analyzed by
predicting their oral bioavailability (OB) and drug-likeness (DL)
values. In pharmacology, OB denotes the fraction of small molecules
that successfully enter the systemic circulation after an oral dose,
thereby enabling them to exert their desired pharmacological effects
(Pathak and Raghuvanshi, 2015). A minimum OB of 30% is
generally employed as a benchmark criterion for screening
potential drug candidates since it indicates that a considerable
portion of the oral usage of small molecules is capable of being
absorbed and reaching systemic circulation. Conversely, small
molecules with OB < 30% are likely to exhibit limited efficacy
due to poor absorption. Thus, a higher OB value is positively
correlated with drug effectiveness and is a key determinant of
drug development and optimization. In a similar vein, DL
analysis is employed to assess the potential of a molecule to serve
as an oral drug by evaluating its bioavailability using qualitative
measures (Jia et al., 2020). Following that, the DL and OB values of
compounds were obtained using Molsoft (https://molsoft.com/
mprop/) (James et al., 2015) and SwissADME software (https://
www.swissadme.ch/) (Daina et al., 2017), and only those
compounds having OB and DL values greater than 30% and 18%
were considered the finalist compounds. Furthermore, the
molecular weight and two-dimensional (2D) structure of
predicted phytoconstituents were collected from PubChem (Kim
et al., 2019) and Molinspiration (https://molinspiration.com/)
(Molinspiration, 2011).

2.2 ADMET profiling

Although DL and OB are key elements in evaluating the drug-like
potential of a compound, it is important to note that these parameters

do not serve as the sole determinants of a compound’s effectiveness for
further development. ADMET properties, which encompass
absorption, distribution, metabolism, excretion, and toxicity, are
equally important factors that must be evaluated to assess a
compound’s safety and efficacy (Rehman et al., 2022). The
evaluation of ADMET properties is conducted during the initial
phases of drug development, which substantially plays an essential
role in predicting the potential safety, effectiveness, and
pharmacokinetics of a drug. To this end, the SwissADME server
(https://www.swissadme.ch/) (Daina et al., 2017) and the ProTox II
tool (http://tox.charite.de/protox_II) (Banerjee et al., 2018) were used to
assess the ADMET properties of small biologically active molecules.
Small molecules demonstrating excellent absorption, favorable
solubility properties, and low toxicity were selected for further analysis.

2.3 Prediction of known targets of
active compounds

To determine the integrative efficacy of the compounds derived
from local plants in Saudi Arabia, we used two different platforms,
namely, STITCH (http://stitch.embl.de/) (Kuhn et al., 2007) and
SwissTargetPrediction (Gfeller et al., 2014) databases, with a species
limitation of “Homo sapiens.” Furthermore, the SMILES
representation of the chosen ingredients was used as input for
the SwissTargetPrediction (https://www.swisstargetprediction.ch/)
platform. Specifically, only proteins with a probability > 0.7 were
considered putative targets of Saudi plants. For the STITCH
database, targets exhibiting a combined score >0.7 were
considered the significant targets of particular compounds.

2.4 Identification of disease-related targets
through microarray data analysis

Microarray data analysis is a technique used for the
identification of genes that are differentially expressed among
different conditions (Noor et al., 2021; Sufyan et al., 2021). This
involves comparing the gene expression levels of samples from
disease and control groups and calculating statistical measures to
determine which genes are significantly differentially expressed. In
this study, gene expression data were acquired from the NCBI–GEO
database (https://www.ncbi.nlm.nih.gov/) (Barrett et al., 2005). The
search term “Ovarian Cancer” was used to retrieve four microarray
datasets, namely, GSE54388, GSE69428, GSE36668, and GSE40595.
The selection of datasets was based on their inclusion of both
affected and normal ovaries; the dataset must have >3 samples.
After data selection, the gene expression data were processed
through the limma package of R (Ritchie et al., 2015) for the
screening of differentially expressed genes (DEGs) as disease-
specific targets for ovarian cancer.

2.5 Construction of the
compound–target network

Upon identifying putative targets associated with both ovarian
cancer and local plants, a Venn diagram was created to determine
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overlapping proteins. Subsequently, these identified genes were
regarded as potential targets of indigenous Saudi Arabian plants,
holding promise as potential biomarkers for intercepting the
pathophysiological processes associated with ovarian cancer.
Additionally, Cytoscape version 3.8 (https://cytoscape.org/) (Smoot
et al., 2011) was used to construct an active ingredient–target network
based on these overlapping genes. Within the compound–target
network, the nodes indicated the small molecules along with their
corresponding targets, while gray dotted lines depicted the possible
interactions among these nodes. Finally, the NetworkAnalyzer plugin
was used to evaluate the connectivity of targets exhibited by the
chemical constituents among networks.

2.6 Gene Ontology and KEGG
enrichment analyses

After identifying the common target, our study categorizes these
targets based on their Gene Ontology (GO). GO covers three aspects
of biology: cellular components (CCs), molecular functions (MFs),
and biological processes (BPs). The BP term describes the protein’s
role in various biological activities, and the CC term signifies the
precise intracellular localization of a protein. Concurrently, the MF
records the specific molecular tasks and interactions in which the
protein or gene is involved. To achieve this, the current study used
the DAVID database (https://david.ncifcrf.gov/tools.jsp) (Dennis
et al., 2003) for GO and Kyoto Encyclopedia for Genes and
Genomes (KEGG) pathway analyses. However, to filter-out those
with significant relevance, a statistical cutoff of p-value<0.05 was
implemented.

2.7 Construction and analysis of the
protein–protein interaction network

The common targets were then analyzed using the STRING
database (https://string-db.org/) (von Mering et al., 2003) to produce
a protein–protein interaction (PPI) network. PPIs exhibit high
specificity, adaptability, and versatility and are, therefore, of
considerable significance. PPI network common genes were then
analyzed using Cytoscape version 3.8 (https://cytoscape.org/) (Smoot
et al., 2011) to identify hub genes. Hub genes exhibit a high number of
interactions with other proteins and are considered essential elements
of the network as they contribute to its integrity and stability.
Furthermore, central or ‘hub’ genes hold significance in a range of
disease-linked pathways and biological processes, suggesting their
pivotal role in diverse cellular functions. In the current study, we
examined the topology of the PPI network to identify ‘hub’ genes.
Metrics such as degree, closeness, and betweenness centrality can
facilitate this process. Specifically, we employed the degree methods
available in cytoHubba to discern these hub genes.

2.8 Compound–target–pathway network
construction

The effects of Saudi Arabian flora on ovarian cancer were
investigated by constructing compound–target and target

protein–pathway networks using Cytoscape version 3.8 (https://
cytoscape.org/) (Smoot et al., 2011). By merging these networks,
a final compound–target–pathway network was subsequently
established. The networks comprise various nodes and edges,
where nodes represent pathways, compounds, and targets
relevant to the disease, while edges indicate the interactions
among these nodes. The compound–target–pathway network
offers valuable insights regarding the synergistic activity of
phytoconstituents in ovarian cancer treatment.

2.9 Molecular docking analysis

Using advanced molecular docking methodologies, intricate
interactions between small molecules and anticipated protein
structures were analyzed. This rigorous analytical procedure
illuminated potential pharmacological combinations,
suggesting potential synergistic responses for precision
therapeutics. Initially, the protein structures were obtained
from the RCSB PDB database, which were then carefully
prepared for docking. Missing atoms, residues, and side chains
were addressed using the protein preparation tools within
Chimera, ensuring a complete and accurate representation of
the protein’s conformation. Water molecules and non-essential
ions were removed, and hydrogen atoms were added to the
protein structures to reflect physiological pH conditions. After
this refinement, the proteins were subjected to an energy
minimization process using the steepest descent and conjugate
gradient methods, terminating at an energy convergence
threshold of 0.01 kcal/mol to attain stable conformations.
Subsequent docking studies were conducted using AutoDock
Vina 1.1.2 implemented within the PyRx 0.8 interface (https://
sourceforge.net/projects/pyrx/) (Dallakyan and Olson, 2015).
The SMILES strings for the phytoconstituents were sourced
from the PubChem database and converted to 3D structures
using Open Babel, which is integrated into the PyRx platform. A
comprehensive energy minimization was configured for a total of
2000 steps to ensure the reliability of the ligand conformations
prior to the docking simulations. Later, the active site residues of
the target proteins were uncovered with the assistance of the
CASTp tool (http://sts.bioe.uic.edu/castp/index.html?201l)
(Dundas et al., 2006). PyRx 0.8 was employed for target
docking, which facilitated the calculation of binding affinities
between the small molecules and target proteins. In our study,
docking scores were used as indicators of binding affinity between
the identified phytochemicals and target proteins. A docking
score of less than −5.00 kcal/mol was considered to indicate
strong binding affinity, while a score of less than −7.00 kcal/
mol was interpreted as signifying very strong binding affinity.
These thresholds were based on established computational
chemistry conventions and were used to prioritize compounds
for further analysis. The docked complexes were then visualized
employing Discovery Studio (https://discover.3ds.com/
discovery-studio-visualizer-download) (Biovia, 2017), PyMOL
(https://pymol.org/2/) (Seeliger and de Groot, 2010), and
ChimeraX (https://www.cgl.ucsf.edu/chimerax/) (Pettersen
et al., 2021) programs for a better understanding of the
binding interactions.
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TABLE 1 Pharmacological and molecular properties of phytochemicals.

Plant source Phytochemical Oral
bioavailability> 0.30

Drug-
likeness>0.18

Molecular weight
(g/mol)

PubChem
ID

Onopordum
heteracanthum

Hispidulin 0.55 0.46 300.26 5281628

Apigenin 0.55 0.39 270.24 5280443

Luteolin 0.55 0.38 286.24 5280445

Beta-sitosterol 0.55 0.78 414.7 222284

Acacia ehrenbergiana Stigmasterol 0.55 0.62 412.7 5280794

Ascorbic acid 0.56 0.74 176.12 54670067

Osteospermum
vaillantii

Octopamine 0.55 0.54 153.18 4,581

3,4-Dihydroxybenzoic
acid

0.56 0.23 154.12 72

Cyperene 0.55 0.18 204.35 12308843

Rotundine A 0.55 0.37 231.33 10728239

Rotundine B 0.55 0.75 233.35 21603505

Cyperus rotundus Orientin 0.55 0.59 448.4 5281675

Quercetin 0.55 0.52 302.23 5280343

Kaempferol 0.55 0.5 286.24 5280863

Pungenin 0.55 0.54 314.29 12314759

Rotundine B 0.55 0.75 233.35 21603505

Cyperene 0.55 0.18 204.35 12308843

Carissa carandas Carissic acid 0.55 0.66 456.7 73242193

Alpha1-sitosterol 0.55 0.47 426.7 9548595

Citric acid 0.56 0.52 192.12 311

d-Tartaric acid 0.56 0.59 150.09 439655

Ascorbic acid 0.56 0.74 176.12 54670067

Beta-ionone 0.55 0.33 192.3 638014

Anethole 0.55 0.29 148.2 637563

Ursolic acid 0.85 0.66 456.7 64945

Beta-sitosterol 0.55 0.78 414.7 222284

Carissa spinarum Carissic acid 0.85 0.66 456.7 73242193

Kaempferol 0.55 0.5 286.24 5280863

Quercetin 0.55 0.52 302.23 5280343

Digitoxigenin 0.55 0.93 374.5 4369270

Ursolic acid 0.85 0.66 456.7 64945

Beta-sitosterol 0.55 0.78 414.7 222284

Camellia sinensis (−)-Epicatechin gallate 0.55 0.93 442.4 107905

(+)-Catechin 0.55 0.64 290.27 9,064

Quercetin 0.55 0.52 302.23 5280343

Kaempferol 0.55 0.5 286.24 5280863
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2.10 Molecular dynamic (MD) simulation

All-atom molecular dynamics (MD) simulation is a computational
approach that precisely represents each atom and bondwithin a system,
facilitating an in-depth analysis of molecular dynamics (Sahoo et al.,
2020). This method calculates the movements of every atom in a
system, which are determined by the interactions amongst them,
represented by interatomic potentials (Sahoo et al., 2022). In this
research, to execute the MD simulations of the ultimate complexes,
we implemented the OPLS-AA/L force field using GROMACS
2018 software. The three-dimensional configurations of the protein
served as the initial structural inputs for the simulations. To enhance
their quality and suitability for the simulations, additional optimization
was performed using Dock Prep (Pettersen et al., 2004). The
parameterization of the active ingredients was executed using the
SwissParam webserver (Zoete et al., 2011). Subsequently, MD
simulations were conducted for a duration of 20 nanoseconds (ns),
following a methodology similar to previous studies (Alamri, 2020).
Various general MD simulation parameters were assessed for each
complex, including root mean square deviation (RMSD), radius of
gyration (Rog), and rootmean square fluctuation (RMSF) (Needle et al.,
2015). These parameters provide important information about the
stability, conformational changes, and flexibility of the complexes
during the simulation period.

3 Results

3.1 Screening of active compounds

The screening of active compounds represents a critical initial
step in the identification of promising phytoconstituents with
potential therapeutic efficacy against ovarian cancer. After
searching and filtering, four compounds, namely, hispidulin,
apigenin, luteolin, and beta-sitosterol were obtained from O.
heteracanthum; two compounds, namely, stigmasterol and
ascorbic acid were obtained from A. ehrenbergiana; five
compounds namely, octopamine, 3,4-dihydroxybenzoic acid,
cyperene, rotundine A, and rotundine B were obtained from O.
vaillantii; six compounds namely, orientin, quercetin, kaempferol,
pungenin, rotundine B, and cyperene were obtained from C.
rotundus; nine compounds namely, carissic acid, alpha1-
sitosterol, citric acid, d-tartaric acid, ascorbic acid, beta-ionone,
anethole, ursolic acid, and beta-sitosterol were obtained from C.
carandas; six compounds, namely, carissic acid, kaempferol,
quercetin, digitoxigenin, ursolic acid, and beta-sitosterol were
obtained from C. spinarum; and four compounds, namely,
(−)-epicatechin gallate, (+)-catechin, quercetin, and kaempferol
were obtained from C. sinensis. These 36 compounds were
considered potential phytoconstituents of local Saudi plants as
they fulfill the criteria of molecular weight <500 g/mol, DL ≥
0.18, and OB ≥ 0.30 (Table 1).

3.2 ADMET profiling

The chosen compounds were subjected to ADME analysis, and
12 compounds, namely, hispidulin, stigmasterol, ascorbic acid,

octopamine, cyperene, kaempferol, pungenin, citric acid,
d-tartaric acid, beta-sitosterol, (−)-epicatechin gallate, and
(+)-catechin, were identified as the main active constituents, with
local good GI absorption and limited permeability of BBB, as
presented in Table 2. Within the scope of ADMET analysis,
hepatotoxicity refers to the capacity of compounds to inflict
harm on the liver, potentially resulting in liver malfunction or
complete failure. Notably, all selected compounds were found to
have inactive hepatotoxicity in the current study. On the other hand,
carcinogenicity characterizes the potential to induce cancer, while
mutagenicity denotes its capacity to provoke DNA alterations that
could lead to developmental anomalies, mutations in cancer, or
many others. Compared to our results, the final active ingredients
demonstrated themselves to be non-mutagenic and non-
carcinogenic. In sum, these outcomes further support that the
native plants of Saudi Arabia have drug-like potential that could
be integral to preventing and treating diseases.

3.3 Known therapeutic targets acting on
ovarian cancer

Analysis of microarray data offers crucial insights into the
molecular processes associated with disease progression and
assists in the identification of possible targets for therapeutic
intervention. Four gene expression datasets, namely, GSE54388,
GSE69428, GSE36668, and GSE40595, were obtained from the
NCBI–GEO database. Subsequent processing for the detection of
DEGs was carried out using the limma package (Table 3,
Supplementary Material S4: Supplementary Tables S1–S3).
Within the limma package, the LogFC >1.0 and
p-value <0.05 criteria were set for the screening of DEGs.
From the GSE54388 dataset, a total of 4,687 DEGs were
obtained (2,457 upregulated and 2,230 downregulated),
2,084 DEGs (1,020 upregulated and 1,064 downregulated)
from GSE69428, 6,924 DEGs (3,147 downregulated and
3,777 upregulated) from GSE36668, and 2,840 DEGs
(1,423 upregulated and 1,417 downregulated) from the
GSE40595 dataset (Figure 1, Supplementary Material S5). The
identified DEGs were subsequently used as therapeutic targets for
ovarian cancer.

3.4 Construction of the
compound–target network

Following the prediction of disease-associated targets, a Venn
tool was employed to uncover shared genes between plant-
associated targets and disease-related targets.
SwissTargetPrediction and STITCH databases yielded
469 potential targets of active compounds (Supplementary
Material S1: Supplementary Table S1). Finally, 200 targets were
found to be common among both plants and diseases
(Supplementary Material S2: Supplementary Table S1).
Compounds targeting these 200 genes were then imported into
Cytoscape. This network suggests that these 200 identified targets
could potentially work in synergy when these indigenous Saudi
plants are used as an anticancer remedy.
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TABLE 2 ADMET profiling of active compounds.

Plant
source

Active
compound

GI
absorption

BBB
permeant

P-gp
substrate

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

Log Kp (skin
permeation)

Hepatotoxicity Carcinogenicity Mutagenicity Cytotoxicity

Onopordum

heteracanthum

Hispidulin High 7 7 ✓ 7 7 ✓ ✓ −6.01 cm/s 7 7 7 7

Beta-sitosterol Low 7 7 7 7 7 7 7 −2.20 cm/s 7 7 7 7

Acacia

ehrenbergiana

Stigmasterol Low 7 7 7 7 ✓ 7 7 −2.74 cm/s 7 7 7 7

Ascorbic acid High 7 7 7 7 7 7 7 −8.54 cm/s 7 7 7 7

Osteospermum

vaillantii

Octopamine High 7 7 7 7 7 7 7 −7.87 cm/s 7 7 7 7

Cyperene Low 7 7 7 ✓ ✓ 7 7 −4.48 cm/s 7 7 7 7

Cyperus

rotundus

Kaempferol High 7 7 ✓ 7 7 7 7 −6.70 cm/s 7 7 7 7

Pungenin Low 7 7 7 7 7 7 7 −9.40 cm/s 7 7 7 7

Cyperene Low 7 7 7 ✓ ✓ 7 7 −4.48 cm/s 7 7 7 7

Carissa

carandas

Citric acid Low 7 7 7 7 7 7 7 −8.69 cm/s 7 7 7 7

d-Tartaric acid Low 7 7 7 7 7 7 7 −8.55 cm/s 7 7 7 7

Ascorbic acid High 7 7 7 7 7 7 7 −8.54 cm/s 7 7 7 7

Beta-sitosterol Low 7 7 7 7 7 7 7 −2.20 cm/s 7 7 7 7

Carissa

spinarum

Kaempferol High 7 7 ✓ 7 7 7 7 −6.70 cm/s 7 7 7 7

Beta-sitosterol Low 7 7 7 7 7 7 7 −2.20 cm/s 7 7 7 7

Camellia

sinensis

(−)-Epicatechin

gallate

Low 7 7 7 7 7 7 7 −7.91 cm/s 7 7 7 7

(+)-Catechin High 7 ✓ 7 7 7 7 7 −7.82 cm/s 7 7 7 7

Kaempferol High 7 7 ✓ 7 7 7 7 −6.70 cm/s 7 7 7 7
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3.5 GO and KEGG enrichment analyses

Analyses for GO and pathway enrichment of common
200 target genes were carried out employing the DAVID tool to
discern their biological characteristics (Supplementary Material S3:
Supplementary Tables S1–S4). A total of 388 BP, 57 CC, and 109 MF
terms met the p-value criterion of <0.05. Analysis of the top GO
terms suggested that the shared genes were primarily associated with
the positive regulation of the MAPK, ERK1, and ERK2 cascade,
positive regulation of vasoconstriction, intracellular signal
transduction, regulation of cell proliferation, positive regulation
of the apoptotic process, Hsp90 protein binding, estradiol 17-
beta-dehydrogenase activity, estrogen response element binding,
steroid binding, and steroid hormone receptor activity (Figure 2).
A total of 103 KEGG pathways were identified, indicating that the
intersecting targets were predominantly involved in the mechanisms

of growth hormone action, secretion, and synthesis, pathways in
cancer, the estrogen signaling pathway, pI3K-Akt and ErbB
signaling pathways, progesterone-mediated oocyte maturation,
endometrial cancer, and many others (Figure 3).

3.6 Identification of hub genes

Constructing a PPI network is a fundamental step in network
pharmacology, offering a structure to comprehend the intricate
interactions between biological molecules and their impacts on
disease pathways. Interactions among 200 common genes were
predicted using the STRING database. This network comprised a
total of 196 genes, forming 1,426 interactions with each other. One
protein was found to interact with many proteins; therefore, the top
10 proteins with greater connectivity than other nodes were selected

TABLE 3 Brief summary of GEO datasets used in the current study along with obtained DEGs.

GEO dataset Total sample Affected Control Upregulated gene Downregulated gene Total DEG

GSE54388 22 16 6 2,457 2,230 4,687

GSE69428 20 10 10 1,020 1,064 2084

GSE36668 8 4 4 3,147 3,777 6,924

GSE40595 77 63 14 1,423 1,417 2,840

FIGURE 1
Volcano plot. (A) GSE54388, (B) GSE69428, (C) GSE36668, and (D) GSE40595. The red triangle represents downregulated genes, the blue triangle
indicates the upregulated genes, and the gray triangle represents the non-significant genes.
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as hub genes. These genes are AKT1 (91), VEGFA (73), HSP90AA1
(63), JUN (63), HIF1A (60), PTGS2 (530, MAPK1 (53), PPARA
(38), PIK3R1 (36), and AR (36) (Figure 4, Supplementary Material
S6: Supplementary Table S1).

3.7 Compound–target protein–pathway
network construction

For gaining a deep understanding of the underlying action
mechanisms of indigenous plants in ovarian cancer, an integrated
“active ingredient–target–pathway” network was constructed
using the GO and KEGG pathway databases, and non-ovarian
cancer-associated pathways were excluded from the analysis
(Figure 5). Subsequently, a comprehensive analysis of the PPI
network and active ingredient–target–pathway network was
performed at the systematic level to identify top-ranked
proteins, including AKT1 and VEGFA, which were further
subjected to molecular docking analysis. AKT1 and VEGFA

were selected as most of the compounds targeted these genes,
and these genes are mainly linked to ovarian cancer-related
pathways, including the estrogen signaling pathway,
progesterone-mediated oocyte maturation, the prolactin
signaling pathway, Rap1 and ErbB signaling pathways,
colorectal cancer, growth hormone action, secretion, and
synthesis, and endometrial cancer.

3.8 Molecular docking analysis

After network analysis, two proteins, AKT1 and VEGFA, were
chosen for docking analysis, as these proteins were found to be
targeted by multiple compounds and also linked to disease-relevant
pathways. All selected compounds were docked against AKT1 and
VEGFA, allowing for the assessment of their binding affinity,
interaction stability, and free energy within the target protein’s
active site. These proteins were docked with selected compounds;
however, the top five compounds based on their binding affinity

FIGURE 2
Gene Ontology (GO) enrichment analysis. In the plot, squares denote molecular functions, triangles depict cellular components, and circles signify
biological processes. The size of each shape reflects the count, while the color indicates the p-value.
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were selected. In the case of the AKT1 protein, the top five
compounds with maximum binding affinities are ascorbic acid
(−11.1227), citric acid (−10.2178), kaempferol (−11.4719),
stigmasterol (−10.0388), and d-tartaric acid (−10.9147)
(Figure 6). In the case of the AKT1–ascorbic acid complex,
binding affinity contributed to H-bonds with the Ser A:240; Leu
A:239; Arg A:243; Arg C:2; and Glu A:341 residues. In terms of citric
acid, AKT1 formed H-bonds with Glu A:341 and Gly A:345; for
kaempferol, AKT1 demonstrated H-bond interaction with Glu A:
341; for stigmasterol, the H-bond interaction was found with Ser A:
240 and Arg C:2; and d-tartaric acid showed H-bond interaction
with Arg C:2; Glu A:341; Arg A:346; Gly C:1; and Leu A:
239 residues (Table 4).

In the case of the VEGFA protein, (+)-catechin (−15.6498), citric
acid (−14.7792), (−)-epicatechin gallate (−15.1182), hispidulin
(−17.3714), and octopamine (−17.517) were found to have more
binding affinity than other active ingredients (Figure 7). In the case
of the VEGFA-(+)–catechin complex, binding affinity contributed
to H-bonds with Asn B:158; Ser A:179; Ser A:176; Lys A:143; and Ser
A:177; for citric acid, VEGFA has H-bond interactions with Ser A:
177; Ser A:179; Leu A:178; Gln B:160; Ser B:176 Ser A:177; Ser A:179;
Leu A:178; Gln B:160; and Ser B:176; for (−)-epicatechin gallate,
VEGFA demonstrated H-bond interactions with Asn A:158; Thr B:
180; Gln B:160; Lys A:143; and Asp A:144; for hispidulin, H-bond
interactions were found with Asn A:158; Gln B:160; Ser A:179; and

Ser B:176; and octopamine showed H-bond interactions with Ser A:
177; Ser A:179; Ser B:176; and Gln A:171 residues (Table 5).

3.9 MD simulation

All-atom Molecular Dynamics (MD) simulations were
conducted to analyze the relationship between the AKT1 and
VEGFA proteins and to assess the stability of the active
compounds. The simulation was run at 20 ns using GROMACS
software. For each protein, the top two docked complexes based on
their binding energies were chosen for MD simulation for evaluating
their RMSD and RMSF values, which assist in analyzing
conformational changes and interactions among small molecules
and target proteins. RMSD offers an understanding of the extent of
deviation that a set of atoms (complexes, compounds, and proteins)
experience from their original reference structure. On the other
hand, RMSF calculates the temporal progression of the average
discrepancy for each residue from its initial position in the
minimized structures. The RMSD analysis revealed that selected
complexes stabilized within a 20-ns timeframe. The average RMSD
of the backbone atoms of AKT1 with kaempferol and ascorbic
acid–protein systems was found to be ~0.175 and ~0.23Å,
respectively (Figure 8A), while for VEGFA, the average RMSD
for hispidulin and octopamine was found to be 0.45 and 0.5 Å,

FIGURE 3
Bar plot illustrating the key KEGG pathways where the intersecting genes are predominantly concentrated.
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respectively (Figure 9A). On the other hand, the RMSD of ligand
atoms for AKT1 with ascorbic acid exhibits an average RMSD value
of ~0.04, with a sharp increase in RMSD (~0.12 Å) observed after
4–13 ns of simulation (Figure 8B), while for kaempferol, the RMSD
falls within the range of ~0.08 to ~0.10 Å. In the case of the VEGFA
protein, the average RMSD value for octopamine and hispidulin was
~0.14 and ~0.12 Å (Figure 9B). These findings suggest that
octopamine was more stable at 20 ns in the case of the VEGFA
protein, while for AKT1, kaempferol was found to be more stable.
This was further substantiated by analyzing RMSF versus the residue
number of AKT1, which showed that in comparison to
AKT1–kaempferol, the AKT1–ascorbic acid complex exhibited
greater fluctuations in backbone residues (Figure 8C). However,

in terms of the VEGFA complex, hispidulin indicated greater
fluctuations in backbone residues than octopamine (Figure 9C).

The radius of gyration (Rg) serves as a crucial metric to evaluate
changes in the compactness of a docked complex. For AKT1,
ascorbic acid exhibited more pronounced fluctuations than
kaempferol (Figure 8D). In the context of VEGFA, notably, the
Rg values for VEGFA–hispidulin exhibited a narrower distribution,
denoting a more consistent structural compactness relative to the
VEGFA–octopamine complex, which displayed a broader range of
Rg values, suggestive of increased flexibility and structural
variability. This differential behavior in Rg implies that the
binding of hispidulin may confer a greater degree of
conformational restraint upon the VEGFA protein, potentially

FIGURE 4
(A) Venn diagram illustrating overlapped targets, (B) compound–target network, where size signifies the degree of connectivity. (C) Top 10 genes
ranked according to the degree algorithm. (D) Bar graph showing the degree of each central gene.
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influencing the stability and functional specificity of the
ligand–protein interaction (Figure 9D). Furthermore, insights
derived from the evaluation of Rg, RMSF, and RMSD metrics
indicate that all complexes maintained consistent stability
throughout the simulation period. Therefore, it could be
concluded that these small molecules hold the potential to be
used as an inhibitor for AKT1 and VEGFA: however, the finding
needs further in vivo and in vitro validation.

4 Discussion

According to the National Cancer Registry in Saudi Arabia,
ovarian cancer is the seventh most commonly diagnosed cancer
among women, accounting for 3.3% of all cancers (Younes and
Zayed, 2019). In 2020, the age-standardized incidence rate and
mortality rate of ovarian cancer in Saudi Arabia were 3.8/
100,000 women and 2.7/100,000 women, respectively.
Additionally, 444 new cases were reported in 2020, constituting
1.6% of new cancer cases in Saudi Arabia, with 281 of those cases
resulting in death (Aga et al., 2022). Unfortunately, effective
treatment options for ovarian cancer are limited in the country.
As a result, there is a critical need for the development of effective
treatment options to fight against ovarian cancer. Research efforts
aimed at identifying new therapeutic targets as well as improving
existing treatments are highly recommended.

The utilization of natural products for the treatment of cancer is
widely recognized and has garnered significant attention from
researchers worldwide (Pangestuti and Kim, 2011). Saudi Arabia
has a rich flora consisting of numerous plant species, some of which
have been traditionally used in natural medicine (Aati et al., 2019).
Many of these plants possess bioactive compounds that have shown

potential in cancer treatment. For example, C. sinensis is a rich
source of polyphenols associated with numerous pharmacological
properties such as anti-inflammatory, antimicrobial, and anti-aging
(Rahmani et al., 2015; Naveed et al., 2018). With continued research,
these and other Saudi Arabian plants may prove to be valuable
sources of natural compounds for the development of new cancer
therapies. Recent studies reported that local plant extracts from
Saudi Arabia, including O. heteracanthum (Gouda et al., 2014), A.
ehrenbergiana (Makeen et al., 2020), O. vaillantii (Gouda et al.,
2014), C. rotundus (AlQathama et al., 2022), C. carandas (Alshehri,
2020), C. spinarum (AlQathama et al., 2022), and C. sinensis (Dou
et al., 2021), exhibited remarkable and potent cytotoxic effects on the
ovary cancer cell line. Nevertheless, the specific mechanisms of
action underlying these medicinal plants remain unclear. The
current study focused on identifying potential active compounds
of these Saudi Arabian local plants as a new effective treatment
option against ovarian cancer. Initially, the information related to
the phytochemicals of O. heteracanthum, A. ehrenbergiana, O.
vaillantii, C. rotundus, C. carandas, C. spinarum, and C. sinensis
was retrieved from databases and reported in a literature survey.
Later, the microarray data from the GSE54388, GSE69428,
GSE36668, and GSE40595 datasets were obtained from GEO
databases and screened for the identification of DEGs. The
preprocessing of microarray data was performed through the
limma package of R for the identification of DEGs. Later, the
disease-related data were compared with plant-related data,
which demonstrated 200 overlapped targets. These common
targets were then considered for further network pharmacology.
The functional annotation of these putative targets revealed that
these genes are mainly involved in growth hormone action,
secretion, and synthesis, pathways in cancer, the estrogen
signaling pathway, pI3K-Akt and ErbB signaling pathways,

FIGURE 5
Compound–target protein–pathway network. The green and orange nodes represent the plants and their respective compounds, while the gray
nodes represent the hub genes, and blue nodes indicate the pathways in which the hub genes are mainly involved.
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colorectal cancer, breast cancer, the Rap1 signaling pathway,
progesterone-mediated oocyte maturation, endometrial cancer,
and the prolactin signaling pathway.

In ovarian cancer, estrogen signaling can promote tumor growth
and progression through several mechanisms. For instance, estrogen
can promote the growth of ovarian cancer cells and enhance their
resistance to chemotherapy (Choi et al., 2011). Additionally,
estrogen signaling can promote the formation of new blood

vessels, which helps supply the tumor with nutrients and oxygen
(Ribeiro and Freiman, 2014). Furthermore, estrogen signaling can
interact with other pathways that are implicated in ovarian cancer,
such as the PI3K/AKT/mTOR pathway (Langdon et al., 2020). This
pathway assists in regulating cell growth, survival, and metabolism
and is often dysregulated in ovarian cancer. Estrogen signaling can
activate the PI3K/AKT/mTOR pathway, leading to further
promotion of tumor growth and survival (Gil, 2014). Therefore,

FIGURE 6
Binding interactions between the AKT1 protein and five different active compounds. Each panel (A–E) displays a 3D view of the protein–compound
complex on the left and a corresponding 2D interaction diagram on the right. The compounds studied include ascorbic acid (A), citric acid (B), kaempferol
(C), stigmasterol (D), and d-tartaric acid (E). These diagrams highlight the specific amino acid residues of the AKT1 protein involved in the interaction with
each compound, providing insights into the molecular docking and potential binding efficacy.

TABLE 4 Binding affinity and RMSD value of AKT1 with top five compounds.

Protein Compound Docking score (kcal/mol) RMSD (Å) Interacting residues

AKT1_3QKK Ascorbic acid −11.1227 0.804941 Ser:240; Leu:239; Arg:243; Arg:2; Glu:341

Citric acid −10.2178 1.313716 Glu:341; Gly:345; Gly:1; Arg:2; Arg:243; Leu:239

Kaempferol −11.4719 0.877178 Arg:346; Arg:243; Arg:2; Leu:239; Glu:341

Stigmasterol −10.0388 1.137621 Ser:240; Arg:346; Arg:341; Arg:2; Gly:1; Leu:239

d-Tartaric acid −10.9147 0.994647 Arg:2; Glu:341; Arg:346; Gly:1; Leu:239
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by directing efforts toward the genes active in PI3K-Akt pathways,
the progression of ovarian cancer can be halted.

After functional annotation, AKT1 and VEGFA emerged as pivotal
proteins due to their highest connectivity within the PPI network,
compound–target network, and compound–target–disease network.
Although molecular docking provides an estimation of compound
suitability within the protein’s active site, it solely provides information
at the protein’s active site. Hence, to analyze the compound–protein
target system, the use of binding conformation data has become more

prevalent, necessitating the application of MD simulations and their
associated binding energy measurements. MD simulations facilitate in-
depth exploration of the dynamic attributes of docked complexes as
well as fluctuations in the energy scenario. These insights are crucial in
determining the complex’s stability and possible structural shifts in the
protein initiated by ligand interaction. Overall, the assessment derived
from molecular docking and MD simulations underscored a
considerable binding affinity in the interactions involving active
compounds and proteins.

FIGURE 7
Molecular docking results of the VEGFA protein with five distinct compounds, showcasing the interaction details in both 3D and 2D representations.
For each compound, the left side depicts the protein in a 3D structure with the bound compound, while the right side shows a 2D interaction map. The
specific compounds analyzed are (+)-catechin (A), citric acid (B), (−)-epicatechin gallate (C), hispidulin (D), and octopamine (E). The interaction maps
highlight the key amino acids of the VEGFA protein that potentially contribute to the binding affinity and specificity for each compound.

TABLE 5 Binding affinity and RMSD value of VEGFA with top five compounds.

Protein Compound Docking score (kcal/mol) RMSD (Å) Interacting residues

VEGFA_4ZFF (+)-Catechin −15.6498 1.208914 Asn:158; Ser:179; Ser:176; Lys:143; Ser:177; Val:169

Citric acid −14.7792 1.159474 Ser:177; Ser:179; Leu:178; Gln:160; Ser:176

(−)-Epicatechin gallate −15.1182 1.816931 Asn:158; Thr:180; Gln:160; Lys:143; Asp:144

Hispidulin −17.3714 0.916578 Asn:158; Val:190; Gln:160; Ser:179; Ser:176

Octopamine −17.517 1.156475 Ser:177; Ser:179; Ser:176; Gln:171
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FIGURE 8
(A) RMSD analyses of backbone atoms (C, Cα, and N) within the AKT1–ligand complexes. (B) RMSD evaluations for ligand atoms in the AKT1–ligand
systems. (C) RMSF measurements for backbone atoms in the AKT1–ligand setups. (D) Rg analysis pertaining to backbone atoms.

FIGURE 9
(A) RMSD analyses of backbone atoms (C, Cα, and N) within the VEGFA–ligand complexes. (B) RMSD evaluations for ligand atoms in the
VEGFA–ligand systems. (C) RMSF measurements for backbone atoms in the VEGFA–ligand setups. (D) Rg analysis pertaining to backbone atoms.

Frontiers in Pharmacology frontiersin.org15

Alblihy 10.3389/fphar.2024.1345415

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1345415


Previous studies reported that AKT1 and VEGFA have key roles
to play in the pathogenesis of ovarian cancer. AKT1 is a serine/
threonine kinase that is frequently activated in ovarian cancer, and it
is involved in promoting cell survival, proliferation, and migration
(Tokunaga et al., 2008). When activated, AKT1 can stimulate the
expression of VEGFA, which is a key pro-angiogenic factor that
promotes the formation of new blood vessels (Hsieh et al., 2017; Zhu
et al., 2018). In ovarian cancer, the upregulation of AKT1 and
VEGFA is associated with proliferation, metastasis, and
angiogenesis (Wang et al., 2019). Moreover, AKT1 and VEGFA
can interact with each other, forming a positive feedback loop that
further promotes ovarian cancer progression (Trinh et al., 2009).
AKT1 activates the HIF-1α regulator, which in turn can upregulate
VEGFA expression (Mazure et al., 2003). VEGFA, in turn, activates
the AKT1 pathway, creating a self-reinforcing loop that promotes
tumor growth and angiogenesis. Thus, targeting the AKT1 and
VEGFA signaling pathways is a promising approach for treating
ovarian cancer. Inhibition of AKT1 and VEGFA signaling has been
shown to reduce ovarian cancer cell proliferation, angiogenesis, and
tumor growth in preclinical models. Furthermore, several clinical
trials are currently needed to investigate the efficacy of AKT1 and
VEGFA inhibitors in the treatment of ovarian cancer.

Recent advancements in the study of phytochemicals and their
role in cancer therapy have underscored the potential of natural
compounds as effective agents against ovarian cancer. For instance,
Lu et al. (2023) highlighted the emerging role of plant-derived
compounds in modulating key signaling pathways involved in
cancer progression, including the PI3K-Akt and VEGFA
pathways, which our research also identifies as critical targets.
Furthermore, Song et al. (2015) reported the significant in vivo
efficacy of kaempferol in reducing tumor growth and metastasis
through the inhibition of cancer-related signaling pathways. These
findings align with our computational predictions and molecular
docking results, suggesting a promising avenue for future research to
explore these compounds’ clinical applications. Moreover, the
integration of bioinformatics tools and network pharmacology in
recent studies, as demonstrated by Batool et al. (Alshehri, 2020), has
facilitated a deeper understanding of the complex interactions
between natural compounds and cancer-related pathways,
reinforcing the value of our approach in identifying novel
therapeutic candidates. These contemporary findings not only
validate our methodology but also indicate a growing consensus
on the importance of targeting specific molecular pathways in
ovarian cancer treatment, providing a robust framework for
future experimental and clinical investigations.

To sum up, our investigation lays the groundwork for
uncovering the multi-target effect of native Saudi Arabian plants
as potential therapeutic agents for ovarian cancer. The combination
of network pharmacology and bioinformatics methodologies aids in
pinpointing essential interactions and molecular pathways
contributing to ovarian cancer and supports the identification of
prospective drug targets to combat this disease. Although we
corroborated our findings using molecular docking and MD
simulations, additional in vitro and in vivo studies are required
to substantiate the efficacy of our results. Our study bears certain
limitations, such as the requirement for further experimental
validation of our findings, the need for a more comprehensive
database of traditional medicinal plants and target genes to

enhance the precision of network pharmacology analysis results,
and the incomplete understanding of the exact therapeutic
mechanism employed by local plants in the treatment of ovarian
cancer, even after merging the results from network pharmacology
and molecular docking. Therefore, multidisciplinary integration is
essential to fully grasp the operational mechanism of these local
plants in relation to ovarian cancer.

5 Conclusion

The significant prevalence of ovarian cancer in Saudi Arabia
underscores the urgent need for effective prevention, early detection,
management strategies, and addressing its associated complications.
In response, our study presents an innovative scientific framework
that explores the complex multi-target interactions of active
phytochemicals within native Saudi Arabian plants. By
integrating bioinformatics with network pharmacology
approaches, we have identified several potential compounds,
including hispidulin, stigmasterol, ascorbic acid, octopamine,
cyperene, kaempferol, pungenin, citric acid, d-tartaric acid, beta-
sitosterol, (−)-epicatechin gallate, and (+)-catechin, that show
promise in treating ovarian cancer. Our findings also highlight
the therapeutic implications of targeting AKT1 and VEGFA
pathways to mitigate cellular proliferation and growth,
contributing valuable insights into the chemical constituents of
indigenous Saudi plants and their synergistic mechanisms against
ovarian cancer. Looking forward, our research paves the way for
further in-depth studies to validate the efficacy and safety of these
identified phytochemicals through clinical trials. Future work will
also explore the optimization of these compounds for better
bioavailability and specificity, along with investigating
combination therapies to enhance their anti-cancer effects.
Additionally, the development of more sophisticated
bioinformatics tools and network pharmacology models will be
crucial in unraveling the complexities of ovarian cancer
pathogenesis and the multi-faceted roles of these compounds.
Ultimately, our study lays the groundwork for novel therapeutic
strategies that could significantly impact the prevention and
treatment of ovarian cancer in Saudi Arabia and beyond.
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