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Metformin is the initial medication recommended for the treatment of type
2 diabetes mellitus (T2DM). In addition to diabetes treatment, the function of
metformin also can be anti-aging, antiviral, and anti-inflammatory. Nevertheless,
further exploration is required to fully understand its mode of operation.
Historically, the liver has been acknowledged as the main location where
metformin reduces glucose levels, however, there is increasing evidence
suggesting that the gastrointestinal tract also plays a significant role in its
action. In the gastrointestinal tract, metformin effects glucose uptake and
absorption, increases glucagon-like peptide-1 (GLP-1) secretion, alters the
composition and structure of the gut microbiota, and modulates the immune
response. However, the side effects of it cannot be ignored such as
gastrointestinal distress in patients. This review outlines the impact of
metformin on the digestive system and explores potential explanations for
variations in metformin effectiveness and adverse effects like gastrointestinal
discomfort.
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1 Introduction

Metformin originates from the herbaceous plant Galega officinalis, commonly referred
to as French lilac or goat’s rue in Europe (Bailey and Day, 1989). In the early 1900s, scientists
identified the guanidine compounds and related molecules, rich in G. officinalis, as the basis
for their biological action and glucose-lowering properties (Werner and Bell, 1922).
Metformin was initially created in 1922 by Emil Werner and James Bell. Further
research demonstrated its notable ability to lower blood sugar levels in animal
experiments, including rabbits (Bailey, 2017; Triggle et al., 2022). However, because of
the discovery of insulin, metformin research was put on hold. It was not until the 1950s that
Jean Sterne demonstrated the effectiveness of metformin in treating diabetes in human trials
for the first time (Sterne, 1963). With his efforts, there were more comprehensive basic and
clinical studies on metformin. Metformin’s role has been increasingly acknowledged by
different nations, making it the preferred medication for managing type 2 diabetes mellitus
(T2DM) in clinical settings (Davies et al., 2018).
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In addition to treating T2DM, metformin modestly reduces
body weight gain, which may be achieved by upregulating growth
differentiation factor 15 (GDF15) (Day et al., 2019; Coll et al., 2020).
Notably, Notably, metformin also has protective and therapeutic
effects against COVID-19 (Bramante et al., 2021; Khunti et al., 2021;
Lalau et al., 2021). A study published recently found that the use of
metformin during the initial phases of a COVID-19 infection
decreased the likelihood of developing Long COVID (Bramante
et al., 2022). Besides, metformin may also have a therapeutic effect
on other diseases, such as cancer (Evans et al., 2005; Thakkar et al.,
2013; Foretz et al., 2014; Heckman-Stoddard et al., 2017),
inflammation-related diseases (Kalender et al., 2010), and even
against aging (Valencia et al., 2017; Kulkarni et al., 2020).
Nevertheless, the main clinical application of metformin is the
treatment of T2DM.

Initial research typically viewed the liver as the main location
where metformin exerts its control over glucose production,
utilizing both AMP-activated protein kinase (AMPK)-dependent
and AMPK-independent pathways. Nevertheless, increasing proof
indicates that metformin primarily acts on the gastrointestinal
system. Intravenous metformin was found to be less glucose-
lowering than oral administration (Stepensky et al., 2002). In
addition, metformin concentrations in the jejunum peaked at
500 μg/g, 30–300 times higher than that in plasma (McCreight
et al., 2016). Metformin inhibits dietary glucose absorption from
the gastrointestinal tract in rodents (Wilcock and Bailey, 1991; Ikeda
et al., 2000; Wu et al., 2017) and T2DM patients (Bailey, 1995).
Positron emission computed tomography (PET-CT) imaging
confirmed this discovery. After infusion of 18F-labeled
fluorodeoxyglucose (18F-FDG), which is a non-metabolisable
glucose analogue, into the intestinal lumen and sealing of the
compartment system through surgery, PET-CT imaging showed
accumulation of 18F-FDG in the intestinal lumen of diabetic rats
receiving a single oral dose of metformin (Zubiaga et al., 2023). One
of the possible reasons for this is that metformin inhibits sodium-
glucose cotransporter1 (SGLT1) on small intestinal epithelial cells,
decreasing the intra- and extracellular Na+ concentration gradient,
thereby inhibiting intestinal glucose absorption and increasing
glucose utilization (Lenzen et al., 1996; Gorboulev et al., 2012).
Apart from this, metformin can cause changes in the microbial
composition of the intestinal tract (Vallianou et al., 2019), increased
lactic acid production (Misbin et al., 1998), and increased
concentrations of glucagon-like peptide-1 (GLP-1) and bile acids
(Mannucci et al., 2004; Brønden et al., 2017), but the mechanism by
which metformin acts in the gastrointestinal tract is currently
not precise.

Despite its widespread availability and affordability (Foretz et al.,
2014; Matthews et al., 2019; Ahmad et al., 2020; Schernthaner and
Schernthaner, 2020), metformin is associated with gastrointestinal
side effects in around 20% of patients, including nausea, vomiting,
diarrhea, bloating, and occasionally lactic acidosis and vitamin
B12 malabsorption. (Sanchez-Rangel and Inzucchi, 2017;
Schommers et al., 2017). Approximately 5% of individuals
stopped taking the medication because of negative reactions
(Sanchez-Rangel and Inzucchi, 2017; Schommers et al., 2017).
However, the reasons for differences in metformin side effects
are unclear. In this article, we will review the progress of
research effects of metformin on the gastrointestinal tract in

recent years in the hope of shedding light on future studies of
metformin treatment and side effect mechanisms.

2 Effects of metformin on the
gastrointestinal tract

2.1 Effects on glucose uptake and absorption

PET-CT imaging-based studies have found that metformin
modulates glucose in the intestine (Chang et al., 2020). By using
18F-FDG as a contrast agent, PET-CT technology was used to reflect
changes in body metabolism through the uptake of the contrast
agent by the lesion, where 18F-FDG is a glucose analog that indicates
the degree of glucose uptake and is generally used clinically to
quantify tissue metabolism (Paydary et al., 2019). Using PET-CT
imaging after intravenous administration of 18F-FDG to T2DM
patients treated with metformin, researchers showed that the
amount of glucose entering the gastrointestinal system from the
circulation was increased, which contributed to the drug’s glucose-
lowering effect and improved glycemic control (Koffert et al., 2017;
Chang et al., 2020; Tobar et al., 2023). Likewise, PET-CT scans of
mice fed a high-fat diet (HFD) showed that metformin increased
glucose uptake on the basolateral side of the intestine, leading to
enhanced glucose tolerance in a manner that depended on the
dosage (Tobar et al., 2023). This indicates that metformin
controls the movement of glucose from the bloodstream to the
intestines.

Mechanistically, metformin inhibits intestinal glucose
absorption (Wilcock and Bailey, 199). The inhibition of intestinal
glucose absorption is due to reduce the expression of SGLT1 on the
apical membrane of jejunal enterocytes (Zubiaga et al., 2023). In
mice lacking SGLT1, the reduction in postprandial glucose response
mediated by a single administration of metformin is attenuated, but
not in mice lacking glucose transporter 2 (GLUT2). This suggests
that metformin-induced glucose reduction is dependent on
SGLT1 expression (Zubiaga et al., 2023). In addition, metformin
also lowers blood glucose by enhancing intestinal glucose uptake.
After being consumed in the intestines, glucose is moved to the
intestinal lumen and expelled through the faeces, helping to regulate
blood sugar levels. Based on the high accuracy and contrast of
positron emission computed tomography-magnetic resonance
imaging (PET-MRI), it was found that metformin-induced
18F-FDG accumulation in the intestinal wall as well as in the
lumen of the ileum and colon of T2DM patients treated with
metformin in a dose-dependent manner (Morita et al., 2020; Ito
et al., 2021). This indicates that metformin may enhance glucose
release from enterocytes into the lumen.

GLUT2 protein moves from the basolateral membrane of the
small intestine to the apical membrane of the jejunum to aid in
glucose uptake when the small intestine’s intestinal lumen has high
levels of glucose (Lostao et al., 1991). Notably, metformin increases
GLUT2 expression on the jejunal parietal membrane (Lenzen et al.,
1996). Contrary to the findings of this research, it was discovered
that metformin therapy had no effect on the expression of the
GLUT2 gene in enterocytes (Lenzen et al., 1996). Furthermore, the
impact of metformin on glucose uptake in the digestive system is
associated with the amount of GLUT2 expression, rather than
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relying on GLUT2 expression in the intestinal lining (Morrice et al.,
2023). However, metformin has been shown to enhance the
translocation of GLUT2 to the apical membrane of enterocytes
(Ait-Omar et al., 2011), providing a potential mechanism for the
release of glucose from enterocytes into the intestinal lumen in
response to metformin treatment (Ke et al., 2023). Notably,
mutations in the GLUT2 gene affect the glucose-lowering efficacy
of metformin (Zhou et al., 2016), which may be one of the reasons
for individual differences in metformin efficacy. Although studies
have found that metformin also affects 18F-FDG accumulation in the
colon, the mechanism is unclear (Ito et al., 2021). In conclusion,
these studies suggest that metformin can achieve its glucose-
lowering ability by modulating glucose transporter proteins
in the gut.

2.2 Increased GLP-1 secretion

Metformin enhances the release of glucagon-like peptide-1
(GLP-1) from the intestines, potentially contributing to its ability
to lower blood sugar levels (Mannucci et al., 2004; McCreight et al.,
2016; Bahne et al., 2018). GLP-1, a hormone produced by L cells in
the jejunum, ileum, and colon, is released in response to nutrients
(D’Alessio, 2016). It interacts with its receptor, causing a rise in
cyclic adenosine monophosphate (cAMP) levels, which stimulates
the secretion of insulin from pancreatic β-cells (Bradley et al., 2010;
D’Alessio, 2016). Additionally, it has the ability to decrease the
overproduction of glucagon in response to glucose levels (Bradley
et al., 2010; D’Alessio, 2016). Thus, when blood glucose increases,
GLP-1 stimulates insulin secretion while decreasing glucagon
secretion; when blood glucose decreases, GLP-1 inhibits insulin
secretion without affecting glucagon secretion.

The mechanism by which metformin increases GLP-1 secretion
in the gastrointestinal tract is currently unclear. Commonly believed
mechanisms for the enhancement of GLP-1 secretion are generally
considered to be the following:

(1) Metformin boosts the absorption of glucose in the upper
section of the small intestine by enhancing the production of
glucose transporter proteins in the epithelial cells of the small
intestine. This results in a rise in glucose levels in the end part
of the intestine, which then triggers an increase in the release
of GLP-1 from L cells, promoting growth (Wu et al., 2017).

(2) Metformin increases the concentration of GLP-1 in the
gastrointestinal tract by inhibiting the activation of
dipeptidyl peptidase-4 (DPP4), which in turn reduces the
degradation of GLP-1 by DPP4 in the gastrointestinal tract
(McCreight et al., 2016). In mice and humans taking
metformin, a decrease in DPP4 levels is observed (Lenhard
et al., 2004; Green et al., 2006; Cuthbertson et al., 2009).
However, in vitro experiments, metformin did not directly
inhibit DPP4 activity (Hinke et al., 2002). Therefore,
metformin may not act directly on DPP4. It has been
found that after knocking out the DPP4 gene in rats,
metformin could still dose-dependently increase GLP-1
concentrations (Yasuda et al., 2002). In line with this
finding, the inclusion of a DPP4 blocker alongside
metformin led to a greater rise in GLP-1 levels, indicating

synergistic and overlapping impacts, implying distinct modes
of action for each drug (Migoya et al., 2010). Thus, metformin
increases the concentration of GLP-1 in vivo, probably not
primarily through inhibition of DPP4.

(3) Metformin may also boost GLP-1 release in the gut by
hindering bile acid reabsorption and raising bile acid
levels, indirectly triggering GLP-1 secretion from L cells.
Research has shown that metformin can block the
reabsorption of bile acids by reducing the levels of Na+-
dependent bile acid transporter proteins and controlling
the function of farnesoid X receptor (FXR) (Lien et al.,
2014; Foretz et al., 2019). Metformin is commonly thought
to block FXR function through an AMPK-mediated process,
resulting in reduced bile acid absorption in the ileum. This
leads to increased bile acids in the intestinal lumen, which
then trigger Takeda G-protein-coupled receptor 5 (TGR5) on
L-cells, stimulating the production and release of GLP-1
(Thomas et al., 2009; Lien et al., 2014). Recent research
has discovered that metformin can inhibit FXR signaling
by altering gut bacteria, leading to increased GLP-1
production and release in a way that does not depend on
AMPK activation (Sun et al., 2018). For example, metformin-
treated T2DM patients with elevated levels of Bacteroides
fragilis in the gastrointestinal tract, whose metabolite
glycoursodeoxycholic acid (GUDCA) is involved in
inhibiting FXR signaling (Sun et al., 2018). Therefore,
regulating gut microbiota may also be involved in GLP-1
production and secretion.

(4) Metformin may enhance GLP-1 secretion through PEN2, a
subunit of γ-secretase. A recent study found that the ability of
metformin to promote GLP-1 secretion was impaired in mice
with a gut-specific knockout of the PEN2 gene (Ma et al.,
2022). This study discusses how low-dose metformin activates
AMPK without altering AMP/ADP levels, contrary to the
traditional understanding of its action. The researchers
identified PEN2 as a metformin binding partner that forms
a complex with ATP6AP1, leading to AMPK activation
through inhibition of the lysosomal v-ATPase. And this
process does not affect cellular energy levels (AMP/ADP
ratios). Additionally, when PEN2 is specifically knocked
out in the gut, the ability of metformin to promote insulin
and GLP-1 secretion is impaired (Ma et al., 2022). Therefore,
PEN2 plays a key role in the mechanism by which metformin
enhances GLP-1 secretion.

(5) Metformin may also enhance GLP-1 secretion via the
M3 cholinergic receptor and the gastrin-releasing peptide
(GRP) receptor. The researchers found that the mechanism
by which metformin stimulates GLP-1 release involves two
G-protein-coupled receptors, theM3 cholinergic receptor and
the GRP receptor (Mulherin et al., 2011). By pre-treating rats
with the non-specific cholinergic receptor antagonist atropine
as well as the specific M3 cholinergic receptor antagonist 4-
DAMP and performing vagotomy, the researchers found that
atropine and 4-DAMP significantly reduced metformin-
induced GLP-1 secretion, whereas vagotomy had no effect
on metformin-induced GLP-1 secretion. This indicates that
metformin promotes GLP-1 release through a non-vagal
M3 muscarinic pathway (Mulherin et al., 2011).
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TABLE 1 The effects of metformin on the composition of gut microbiota.

Research object Detection method Effect References

HFD C57BL/6 mice 16S rRNA up Akkermansia, Alistipes Zhang and Hu (2020)

down Anaerotruncus, Lactococcus, Parabacteroides, Odoribacter,
Lawsonia, Blautia, Lactonifactor

HFD C57BL/6 mice 16S rRNA change Bacteroidaceae, Verrucomicrobiaceae, Akkermansia muciniphila,
Clostridium cocleatum

Lee and Ko (2014)

db/db mice 16S rRNA up Bacteroidales, Lactobacillus, Allobaculum, Bacteroides,
Akkermansia

Chen et al. (2018)

down Staphylococcus, Corynebacterium, Jeotgalicoccus, Aerococcus,
Enterococcus, Facklamia

HFD C57BL/6 mice 16S rRNA up Verrucomicrobia, Akkermansia, Bacteroides, Butyricimonas,
Parabacteroides

Lee et al. (2018)

down Firmicutes/Bacteroidetes ratio

HFD C57BL/6 mice 16S rRNA up Akkermansia, Bifidobacterium pseudolongum Zheng et al. (2018)

down Firmicutes

db/db mice 16S rRNA up Butyricimonas, Lactobacillus, Coprococcus, Ruminococcus,
Akkermansia

Zhang et al. (2019)

down Prevotella, Proteus

HFD C57BL/6 mice 16S rRNA up Bacteroides, Akkermansia, Parabacteroides, Christensenella Ryan et al. (2020)

down Muribaculum, Lachnoclostridium, Coprococcus, Dorea,
Papillibacter, Oscillospira, Ruminococcus, Desulfovibrio,
Desulfovibrionaceae

HFD Wistar rats 16S rRNA up Akkermensia, Allobaculum, Bacteroides, Blautia, Butyricicoccus,
Lactobacillus, Phascolarctobacterium, Parasutterella, Klebsiella,
Prevotella

Zhang et al. (2015)

down Clostridium XIVa, Flavonifractor, Lachnospiracea_incertae_sedis,
Roseburia, Clostridium XI

HFD Wistar rats 16S rRNA up Bifidobacteria, Akkermansia, Shewanella, Allobaculum,
Peptostreptococcaceae, Intestinibacter

Li et al. (2019)

down Prevotella, Deferribacteres

HFD Sprague-Dawley rats 16S rRNA up Lactobacillus, Roseburia, Akkermansia Cui et al. (2019)

down Desulfovibrio, Lachnospiraceae NK4A136

HFD Wistar rats qPCR up Lactobacillus spp., Bifidobacterium spp., Khat-Udomkiri et al. (2020)

down Escherichia spp., Clostridium perfringens

T2DM patients Metagenomic up Escherichia spp. Forslund et al. (2015)

down Intestinibacter spp.

T2DM patients 16S rRNA up Butyrivibrio, Bifidobacterium bifidum, Megasphaera, Prevotella,
Akkermansia muciniphila

de la Cuesta-Zuluaga et al. (2017)

down Oscillospira, Barnesiellaceae, Clostridiaceae 02d06

T2DM patients Metagenomic up Akkermansia muciniphila, Pectobacterium, Pantoea, Serratia,
Raphidiopsis, Dickeya, Helicobacter, Shewanella, Erwinia,
Cronobacter, Rheinheimera, Dermacoccus, Yersinia, Bacillus,
Pseudomonas, Salmonella, Klebsiella, Enterobacter, Citrobacter,
Escherichia

Wu et al. (2017a)

down Dethiosulfovibrio, Deferribacter, Bartonella, Acetivibrio, Hippea,
Pseudogulbenkiania, Pseudoflavonifractor, Subdoligranulum,
Intestinibacter

(Continued on following page)

Frontiers in Pharmacology frontiersin.org04

Cheng et al. 10.3389/fphar.2024.1347047

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1347047


Additionally, by pre-treating with the GRP receptor
antagonist RC-3095, they found that GRP also plays a
partial role in metformin-induced GLP-1 secretion.
Therefore, M3-type cholinergic receptors and GRP
receptors are also involved in metformin-induced changes
in GLP-1 secretion.

In summary, metformin can promote GLP-1 secretion in the
gastrointestinal tract through several mechanisms. Despite
metformin’s ability to lower glucose levels by boosting GLP-1
secretion in living organisms, it did not have the same effect on
GLP-1 secretion in L cells during laboratory experiments (Mulherin
et al., 2011). Furthermore, research has indicated that blocking or
lack of enteric glucagon receptor signaling, like glucagon-like
peptide-1 receptor (GLP-1R), does not entirely eliminate the
positive impacts of metformin on the blood sugar response to
oral glucose in healthy or overweight mice (Maida et al., 2011).
Therefore, increasing GLP-1 secretion may not be the main
mechanism through which metformin reduces blood sugar levels.

2.3 Alteration of the gut microbiota

With the emergence of advanced sequencing technologies, it has
become apparent that metformin mitigates the imbalance in gut
microbiota associated with T2DM and its subsequent impact on
host metabolism. Metformin is believed to cause substantial changes
in the composition and operation of the intestinal microbiome, as
stated by several studies (Forslund et al., 2015; McCreight et al.,
2016; Wu H. et al., 2017; Vallianou et al., 2019; Zhang and Hu, 2020;
Jones and Molloy, 2021; Mueller et al., 2021). Several research
studies with rodents fed a high-fat diet, different animal models
of obesity and diabetes, and patients diagnosed with T2DM have all
shown changes in gut microbiota caused by metformin, as shown in
Table 1. Notably, the diversification of gut microbiota resulting from
metformin treatment was observed following oral administration in
mice, a phenomenon not replicated with intraperitoneal injection
(Broadfield et al., 2022). This finding aligns with the observed
enhancement of glucose regulation in high-fat diet mice receiving
fecal transplants frommetformin-treated counterparts (WuH. et al.,
2017; Bauer et al., 2018). The elimination of gut bacteria with
antibiotics canceled out metformin’s ability to reduce glucose
levels in mice fed a high-fat diet (Shin et al., 2014), highlighting
the importance of gut bacteria in how metformin works.

Metformin can influence the gut microbiota composition by
directly affecting bacterial growth and altering the intestinal
environment. It boosts the development of bacteria that generate
short-chain fatty acids (SCFAs) in the gut of people with T2DM,

leading to an increase in SCFAs levels in the colon, ultimately improving
host metabolism (Forslund et al., 2015; Zhang et al., 2015; Wu et al.,
2017a; de la Cuesta-Zuluaga et al., 2017; Mueller et al., 2021). Notably,
elevated levels of SCFAs enhance glucose management through
processes such as activation of intestinal gluconeogenesis and
increased GLP-1 secretion, this promotes metabolic benefits in terms
of energy balance (Cani et al., 2009; De Vadder et al., 2014; Chambers
et al., 2015; Forslund et al., 2015). Propionate has been extensively
characterized as a substrate for hepatic gluconeogenesis (Huntington,
1990). Research indicates that propionate undergoes conversion to
glucose through intestinal gluconeogenesis prior to reaching the liver,
conferringmetabolic advantages inmaintaining energy equilibrium (De
Vadder et al., 2014). This is evidenced by reduced adiposity and body
weight, notwithstanding similar levels of food consumption, alongside
enhanced glucose regulation, marked by a reduction in hepatic glucose
output. Consequently, SCFAs hold promise for glycemic control by
modulating intestinal gluconeogenesis. Furthermore, metformin
diminishes the presence of Bacteroides fragilis, a bacterium that
suppresses bile salt hydrolase activity, leading to a rise in secondary
bile acids like GUDCA. This inhibits the activation of intestinal FXR
signaling, thereby facilitating enhanced glucose homeostasis (Sun
et al., 2018).

Changes in the gut microbiota caused by metformin are crucial
for its ability to reduce inflammation. Recent studies indicate that
metformin strengthens the protective function of the intestinal
mucosal barrier by increasing the abundance of Akkermansia
muciniphila and the number of goblet cells, resulting in a thicker
mucus layer that reduces inflammation in the intestines (Shin et al.,
2014; Zhou et al., 2016; Ahmadi et al., 2020; Ke et al., 2021).
Additionally, metformin boosts the relative presence of
Lactobacillus spp. and Akkermansia spp., effectively moderating
the microbial imbalance and colonic inflammation triggered by
experimental colitis, alongside preserving the integrity of the
mucus barrier (Ke et al., 2021; Liu et al., 2021).

Metformin’s impact on the gut microbiome also plays a role in
metformin’s ability to fight tumors. Metformin administered orally,
as opposed to injected intraperitoneally, inhibited tumor growth in
mice fed a high-fat diet (Broadfield et al., 2022). Moreover, the
transmission of gut bacteria from mice given metformin to other
mice significantly slowed down the advancement of tumors, which
was associated with an increased amount of bacteria that produce
SCFAs and a decrease in the activity of genes necessary for making
cholesterol in the tumor (Broadfield et al., 2022). Additionally,
metformin extended the lifespan of C. elegans in co-culture with
Escherichia coli, possibly due to the gut microbiota-derived
metabolite agmatine (Pryor et al., 2019). The connection between
metformin’s lifespan-extending effects in T2DM patients and
increased agmatine levels remains speculative.

TABLE 1 (Continued) The effects of metformin on the composition of gut microbiota.

Research object Detection method Effect References

T2DM patients 16S rRNA up Akkermansia, Clostridium cluster XIVa, Clostridium cluster XIVb,
Escherichia/Shigella, Klebsiella, unclassified Enterobacteriaceae

Hiel et al. (2020)

down Clostridium cluster XI, Clostridium cluster XVIII, Roseburia,
unclassified Lachnospiraceae

Abbreviations: HFD, high-fat diet; T2DM, type 2 diabetes mellitus. All the bacterial taxa are written in italics.
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Most clinical observations regarding metformin’s influence on
gut microbiota predominantly focus on alterations in fecal
microbiota (Forslund et al., 2015). Nevertheless, metformin also
impacts the microbiome in the small intestine, causing distinct
changes in the microbiota of the duodenum, jejunum, and ileum
in rodents (Bailey et al., 2008; Bauer et al., 2018; Bravard et al., 2021).
The alterations in the microbial makeup of the small bowel align
with fluctuations in the activity of genes associated with absorbing
glucose and fatty acids in the intestines, amplifying the positive
metabolic impacts of metformin (Bauer et al., 2018; Sun et al., 2018).
Therefore, the microbiota throughout various sections of the
gastrointestinal tract may play distinct roles.

2.4 Metformin and drug transporter proteins

Metformin exhibits a relatively modest oral bioavailability,
ranging from 50% to 60% (Pentikäinen et al., 1979). Isotopic
tracer techniques have shown that most of the 14C-labeled
metformin is absorbed in the small intestine, with 20% being
absorbed in the duodenum and 60% in the jejunum and ileum
combined (Vidon et al., 1988; Dawed et al., 2019). Most of the
metformin is eliminated in the urine without being changed by
metabolic processes, with the rest being removed through the faeces
(Tucker et al., 1981). Metformin, being a molecule with high affinity
for water, usually remains in a positively charged state with a proton
under normal bodily conditions (Foretz et al., 2019). Its absorption
is dose-responsive and subject to saturation (Tucker et al., 1981;
Proctor et al., 2008), indicating reliance on specific transporter
proteins for its uptake.

Transporter proteins are crucial in the pharmacokinetic
dynamics of medications, significantly influencing their
effectiveness, side effects, and toxicity. Changes in the
performance of these proteins have a direct effect on how the
drug is absorbed, distributed, metabolized, and eliminated (Nies
et al., 2008). Studies conducted with Caco-2 cells in a laboratory
setting, utilizing inhibitors of transporter proteins and knockout
methods, have pinpointed the main transporter proteins responsible
for metformin as the organic cation transporters (OCTs), plasma
membrane monoamine transporter (PMAT), serotonin transporter
(SERT), and high-affinity choline transporter (CHT) (Han et al.,
2015). Moreover, the multidrug and toxin extrusion proteins
(MATEs) are crucial in the transportation of metformin (Jensen
et al., 2016). Notably, OCT1, PMAT, and SERT are the principal
transporters facilitating metformin’s intestinal absorption in
intestinal cells, contributing to 25%, 20%, and 20% of its
transport, respectively (Han et al., 2015).

Research has shown that variations in the OCT1 gene play a
significant role in the varying effectiveness of metformin
treatment for individuals with T2DM (Gambineri et al., 2010;
Umamaheswaran et al., 2015; Sundelin et al., 2017; Chan et al.,
2018). However, metformin extended-release preparations are
absorbed into the bloodstream through intestinal transit proteins
in about 50% of the amount of the regular preparations, but they
have similar glucose-lowering effects compared to the regular
preparations (Buse et al., 2016). Even under equal dosage
conditions, the metformin extended-release formulation may
be more effective (Buse et al., 2016). In line with this finding,

a different research discovered that changes in the SLC22A1
gene, responsible for OCT1, decreased the absorption of
metformin in the liver without impacting the ability of
metformin to lower glucose levels in individuals with T2DM
(Zhou et al., 2009; Dujic et al., 2017). While OCT1 transporter
proteins are involved in the pharmacokinetics of metformin, their
impact on the effectiveness of metformin is currently a topic
of debate.

2.5 Modulation of immune response

The immune system plays an essential role in developing and
progressing many diseases. The gut microbiota and its byproducts
play a vital role in the growth and upkeep of immune cells within
the digestive system (Postler and Ghosh, 2017). Metformin can
impact the body’s immune system by changing the gut microbiota
and its metabolites, which may boost the inflammatory reaction
(Postler and Ghosh, 2017). Research using mouse models of
obesity and T2DM demonstrated that an increase in A.
muciniphila following metformin treatment in obese mice
activated regulatory T-cells in visceral adipose tissue. The
activation resulted in decreased levels of pro-inflammatory
cytokines IL-1β and IL-6 in adipose tissue, ultimately reducing
inflammation (Shin et al., 2014). Additionally, metformin has
demonstrated anti-inflammatory effects through the inhibition
of IL-18 expression, which is linked to alterations in the
intestinal microbiome (Lee et al., 2019). Another study found
that treatment with metformin can regulate the immune response
in the intestines of mice by altering the composition of the gut
microbiome, particularly through the downregulation of the NF-
κB signaling pathway (Brīvība et al., 2023). Therefore, metformin
potentially enhances immune responses by modulating the gut
microbiota.

Metformin has been shown to have some anti-inflammatory
effects in clinical studies in patients with T2DM, in experimental
studies in rodent models of obesity and T2DM, and in vitro
experiments with several immune cells (Foretz et al., 2019;
Kristófi and Eriksson, 2021). Metformin reduced colonic
mucosal damage in a rat model of colitis by addressing
oxidative stress and inhibiting the NF-κB-mediated
inflammatory signaling pathway (Pandey et al., 2017). Changes
in the local microenvironment within metabolic organs have a
significant impact on the function of tissue-resident and newly
recruited macrophages, leading to metabolic inflammation linked
to obesity (Wculek et al., 2022). And in vitro, metformin reduces
the inflammatory activation of macrophages by interfering with
the metabolic changes linked to inflammation (Xiong et al., 2021).
Metformin reduces the synthesis of pro-inflammatory cytokines in
macrophages at a molecular level by blocking the transition from
monocytes to macrophages via the AMPK-STAT3 pathway
(Vasamsetti et al., 2015). Additionally, it suppresses
inflammation by blocking the synthesis of endogenous fatty
acids and its associated palmitoylation in macrophages (Xiong
et al., 2021).

Persistent mild inflammation and changes in the immune
system are characteristic features of the aging process and
diseases associated with old age (Franceschi et al., 2018; Aiello
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et al., 2019). Studies suggest that metformin could impact the
longevity of mice and C. elegans by regulating the mTOR
signaling pathway and suppressing the release of
CCL11 cytokines, which are connected to age-related cellular
and tissue impairments (Thakkar et al., 2013; Bannister et al.,
2014; Wu et al., 2016; Howell et al., 2017; Ivanovska et al., 2020).
Surprisingly, metformin prolonged the lifespan of mammals and
decreased lung inflammation caused by COVID-19 in a mouse
model of acute respiratory distress, possibly by blocking the
activation of NLRP3 inflammasome through the inhibition of
mitochondrial DNA synthesis (Xian et al., 2021). Despite these
discoveries, the relationship between them and the mechanisms
of action within the gastrointestinal tract has not been clearly
established, suggesting that further research in this area
is warranted.

2.6 Others

The crosstalk between the gut and other organs can also
facilitate the hypoglycemic effect of metformin. For instance,
metformin can achieve its glucose-lowering effects through the
gut-liver axis (Tobar et al., 2023). A recent PET-CT study
revealed that metformin enhances glucose uptake in the
basolateral area of the intestines, leading to the production of
lactate (reducing pH and bicarbonate in portal vein) and acetate
that travel to the liver via the portal vein and lower hepatic
glucose production (Tobar et al., 2023). By this mechanism,
metformin promotes gut-liver crosstalk, which further affects
the regulation of glucose levels. While the results of this article do
not exclude a direct action of metformin in the liver, they suggest
that the first site of metformin action is the gut, via gut-hepatic
crosstalk, and that it may play a role in the control of hepatic
glucose production, integrating the site and mechanism of
metformin action.

Metformin can also exert its glucose-lowering effects through a
gut-liver-brain axis (Duca et al., 2015). The researchers
demonstrated that intraduodenal infusion of metformin
activated duodenal mucosal AMPK and lowered hepatic glucose
production (HGP) in rat models of insulin resistance induced by a
high-fat diet. They found that this effect was mediated through a
complex inter-organ crosstalk involving the gut-brain-liver axis.
Specifically, the lowering of HGP by metformin required the
activation of duodenal glucagon-like peptide-1 receptor (GLP-
1R) - protein kinase A (PKA) signaling and a neuronal-
mediated pathway connecting the gut and liver via the brain.
The researchers also found that the HGP-lowering effect of
metformin could be negated by locally injecting a GLP-1
receptor antagonist into the duodenum, supporting the
importance of local activation of the GLP-1 receptor in the
duodenum for the glucose-lowering action of metformin. This
emphasizes the role of the duodenal GLP-1 receptor in
metformin’s action through the gut-liver-brain axis to lower
HGP. Therefore, metformin can achieve glucose-lowering
effects via the gut-liver axis and the gut-liver-brain axis,
but the first site of metformin action is still the gut, so
the gastrointestinal tract remains the main target of
metformin action.

3 Adverse effects

3.1 Gastrointestinal effects

Despite its widespread availability and affordability,
metformin is associated with gastrointestinal side effects,
including nausea, vomiting, diarrhea, and bloating, affecting
around 20% of patients (Sanchez-Rangel and Inzucchi, 2017;
Zhang et al., 2023). Approximately 5% of individuals stopped
taking the medication because of negative reactions, and easing
symptoms may be achieved by slowly decreasing the dosage
(Sanchez-Rangel and Inzucchi, 2017; Schommers et al., 2017).
Recent research has identified the gut microbiota as the primary
factor behind the gastrointestinal side effects of metformin
(Bonnet and Scheen, 2017; Zhang et al., 2023). Excessive gas
production by E. colimay be linked to gastrointestinal discomfort
in patients following metformin consumption (Forslund et al.,
2015). Research on the traits of gut microbiota in T2DM patients
who are either tolerant or intolerant to metformin showed that
alterations in gut microbiota composition following metformin
therapy play a role in drug intolerance (Díaz-Perdigones et al.,
2022). Among the patients who developed gastrointestinal side
effects, the number of gut bacteria such as Sutterella, Allisonella,
Akkermansia, Bacteroides, and Paraprevotella species was
significantly elevated (Bryrup et al., 2019), which may be a
possible cause of gastrointestinal discomfort reactions in some
patients. Thus, gastrointestinal adverse effects may be related to
metformin-induced changes in the gut microbiota.

Variants of the drug transporter protein gene could potentially
contribute to gastrointestinal side effects in specific patients who are
prescribed metformin. Metformin was discovered to be taken up by
transporter proteins on the apical membrane surface of small
intestinal epithelial cells in a study conducted on Caco-2 cells.
However, only a small amount of metformin was transported
through the outer basement membrane of the small intestinal
epithelial cells into the bloodstream, resulting in metformin
accumulation in these cells (Proctor et al., 2008). Therefore, high
localized concentrations of metformin may have contributed to the
consequence of side effects such as gastrointestinal distress. A
different research project found that genetic variations in the
OCT1, PMAT, and SERT transporter proteins were linked to a
higher likelihood of gastrointestinal side effects in patients who
cannot tolerate metformin (Dujic et al., 2015; Dawed et al., 2019).
Additionally, taking medications that inhibit these transporter
proteins also raised the risk of experiencing gastrointestinal
discomfort (Dawed et al., 2019). Therefore, the cause of the
emergence of gastrointestinal distress after taking metformin may
also be related to mutations in the patient’s drug transporter
protein genes.

3.2 Lactic acidosis

During metformin treatment, plasma lactate concentration
increases with enhanced glucose uptake in the intestine, resulting in
side effects in some patients with one or more risk factors for lactic
acidosis (Bailey et al., 1992; Misbin et al., 1998; Davis et al., 2001).
Metformin-induced lactate production in rats was found to be most
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concentrated in the hepatic portal vein, accompanied by a decrease in
glucose levels, indicating that the gastrointestinal tract is the primary
location for glucose consumption and lactate generation following
metformin administration (Bailey et al., 1992). This was further
verified in other experiments. For example, a 10% increase in lactic
acid concentration in the intestines of rats following intestinal injection
of metformin (Bailey et al., 1992). Similarly, cells cultured in a culture
medium containing high concentrations of metformin generated more
lactic acid by in vitro cell culture experiments (Bailey et al., 1992).
Furthermore, elevated levels of metformin suppressed the activity of
mitochondrial respiratory chain complex Ⅰ (Owen et al., 2000;
Schommers et al., 2017) and modified the expression of genes
related to mitochondria (Yang et al., 2021), potentially leading to a
rise in anaerobic glucose metabolism. Nevertheless, an excessive
metformin dosage could result in lactic acidosis and additional

adverse reactions in individuals with one or more risk factors for
lactic acidosis (Misbin et al., 1998). Metformin toxicity can be
categorized into metformin-associated lactic acidosis (MALA),
metformin-induced lactic acidosis (MILA), and metformin-unrelated
lactic acidosis (MULA) (Rivera et al., 2023). Of these, MALA is the rare
and most severe form, with a mortality rate of up to 50%. Therefore, in
the ED, the types of lactic acidosis should be differentiated andmanaged
separately according to the patient’s usual dose of metformin.

3.3 Vitamin B12 deficiency

Several case reports have now confirmed that metformin can
cause vitamin B12malabsorption as a potential side effect. In a study
with 256 participants, 19 patients who were given metformin had

FIGURE 1
Some of the actions of metformin in the gastrointestinal tract. (1) Effects on glucose uptake and absorption. On the one hand, metformin inhibits the
absorption of glucose from the intestinal lumen into the bloodstream by decreasing the expression of SGLT1 on the apical membrane of enterocytes, and
on the other hand, metformin translocates GLUT2, which is located on the basolateral membrane of enterocytes, to the apical membrane and promotes
glucose uptake from the blood into the intestinal lumen. (2) Increased GLP-1 secretion. Metformin promotes GLP-1 secretion from L cells by
increasing glucose transporter protein expression, inhibiting DPP4 activation, regulating bile acid concentration, and mediating PEN2 protein,
M3 cholinergic receptors and GRP receptors, after which GLP-1 binds to GLP-1 receptors on pancreatic islet cells and increases cAMP levels, followed by
glucose regulation through inhibition of glucagon secretion and enhancement of insulin secretion. (3) Alteration of the gutmicrobiome. Gutmicrobiome
is alteredwithmetformin use. (4) Metformin transporter proteins. Metformin is absorbed into the interstitiummainly via OCT1, PMAT and SERT in the small
intestine. (5) Modulation of immune response. Metformin can modulate intestinal immune responses by altering the composition of the gut microbiota,
particularly through the suppression of pro-inflammatory cytokines and the downregulation of the NF-κB signaling pathway, thereby achieving
immunomodulation. In vitro experiments, metformin inhibited monocyte to macrophage differentiation. The upward arrows indicate increases, the
downward arrows indicate decreases. SGLT1, sodium-glucose transporter 1; GLUT2, glucose transporter 2; GRP: gastrin-releasing peptide; GLP-1,
glucagon-like peptide-1; DPP4, dipeptidyl peptidase-4; GLP-1R, glucagon-like peptide-1 receptor; cAMP, cyclic adenosine monophosphate; OCT1,
organic cation transporter 1; PMAT, plasma membrane monoamine transporter; SERT, serotonin transporter; NF-κB, nuclear factor kappa-B. Image
created with BioRender.com, with permission.
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vitamin B12 deficiency (<150 pmol/L), while five in the placebo
group did. Additionally, 35 in the metformin group had low vitamin
B12 levels (150–220 pmol/L), compared to 13 in the placebo group
(de Jager et al., 2010). Metformin may lead to a deficiency in vitamin
B12 by impacting the absorption mechanism of vitamin B12 in the
cells of the small intestine (Sayedali et al., 2023). In diabetic patients,
a lack of vitamin B12 in the future can lead to or speed up the
development of distal symmetrical and autonomic neuropathy (Bell,
2022). Hence, it is advisable for individuals on long-term metformin
therapy to undergo routine monitoring of their vitamin B12 levels
(Langan and Goodbred, 2017).

4 Conclusion

Metformin, a widely prescribed medication, has been in use for
more than six decades on a global scale. However, the mechanism of
its therapeutic action is not fully understood. In addition to treating
T2DM, metformin has also been found to be effective in various
diseases in the clinical process, such as obesity, cancer, cardiovascular
disease, and other inflammation-related diseases. It can also reduce
the development of Long COVID and even protect against aging.
While the liver was previously thought to be the main target of
metformin’s glucose-lowering effects, recent evidence suggests that
other parts of the body, such as the gastrointestinal tract, also play a
role in its overall clinical advantages. Research has discovered that
metformin can achieve its glucose-lowering effect through the gut-
liver axis and the gut-liver-brain axis. However, the initial site of
metformin’s action remains the gut, leading us to believe that the
gastrointestinal tract is the primary target of metformin’s action. In
the gastrointestinal tract, current studies have identified that
metformin effects glucose uptake and absorption, influences GLP-1
secretion, modulates immune homeostasis, and regulates the gut
microbiota, detailed information was drawn in Figure 1. The
intestines are the second biggest organ that uses glucose, following
the brain. This means that the primary way metformin helps regulate
glucose levels is perhaps by directly affecting how glucose is processed
in the intestines.

Some people may experience side effects after taking metformin,
with the main symptoms being gastrointestinal discomforts such as
nausea, vomiting, diarrhea, bloating, and in a few cases, lactic
acidosis, and vitamin B12 malabsorption. Side effects vary

individually, and the reasons may be related to the high local
concentration of metformin in the gastrointestinal tract and the
gut microbiota. The intestinal microecology is complex and studying
the mechanisms underlying metformin treatment is challenging.
Examining the impact of metformin on the gastrointestinal tract will
enhance our comprehension of how metformin works.
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