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Cancer stands as a prominent global cause of death. One of the key reasons why
clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent
decades, accumulated studies have shown how Natural Product-Derived
Compounds can reverse tumor MDR. Discovering novel potential modulators
to reduce tumor MDR by Natural Product-Derived Compounds has become a
popular research area across the globe. Numerous studies mainly focus on
natural products including flavonoids, alkaloids, terpenoids, polyphenols and
coumarins for their MDR modulatory activity. Natural products reverse MDR
by regulating signaling pathways or the relevant expressed protein or gene. Here
we perform a deep review of the previous achievements, recent advances in the
development of natural products as a treatment for MDR. This review aims to
provide some insights for the study of multidrug resistance of natural products.
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1 Introduction

According to the World Health Organization (WHO) and International Agency for
Cancer Research, there were approximately 19.3 million new cases of cancer in the past
(Rudnicka et al., 2020), along with around 10 million cancer-related deaths (Sung et al.,
2021). Cancer was one of the leading causes of mortality worldwide, and there were likely
28.4 million new cases by the year 2040 (Siegel et al., 2023). Chemotherapy could be
confidently recommended for first-line treatment. MDR was a phenomenon in which
cancer cells acquired cross-resistance to structurally and functionally related different types
of anticancer drugs. However, the emergence of drug resistance made chemotherapy much
less effective (Lu et al., 2022). Scientists have shown an interest in natural products (Zhang
et al., 2020) because of their superiority in terms of rich resources, lack of negative side
effects, and variety of components. Various biological actions are demonstrated by natural
compounds, such as anti-tumor (Mans et al., 2000), anti-microbial (Chakrawarti et al.,
2016; Martinelli et al., 2021; Papadochristopoulos et al., 2021), antioxidant (Arulselvan
et al., 2016; Huang et al., 2017), anti-inflammatory (Arulselvan et al., 2016; Huang et al.,
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2017), anti-diabetic (Chen W. et al., 2019; Luo et al., 2019), anti-
hypertensive (Fang et al., 2021; Gupta et al., 2022), anti-atherogenic
(Penson and Banach, 2021), gastro-protective (Tamaddonfard et al.,
2019), anti-platelets (Iqbal et al., 2022), anti-thrombotic (Csikós
et al., 2021; Junren et al., 2021; Yen et al., 2022) vital effects on
reversing MDR (Guo et al., 2017; Wang et al., 2018; Zhao
et al., 2020).

The application of natural products in MDR has received much
attention recently. This review examines the scientific advances on
using natural products to treat tumors with MDR. We discuss the
mechanisms of action of various kinds of natural products,
including as flavonoids (Vissenaekens et al., 2022), alkaloids (Liu

C. et al., 2019), terpenoids (Kuang et al., 2021), polyphenols (Luca
et al., 2020), and coumarins (Xiaokaiti and Li, 2020; Giovannuzzi
et al., 2022).

2 The mechanism of MDR

MDR refers to a cancer cell’s sensitivity to various anti-cancer
medication therapies (Assaraf et al., 2019). Nevertheless, setting out
the factors related to MDR could benefit the administration of
antitumor drugs and curation (Lu et al., 2022). This paper describes
the mechanisms of MDR, such as increasing drug efflux, altering

FIGURE 1
Mechanisms involved in cancer drug resistance.
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drug targets, increasing DNA damage repair, MDR-related factors
or signaling pathways, non-coding RNA (ncRNA)-mediated
multidrug resistance, and autophagy and tumor
microenvironment effects.

2.1 Increasing of drug efflux

Cancer cells exhibiting MDR typically increase the efflux of drug
molecules, which reduces the chemosensitivity to anticancer
medicines (Mohammad et al., 2018; Abdelfatah et al., 2021).
Some genes associated with multidrug resistance in cancer are
very unstable. For example, the CDK6 and CDK6-PI3K axes act
synergistically in regulating ABCB1/P-gp-mediated expression of
MDR (Zhang L. et al., 2022). It has been noted that long-term use of
chemotherapy medicines increases the expression of the ABC
transporter, thereby raising the risk of MDR. The ABC
transporter by ATP hydrolysis move substrates outward against a
concentration gradient (Jacobo-Albavera et al., 2021). For this
reason, ATP-binding cassette sub-family B member 1, also
known as P-glycoprotein (ABCB1/P-gp), ATP-binding cassette
sub-family C member 1/Multidrug resistance-associated proteins
(ABCC1/MRPs), and ATP-binding cassette sub-family G member
2/Breast cancer resistance protein (ABCG2/BCRP) are the most
important drug transporters.

P-gp is present in both healthy and malignant cells (Sarkadi
et al., 2006). The transmembrane structural domain and the
nucleotide-binding domain are the two primary structural
domains that make up the P-gp transporter. The ABC protein’s
structure may change upon binding to ATP, leading to concurrent
change in the substrate binding site, which causes the substrate drug
to be expelled from the cell. Different chemotherapeutic medicines
bind to P-gp, which modifies the structure of P-gp and releases the
drug into the extracellular space as ATP is digested (Assaraf et al.,
2019) (Figure 1).

In various cancer types, such as lung, breast and prostate
cancer, the expression of MRPs and BCRPs leads to resistance
drugs (Ambudkar et al., 2003; Goel and Aggarwal, 2010). MRPs
have the same structure and function as P-gp, but MRPs only
transport medicines that have undergone glutathione (GSH)
modification, and they have an impact on when
pharmaceuticals are metabolically activated (Liu, 2009). Drugs
are effluxed after MRPs create a complex with glutathione,
glucuronate, or sulfate. Etoposide, doxorubicin (Dox),
vincristine (VCR), and epirubicin (EPI) are among the drugs
that are susceptible to MRPs (Liu, 2009). BCRP structure is
homodimeric formed two-half transporters joined by a disulfide
bond (Figure 1). Such drugs as mitoxantrone, topotecan, Dox,
irinotecan, EPI, and flavopiridol are sensitive to BCRP (Ambudkar
et al., 2003; Robey et al., 2007).

2.2 Altering the drug targets

Creizotinib resistance in lung adenocarcinoma, caused by an
acquired mutation in the glycine-to-arginine substitution at codon
2032 in the structural domain of reactive oxygen species (ROS)
proto-oncogene 1 (ROS1) kinase (Awad et al., 2013). Similarly,

secondary EGFR mutations in the outer structural domain S492R
lead to cetuximab resistance by preventing EGFR antibodies from
binding to their target sites in colon cancer (Montagut et al.,
2012) (Figure 1).

2.3 Increase in DNA damage repair

A major cause of tumor progression, is persistent genetic
mutations have been occurring in the genome of cancer cells.
The DNA damage response (DDR) is essential to protect cells from
the large amount of oxidative damage to which they are
periodically subjected by cellular damage (Groelly et al., 2023).
DDR and cell cycle checkpoints are interlock signaling networks
that can impede the cell cycle and transmission of genetic
information to daughter cells to ensure genomic integrity
(Maleki Dana et al., 2022). Cell cycle checkpoints enable the
orderly progression of cell cycle events and avoid the
development of genomic instability-related diseases such
as cancer.

The G1 checkpoint is dysregulated in the majority of cancer
cells, making them reliant on the S and G2 checkpoints, specifically
ATR-CHK1. Cancer enhance their DNA repair system and promote
survival by activating the ATR-CHK1 pathway. Chemotherapeutic
drugs that target replicating DNA cells activate the ATR-CHK1
pathway (da Costa et al., 2023). Additionally, inhibitors of ATR-
CHK1 have been reported to decrease the levels of P-gp (Ahmed
et al., 2022).

Natural products, including curcumin, mangostin, resveratrol,
and carnosine, block the G1-S phase but not affect the cell division
cycle of proliferating healthy cells. Studies have shown that
resveratrol, mangostin, and carnosine are agonists of ATR-
CHK1, and kaempferol, curcumin, raffinose, and caffeine are
inhibitors of ATR-CHK1, and these phytochemicals may help
overcome tumor resistance (Ahmed et al., 2022). PU-1 is a
sesquiterpenoid derived from Asteraceae that inhibits the
growth of drug-resistant tumor cells through DNA damage, G2/
M cell cycle blockade and apoptosis (Hegazy et al.,
2021) (Figure 1).

2.4 MDR-related factors or
signaling pathways

Some transcription factors aid in the growth and resistance to
chemotherapy of drug-resistant cancer cells. The transcription
factor Nrf2 aids to the resistance to chemotherapy and to
proliferation of cancer cells by control the expression of
cytoprotective and antioxidant enzymes (Ghareghomi et al., 2022;
Panieri et al., 2022). Another important Five transcription factors
that make up NF-κB can attach to responsive gene promoter regions
and control biological activities such DNA transcription, cytokine
generation, and cell survival. Apoptosis suppression, tumor cell
proliferation, and treatment resistance are all caused by activated
NF-κB. Numerous cancer forms exhibit abnormal factor regulation,
which is exacerbated by the presence of the majority of anticancer
medications in the cancer cells (Vlahopoulos, 2017; Xia et al.,
2018) (Figure 1).
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2.5 Non-coding RNA (ncRNA)-mediated
multidrug resistance

Almost all cell processes, including transcription, proliferation,
apoptosis, and differentiation, have been shown to be significantly
regulated by non-coding RNAs (ncRNAs), particularly microRNA
(Zou et al., 2017; Yang et al., 2021), long non-coding RNA (lncRNA)
(Singh et al., 2022), and circular RNA. They also play a significant
role in the regulation of cancer drug resistance (Leng et al., 2022).
The expression of specific target genes, including Bcl-2, MDR1/
ABCB1, and MRP1/ABCC1, which regulate apoptosis, autophagy,
drug efflux, epithelial to mesenchymal transition (EMT), and cancer
stem cells (CSCs), leads to the development ofMDR. The interaction
of ncRNAs with DNA, RNA, and proteins is the foundation for all of
these mechanisms (Zhou et al., 2022a; Li et al., 2022) (Figure 1).

2.6 Autophagy and tumor
microenvironment effects

2.6.1 Autophagy
Autophagy breaks down damaged organelles and stops cells

from accumulating too many anticancer drugs, which encourages
the growth of multidrug resistance in cancer cells (Chang and Zou,
2020). However, autophagy in the cellular surroundings can also
eliminate MDR tumor cells, thereby enhancing the efficacy of
chemotherapy. This process is regulated by various autophagy-
related pathways and components, including ATG16L1, ATG5,
the PI3K/AKT/mTOR pathway, AMP-activated protein kinase
(AMPK), the miR199a-5p/p62 axis, p53, TFEB, and NSAIDs
(Debnath et al., 2023). The activation of autophagy facilitates the
removal of drug-resistant tumor cells, thus improving the overall
response to chemotherapy (Li et al., 2017; Rakesh et al., 2022; Xing
et al., 2022) (Figure 1).

2.6.2 Tumor microenvironment (TME)
Low extracellular pH, increased ROS concentrations, hypoxia,

and the overexpression of certain proteases and factors are TME
characteristics (Barkley et al., 2022). TME has its own blood supply,
lymphatic and neurological systems, stroma, immune cells, and
Extracellular Matrix (ECM) for each person with a specific tumor
(Tiwari et al., 2022) (Figure 1).

Under hypoxic conditions, TME demonstrates chemoresistance
and reduces drug-induced cytotoxicity, which encourages cancer
growth and spread. For optimum activity, several anticancer
medications like Cisplatin (DDP), etoposide, and gemcitabine
require oxygen (Zhang W. et al., 2022). A key factor in hypoxia-
induced chemoresistance is the HIF protein. Under hypoxic
conditions, Hif-1α encodes P-gp and increases the expression of
MRP1, BCRP, and LRP. Additionally, Hif-1α supports DNA repair
processes and inhibits the effects of chemotherapeutic drugs (Emran
et al., 2022).

Another important component of MDR is the control of pH.
According to research, MCF-7 cells are more resistant to the effects
of chemotherapeutic medicines when the extracellular pH is lower
(Tavares-Valente et al., 2013). The ATP-rich tumor
microenvironment is associated with cancer drug resistance, and
cancer cells are able to take up extracellular ATP (eATP) through

macrocytosis to increase intracellular ATP (iATP) levels and
enhance drug resistance. Elevated iATP upregulated ABC
transporter efflux activity in A549 and SK-Hep-1 cells, as well as
PDGFRα and protein phosphorylation in the PDGFR-mediated
Akt-mTOR and Raf-MEK signaling pathways in A549 cells
(Wang et al., 2017).

3 Natural product—derived
compounds overcome cancer drug
resistance mechanisms

Based on various studies, natural compounds do work as
multifunctional agents that can control the main causes of MDR.
Below, we outline how certain natural compounds, such as
flavonoids, alkaloids, terpenoids, polyphenols, and coumarins,
can contribute to reducing MDR.

3.1 Flavonoids

In many different sections of plants, the most prevalent and
significant secondary metabolites are flavonoids. Flavonoids, iso-
flavonoids, and neo-flavonoids are the three types of flavonoids that
can be distinguished by the presence of 2-phenylchromone ketone
(Eichhorn and Efferth, 2012). These natural metabolites are
frequently employed in clinical settings due to their anti-
mutagenic, anti-oxidative, anti-inflammatory, and anti-
carcinogenic effects as well as their ability to control important
cellular enzymes (Kumar and Jaitak, 2019) (Figure 2; Table 1).

Dihydromyricetin (DMY), a naturally occurring flavonoid
derived from Vitis heyneana, a traditional Chinese medicine
plant. By reducing MDR1 mRNA and protein expression to 5-
FU cytotoxicity, DMY decreases MRP2 expression and its promoter
activity in HCT116/Oxaliplatin (OXA)and HCT8/VCR cells as well
as sensitized SGC7901/5-FU cells (Wang et al., 2021). In order to
reestablish chemosensitivity in CRC cells, DMY suppresses the
Nrf2/MRP2 signaling pathway (Wang et al., 2021). DMY also
activates p53 and induces apoptosis in paclitaxel (PTX)- and
Dox-resistant OvCa cells (Xu et al., 2017).

Apigenin (API), a common dietary flavonoid, inhibits P-gp and
BCRP, increasing cellular uptake of anticancer drugs such as Dox or
TXT in MDR (Noorian et al., 2022). API is reported to suppress cell
growth, clonogenicity, and invasiveness in CSCs. In human CD44+

prostate CSCs, API can upregulate caspase-8, apaf-1, and
p53 mRNA expression, downregulate Bcl-2, sharpin, and
survival, and increase the effectiveness of DDP (Erdogan et al.,
2016; Erdogan et al., 2017). API suppresses STAT3, Akt, and MAPK
in glioblastoma multiforme U87MG and U373MG cells in other
CSCs(Kim B. et al., 2016). A549/OXA/bleomycin (BLM) and
H1299/OXA/BLM cells may undergo a large rise in apoptosis as
a result of API’s ability to activate p53 and pro-apoptotic proteins
(Chen et al., 2016). Acacetin, an O-methylated API, inhibits the
MDR1 gene at the mRNA level in NSCLC model cell lines A549/
OXA/BLM and H1299/OXA/BLM (Punia et al., 2017; Singh
et al., 2020).

Wogonin (WOG), a compound known as 5,7-dihydroxy-8-
methoxyflavone, is found in fruits, vegetables, and certain
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medicinal plants. It possesses a wide range of biological activities,
including anti-cancer, anti-inflammatory, and the treatment of
bacterial and viral infections (Huynh et al., 2020). By preventing
P-gp’s expression and functional activity, WOG sensitizes Dox-
resistant K562/A02 cells (Xu et al., 2014). By lowering the expression
of HIF-1α in HCT116/DDP cells, WOG suppresses the PI3K/Akt
signaling pathway and increases cytotoxicity when combined with
medicines like DDP, Dox, and PTX (He et al., 2013). WOG
potentiates apoptosis and inhibits autophagy by regulating
AKR1C1/1C2 and TNF-α (Huynh et al., 2017b). WOG blocks
the IGF-1R/AKT signaling pathway in human breast cancer,
increasing the cytotoxicity of sorafenib and Dox (Rong et al.,
2017). In human osteosarcoma CSCs with anti-CD133 (Yang
et al., 2022), WOG behavior demonstrate apoptosis through
downregulating MMP-9 expression, which inhibits mobility and
stops cell renewal (Huynh et al., 2017a). In response to internal and
external stressors brought on by ROS, Nrf2 acts as a transcription

factor by up-regulating antioxidant proteins (Leinonen et al., 2014;
Sajadimajd and Khazaei, 2018). WOG induces ROS accumulation
and further sensitizes TRAIL-induced apoptosis in A549 cells (Yang
et al., 2013). Additionally, WOG increases ROS buildup, which
increases intracellular ROS, and inhibits Nrf2 nuclear translocation
via inactivating NF-κB (Ye et al., 2019). In DDP-resistant HNC cells,
WOG inhibited Nrf2 and glutathione S-transferase P, increasing
intracellular ROS (Kim E. H. et al., 2016).

Kaempferol (KAE), 3,4′,5,7-tetrahydroxyflavone, is a secondary
metabolite found in many plants, and traditional medicines. KAE
can inhibit ABCB1/P-gp through enhancing the capacity of ATPase
(Felice et al., 2022), and also as an ABCG2/BCRP substrate, it can
inhibit ABCG2/BCRP upregulation. KAE appears to have potential
synergies with DDP, inhibits the mRNA levels of MRPs and cMyc in
OVCAR-3 cells (Amjad et al., 2022). KAE promotes the
development of miR-326, suppresses the process of glycolysis,
and the resistence of HCT8-R cells to 5-Fluorouracil (5-FU) (Wu

FIGURE 2
Chemical structures of Flavonoids having MDR modulatory activity.

Frontiers in Pharmacology frontiersin.org05

Zou et al. 10.3389/fphar.2024.1348076

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1348076


TABLE 1 The Effect of Natural Product-Derived Compounds on Cancer cells’ MDR.

Compunds Cells Drug-
resistant

Mechanism ReF

Flavonoids Dihydromyricetin HCT116 OXA Inhibiting MRP2 expression and promoter Wang et al. (2021)

HCT8 VCR Inhibiting MRP2 expression and promoter Wang et al. (2021)

SGC7901 5-FU Regulation expression of MDR1 mRNA and
protein

Wang et al. (2021)

OvCa PTX; Dox Activation of p53 Xu et al. (2017)

Apigenin Human CD44+ prostate
CSCs

DDP Downregulation of anti-apoptotic Bcl-2,
sharping and surviving; upregulation of pro-
apoptotic caspase-8, Apaf-1 and p53 mRNA

(Erdogan et al., 2016; Erdogan
et al., 2017)

A549; H1299 OXA/BLM Elevate p53 and upregulate certain pro-
apoptotic proteins

Chen et al. (2016)

Acacetin A549; H1299 OXA/BLM Inhibiting of BCRP (Punia et al., 2017; Singh et al.,
2020)

Baicalein MDCKII silymarin Reverse P-gp (Ferreira et al., 2018a; Ferreira
et al., 2018b)

BEL7402 Dox Decreases P-gp and anti-apoptotic Bcl-xl
expression

Li et al. (2018b)

Thyroid carcinoma
8505c

TXT/PTX Inhibiting of P-gp (Meng et al., 2016; Park et al.,
2018)

MCF-7 PTX Inhibiting of P-gp (Meng et al., 2016; Park et al.,
2018)

Gastric AGS 5-FU Inhibiting HIF-1α expression and Akt
phosphorylation

Chen et al. (2015)

A549 DDP Inhibiting of PI3K/Akt/NF-κB signaling
pathway

Yu et al. (2017b)

PC3 TRvAIL Induces ROS production and impact TME Ye et al. (2019)

breast cancer TAM Inhibiting HIF-1α-targeted glycolytic genes Chen et al. (2021b)

Wogonin K562 A02/Dox Inhibiting functional activity and expression
of P-gp at both protein and mRNA levels

Xu et al. (2014)

HCT116/ DDP Inhibiting PI3K/Akt signaling pathway He et al. (2013)

Human breast cancer sorafenib/Dox Downregulation IGF-1R/AKT signaling
pathway

Rong et al. (2017)

A549 TRAIL Induces ROS accumulation Yang et al. (2013)

HNC DDP Inhibited Nrf2 and glutathione S-transferase P Ye et al. (2019)

Kaempferol OVCAR-3 DDP Inhibits the mRNA levels of MRPs and cMyc Amjad et al. (2022)

HCT8-R 5-FU Promotes the expression of miR-326, inhibit
the process of glycolysis

Wu et al. (2022)

CML TRAIL Enhance pro-apoptotic effects of anti-TRAIL
antibody

Saraei et al. (2022)

LS174-R 5-FU Inhibiting reactive ROS; Modulated the
expression of JAK/STAT3, MAPK, PI3K/AKT
and NF-κB

Riahi-Chebbi et al. (2019)

Quercetin BEL 5-FU Inhibits the functions and downregulates the
expressions of P-gp, MRPs

Chen et al. (2018)

Breast CSCs Dox; PTX; VCR Downregulates P-gp expression Li et al. (2018c)

MCF-7; 4T1; HCT116 DDP; etoposide Regulates HIF-1α Kim et al. (2012)

Osteosarcoma 143B DDP Regulation miR-217-KRAS axis Zhang et al. (2015b)

(Continued on following page)
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TABLE 1 (Continued) The Effect of Natural Product-Derived Compounds on Cancer cells’ MDR.

Compunds Cells Drug-
resistant

Mechanism ReF

Galangin A2780/CP70; OVCAR-3 DDP Increased the p53-dependent intrinsic and
extrinsic apoptotic pathway

Huang et al. (2020)

A549 DDP Inactivating p-STAT3/p65 and Bcl-2 pathways Yu et al. (2018)

Puerarin K562 Dox Inhibited phosphorylation of Akt and JNK;
Inhibition of NF-κB pathway; Downregulating
MDR1

Liu et al. (2021b)

Genistein A549 radiotherapy Downregulates the level of methylation in the
Keap1 promoter region; Induces ROS
production and impact TME

(Cort et al., 2016; Liu et al., 2016)

7,3′,4′-
trihydroxyisoflavone

HeLa EPI Down-regulating ABC transporters P-gp,
MRPs

Hummelova et al. (2015)

Luteolin KKU-100 DDP Inhibiting of Nrf2 Ye et al. (2019)

HCT116-OX;
SW620-OX

OXA Inhibiting of Nrf2 Ye et al. (2019)

A549 Dox; BLM Inhibiting of Nrf2 Ye et al. (2019)

MDA-MB 231 Dox Inhibiting of Nrf2 Ye et al. (2019)

Chrysin MDA-MB-231 mitoxantrone Inhibiting of P-gp Ahmed-Belkacem et al. (2005)

MCF-7 nitrofurantoin Regulate BCRP; Stimulating ATPase Ahmed-Belkacem et al. (2005)

Ac15 (Az8)2 S1M180 topotecan Inhibiting BCRP-ATPase activity and drug
efflux

Chong et al. (2022)

Alkaloids Mono- and di-
carbamate

Human colon
adenocarcinoma

Dox Inhibition P-gp Sancha et al. (2023)

securinine HepG2 Dox Inhibition P-gp Hou et al. (2023)

Tetrandrine Osteosarcoma Dox Changing the expression of MDR1 gene Zhou et al. (2022b)

Hep-2 VCR Inhibit MDR1 Li et al. (2020a)

YES-2 DDP Inhibiting MRPs expression Wang et al. (2018)

Fangchinoline Caco-2; CEM/DOX5000 Dox Inhibition P-gp Chan et al. (2021)

Oxymatrine CRC 5-FU Induction of apoptosis; Suppressed expression
of MRP1; Inactivated NF-κB signalling by
decreasing phosphorylated p65

Chen et al. (2021a)

CRC OXA Inhibiting of the NF-κB/PI3K/AKT/mTOR
signal pathways

Chen et al. (2021a)

Matrine HT-29 OXA Suppressed the expression of LRP and P-gp Li et al. (2020b)

K562 Dox Promoting autophagy; Arresting the cell cycle Li et al. (2020b)

Rutaecarpine MCF-7 Dox Inhibiting the expression of P-gp Zou et al. (2021)

A549 PTX Inhibiting the expression of P-gp Zou et al. (2021)

Voacamine U-2 OS-DX Dox Interfered with the P-gp-mediated drugs
export acting

Condello et al. (2020)

Polyphenols Resveratrol AML -2/DX300 Dox Inhibiting expression of MRP1 Li et al. (2018c)

HCT 116 Dox Inhibition P-gp Wang et al. (2020)

K562 Dox Inhibition of the PI3k/Akt/mTOR pathway Khan et al. (2020)

MCF-7 Dox Regulation miR-122-5p; Regulation of Bcl-2
and CDKs

ALkharashi (2023)

Human oral cancer CAR DDP Induces expression of mRNA autophagy-
related genes, including Beclin-1, Atg5, Atg12,

Chang et al. (2017)

(Continued on following page)
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et al., 2022). KAE may increase the capacity of chronic myeloid
leukemia (CML) cells to withstand the pro-apoptotic effects of anti-
TRAIL antibodies (Saraei et al., 2022). Additionally, in human
LS174-R colon cancer cells that are resistant to 5-FU, KAE
suppresses reactive oxygen species and modifies the expression of
JAK/STAT3, MAPK, PI3K/AKT, and NF-κB (Riahi-Chebbi
et al., 2019).

Quercetin can be found in numerous fruits such as apples,
berries (such as blueberries and cranberries), citrus fruits (such as
oranges and lemons), and grapes. It is also present in vegetables such
as onions, broccoli, kale, and tomatoes. Additionally, quercetin can
be found in leaves of plants such as tea leaves and grains like
buckwheat. In 5-FU-resistant BEL/5-FU cells, QUE would prevent
ABCB1/P-gp and MRPs from functioning and expressing (Chen
et al., 2018). Dox, PTX, VCR, and QUE combined treatment
substantially reduces ABCB1/P-gp expression and eliminates
breast CSCs (Li S. et al., 2018). Additionally, quercetin suppresses
colorectal and breast CSCs (Azizi et al., 2022). QUE can control
HIF-1α, which re-sensitizes 4T1 cells, MCF-7/Dox cells, and
HCT116 cancer cells to DDP and etoposide (Kim et al., 2012).
Through the miR-217-KRAS axis, QUE boosts osteosarcoma
143B cells’ sensitivity to the chemotherapy drug DDP (Zhang X.
et al., 2015).

Collateral sensitivity (CS) involves the exploration of
medications that specifically induce a higher level of cytotoxicity

in MDR cells compared to the original non-resistant cells (Efferth
et al., 2020). Galangin (GA), which has been extracted from the root
of Alpinia galanga, has greater inhibitory effects on MDR cells
(Lorendeau et al., 2014), and demonstrates collateral sensitivity
(Lorendeau et al., 2017). A study found that GA increased the
p53-dependent apoptotic pathway in ovarian cancer cells A2780/
CP70/DDP and OVCAR-3/DDP, favorably inducing apoptosis
compared to normal ovarian cells (Huang et al., 2020). GA
through inactivating p-STAT3/p65 and Bcl-2 pathways attenuates
DDP-induced resistance in A549 cells (Yu et al., 2018).

An isoflavone called puerarin (PU) was isolated from the plant
Pueraria lobata (Willd.) Ohwi. There is a study by Li et al. which
shows that PU suppresses Akt and JNK phosphorylation and
promotes death in K562/Dox cells, as well as that autophagy
makes tumor cells more resistant to anticancer drugs (Liu Q.
et al., 2021). By inhibiting the NF-κB pathway and reducing
MDR1 expression, PU sensitized K562/Dox cells (Liu Q.
et al., 2021).

The primary daidzein metabolites genistein (IFG) and
7,3′,4′-trihydroxyisoflavone (TDI), which are present in fruits,
nuts, and soy, also exhibit anti-Nrf2 and anti-ROS properties.
The degree of methylation in the Keep1 promoter region is
controlled by IFG, which decreases nucleus transcription and
raises ROS in A549 cells (Cort et al., 2016; Liu et al., 2016). IFG
and radiation are both effective in increasing cell apoptosis in

TABLE 1 (Continued) The Effect of Natural Product-Derived Compounds on Cancer cells’ MDR.

Compunds Cells Drug-
resistant

Mechanism ReF

and LC3-II; Enhance phosphorylation of
AMPK

Epigallocatechin-3-
gallate

KB-A1 Dox Inhibition P-gp Li et al. (2018a)

OVCAR3; SKOV3 DDP Increasing the expression of CTR1; Inhibiting
the degradation of CTR1

Wang et al. (2015)

Ovary cancer; NSCLC DDP Increasing ROS generation and
CTR1 expression; Regulation of ERK1/2/
NEAT1 pathway

Chen et al. (2020a)

Curcumin A2780cp DDP Demethylate in the promoter region of MEG3;
Downregulation of miR-214

Zhou et al. (2017)

HL-60 Dox Regulation the HOTAIR/miR-20a-5p/
WT1 pathway

Liu et al. (2021a)

EF24 Ovarian DDP Overexpression of p53 and p21 proteins;
Induced apoptosis; Activating PTEN
phosphorylation inhibiting Akt

Ibáñez Gaspar and McMorrow
(2023)

GO-Y030 K562 mitoxantrone Inhibit BCRP Murakami et al. (2017)

Terpenoid β-Elemene A549 ER Inhibition P-gp Lin et al. (2018)

MCF-7 Dox; Doc Regulation miRNA29a, miRNA222; Inhibiting
the PI3K–AKT signaling pathway

Hu et al. (2019)

A549 DDP Decreasing mitochondrial membrane
potential and increasing intracellular ROS
concentrations

Liskova et al. (2021)

SPC-A1 DDP Promoting Beclin-1 Li et al. (2021)

Coumarins PFC HCT-116 irinotecan Inhibits BCRP-mediated drug-transport
function

Kokubo et al. (2021)
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A549 cells. TDI downregulation of ABCB1/P-gp and MRPs leads
to a significant increase in EPI accumulation and attenuation of
EPI resistance in HeLa cells (Hummelova et al., 2015). The
methylation of some cancer-related genes may be hijacked by
cancer cells to promote tumorigenesis. Research shows that IFG
(0.5–10 μM) may lower the level of methyl DNA transference

(MNDF). IFG (0.5–10 μM) significantly decreased the
methylation of the Estrogen receptor β (ER-β) promoter in
prostate cancer (PCa), ER-β which has an inducing effect on
PCa cellular metabolism (Ji et al., 2022). IFG regulates caspase-3
and p38MAPK pathways and induces apoptosis in PC3 prostate
cancer cells (Song et al., 2020).

FIGURE 3
Chemical structures of Alkaloids, Polyphenols, Terpenoids and Coumarins having MDR modulatory activity.
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Luteolin (LU), 3′,4′,5,7-Tetrahydroxyflavone, is a compound
that is abundantly found in leaves and aromatic flowering plants. It
possesses anti-inflammation, anti-allergy, and anti-cancer
properties, and can function as either an antioxidant or a pro-
oxidant biochemically (Lo et al., 2012). Additionally, LU has the
power to dramatically decrease Nrf2 and enhance the cytotoxicity of
DDP in KKU-100 cholangiocarcinoma cells; HCT116/OXA and
SW620/OXA cells; A549/BLM/Dox cells and in MDA-MB 231/Dox
cells. By increasing the expression of the epithelial biomarker
E-cadherin, LU can reverse EMT. It also suppresses Hif-1α
signaling in cervical cancer cell lines to prevent the invasivity
from being activated (Imran et al., 2019). In pancreatic cancer
cells, LU induces apoptosis by blocking the K-RAS/GSK-3β/NF-
κB signaling pathway (Imran et al., 2019).

Honey, propolis, and the passion flower Passiflora caerulea all
contain chrysin, which is a 5,7-dihydroxyflavone. Chrysin has the
power to stop the efflux of ABCB1/P-gp from MDA-MB-231/
mitoxantrone cells and regulate the transport of nitrofurantoin
through ABCG2/BCRP from BCRP-overexpressing MCF-7 cells.
Moreover, chromatin sensitizes BCRP-transfected cells via
stimulating ATPase (Ahmed-Belkacem et al., 2005).

Due to the pseudo-dimeric shape of ABC transporters, Synthetic
compounds were synthesized from natural flavonoids using a “click
chemistry” method to efficiently produce a variety of triazole-
bridged homo- and heteroflavonoid dimers. Ac15(Az8)2, a
flavonoid dimer, inhibits BCRP potently, safely, and specifically.
Through the inhibition of BCRP-ATPase activity and drug efflux in
S1M180/topotecan cells, Ac15(Az8)2 restored intracellular drug
accumulation, according to mechanistic investigations (Chong
et al., 2022).

3.2 Alkaloids

Alkaloids are also secondary metabolites that are found in a
variety of plants, fungi, and bacteria worldwide. The presence of one
or more basic nitrogens, often in a heterocyclic ring, and significant
pharmacological activity characterize an alkaloid. Their P-gp
inhibitory function is likewise influenced by the basic nitrogen
atoms (Gonçalves et al., 2020) (Figure 3; Table 1).

Lycorine (LYC) is a commonly used alkaloids extracted from the
bulb of Lycoris radiate, recognized for its various biological effects,
which include anticancer, antiviral, antibacterial, and anti-
inflammatory activities (Roy et al., 2018). TCRP1 is a new
candidate for a human gene that is associated with
chemotherapeutic resistance. It is expressed extensively in various
types of cancer cells and is associated with chemotherapeutic
resistance (Liu X. et al., 2019). LYC lowers the levels of tongue
cancer and Hepatocellular Carcinoma (HCC) cells TCRP1 protein
by promoting the degradation pathway of TCRP1 protein, which
translates into repression of Akt/mTOR signaling, and therefore
activates apoptotic and autophagic abilities (Yu H. et al., 2017).
Bioinformatics analysis revealed that upregulation of
FABP5 expression facilitates acute myeloid leukemia (AML) cell
viability, protects AML cells from apoptosis. LYC downregulated the
expression levels of FABP5 and its target PPARγ, impaired AML cell
viability, and triggered apoptosis (Liang et al., 2023). By performing
extracellular, cytoplasmic, and nuclear roles, HMGB1 is crucial for

stress signaling as well as for the activation of autophagy. Because
autophagy is inhibited in human bone marrow CD138 primary
myeloma cells and multiple myeloma (MM) cell lines, LYC-induced
proteasomal degradation of HMGB1 inhibits the activation of the
MEK-ERK signaling pathway and Bcl-2 phosphorylation declines,
leading to the constitutive association of Bcl-2 with Beclin-1 (Roy
et al., 2016). LYC inhibits EGF-induced JAK/STAT signaling as well
as various downstream STAT3 targets, such as cyclin D1, Bcl-2, Bcl-
xL, matrix metalloproteinase 2 (MMP2), and the EMT promoter
Twist, which lowers prostate cancer cell line proliferation,
migration, invasion (Hu et al., 2015). Amaryllidaceae alkaloids
were investigated as MDR reversibles in human colon cancer
cells by derivatizing alkaloid hydroxyl groups into mono- and di-
carbamates. Di-carbamates that contain phenethyl or benzyl
moieties were found to be more potent inhibitors than verapamil.
The collateral sensitivity of a number of derivatives also suggested a
dual role in reversing P-gp-mediated MDR (Sancha et al., 2023).

Securinega alkaloids (SA) are indolizidine alkaloids derived
from the Asian plant Securinega suffruticosa’s leaf and root. SA
Several activities have been documented, including antiproliferative
activity, leukemia differentiation induction activity, MDR reversal
activity, antimalarial activity, and antibacterial activity (Hou et al.,
2023). Recent studies have found altering securinine at the C15 sites
increases the ability to reverse drug resistance caused by several
drugs, whereas derivatives with a bivalent mimic attached to the
C15 site increase the ability to induce differentiation and reverse
drug resistance caused by P-gp. Mechanism investigations indicated
MDR reversal action in HepG2/Doxvia reduction of P-gp function
against Dox (Hou et al., 2023).

The bisbenzyl isoquinoline alkaloid tetrandrine (TET), which
was isolated from the Chinese plant Stephania tetrandra (Han-Fang-
Chi), has anticancer effects because it inhibits cell proliferation and
induces apoptosis (Zhou et al., 2022b). Previous research has shown
that TET and its derivatives can reverse MDR caused by
osteosarcoma/Dox. TET may significantly increase intracellular
chemotherapeutic drug concentration by changing the expression
of the MDR1 gene and P-gp, and can be used in combination with
chemotherapy drugs to significantly inhibit P-gp expression (Zhou
et al., 2022b). TET inhibits drug efflux caused by
MDR1 overexpression and has anti-MDR action in Hep-2/VCR
cells (Li Y. et al., 2020). TET decreased transporter protein mRNA
and protein levels suppress MRP overexpression in MDR human
esophageal squamous carcinoma YES-2/DDP cells and epidermis-
like k2–mrp1 cancer cells (Wang et al., 2018). Molecular dynamics
simulations were employed to design OY-101, a novel chemical
compound derived from the modification of natural TET. OY-101
demonstrated selective and potent inhibition of P-gp (Zeng et al.,
2023). Fangchinoline (FAN) is a prominent bisbenzylisoquinoline
(BBIQ) alkaloid derived from the roots of S. tetrandra in the
Menispermaceae family that consists of two benzylisoquinoline
units joined by oxygen bridges. FAN has been shown to reverse
MDR in Caco-2 and CEM/Dox5000 cancer cells when combined
with Dox (Chan et al., 2021).

Oxymatrine (OMA) and matrine (MA), as natural compounds
derived from Sophora flavescens, have been reported to possess a
wide range of pharmacological properties, including anti-
inflammatory, antiviral, anti-tumor, and immunomodulatory
effects. In addition to considerably reversing cellular MDR,
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enhancing apoptotic induction, suppressing MRP1 expression, and
inactivating NF-κB signaling by lowering phosphorylated p65, OMA
alone or in conjunction with 5-FU significantly reversed cellular
MDR (Du and Shim, 2016). One of the signaling pathways
responsible for 5-FU resistance in CRC is NF κB. Combining
OMA and OXA improved both the in vitro and in vivo
anticancer effects of OXA in CRC cancer cells. These additive
effects were attained by suppressing the NF κB and PI3K/AKT/
mTOR signaling pathways, which decreased the treatment
resistance of CRC cancer cells. OMA is known to inhibit the NF
κB pathway, so its combination with OXA could provide an
enhanced therapeutic benefit (Chen M. H. et al., 2021). LRP, or
lung resistance protein, is a cytoplasmic vault protein that plays a
role in both the vesicular sequestration of drugs in the cytoplasm and
their translocation from the nucleus to the cytoplasm. MA reversed
drug resistance in OXA-resistant HT-29/OXA cells, increased HT-
29/OXA cells’ sensitivity to OXA in a dose-dependent manner, and
significantly decreased LRP and P-gp expression in HT-29/OXA
cells at the mRNA and protein levels. In K562/Dox cells, MA causes
a dose-dependent stoppage of the cell cycle at the G0/G1 phase,
which promotes autophagy (Li Z. et al., 2020).

Rutaecarpine (Rut), a bioactive alkaloid found inEvodia rutaecarpa,
has been associated with various pharmacological effects such as
analgesic, anticancer, and anti-inflammatory properties. On P-gp-
overexpressing MCF-7/Dox and A549/PTX cells, Rut dose-
dependently improved the effectiveness of Dox, PTX, and colchicine.
Since the ubiquitination pathway plays a major role in protein
degradation, the E3 ubiquitin ligase MARCH8 is an ABCB1/P-gp
substrate. MARCH8 interacts with ABCB1/P-gp to promote
ubiquitination and degradation (Zhang et al., 2023). Rut can boost
MARCH8 expression, which encourages the degradation of ABCB1/
P-gp (Zou et al., 2021). Castration-resistant prostate cancer (CRPC) is
largely brought on by androgen receptor splice variation 7 (AR-V7). Rut
restores the susceptibility of castration-resistant prostate cancer to anti-
androgen therapy in vitro and in vivo by specifically inducing AR-V7
protein degradation via K48-linked ubiquitination (Liao et al., 2020).

A bisindole alkaloid known as voacamine (VOA) was discovered
in the Voacanga and Peschiera species of the Apocynaceae family.
VOA possesses a variety of biological qualities, including
antibacterial action, resistance to Plasmodium falciparum, strong
neuroprotective activity against Alzheimer’s disease, and the ability
to inhibit the mutagenicity brought on by several genotoxic
substances (Theissinger et al., 2023). VOA was an effective
substrate for P-gp and acted as a competitive antagonist to
obstruct P-gp-mediated drug export. When VOA was
administered to U-2 OS-DX/Dox cells, laser scanning confocal
microscopy (LSCM) studies showed a disorganizing effect on
microtubules (Condello et al., 2020).

3.3 Polyphenols

A massive family of 10,000 plant compounds known as
polyphenols is mostly present in fruits, green and black tea,
coffee, red wine, chocolate, and seeds (Zhang Y. et al., 2022).
Polyphenols frequently have three-membered flavan ring
structures. In the body, free radicals primarily fall into two
categories: ROS and reactive nitrogen species (RNS). The

involvement of the B rings in scavenging ROS/RNS and the
capacity of hydroxyl groups connected to benzene rings to
donate a hydrogen atom or an electron to free radicals are
essential elements of the mechanism underpinning polyphenol
action. Cell death, EMT, ROS, DNA repair procedures, CSCs,
and epigenetics [such as MicroRNAs (miRNAs)] are some other
targets that polyphenols affect in order to combat chemoresistance
in cancer cells (Wang et al., 2022) (Figure 3; Table 1).

Numerous cancers, including bladder, prostate, breast, lung,
glioblastoma, colon, and ovarian, are affected by resveratrol (RES) in
terms of apoptosis (Ren et al., 2021). Under the regulation of MRP1,
various endogenous and xenobiotic substrates are absorbed and
eliminated. Due to the elevated levels of MRP1 gene expression in
Dox-resistant acute myeloid leukemia (AML)-2/DX300 cells, its
expression may lead to a decrease in drug cellular absorption
(Chen J. et al., 2019). RES with Dox decreases Dox IC50 from
0.96 ± 0.02 M to 0.52 ± 0.05 M in HCT 116 colorectal cancer cells,
increases Dox intracellularly, and inhibits the efflux action of P-gp
(Wang et al., 2020). Inhibitory the PI3K/Akt/mTOR pathway causes
the inhibitory impact of RES over P-gp in K562/Dox cells (Khan
et al., 2020). RES recognize miR-122-5p and regulates Bcl-2 and
CDKs, resulting in the chemosensitization of Dox-resistant breast
cancer MCF-7 cells (ALkharashi, 2023). In DDP-resistant human
oral cancer CAR cells, RES therapy promotes the expression of
autophagy-related genes, such as Beclin-1 Atg12 and LC3-II, at the
mRNA level and increases AMPK phosphorylation. This results in
regulated autophagy and pro-apoptosis-related signals to be send
(Chang et al., 2017). RES dramatically reduced the activation of
tumor-promoting factors (NF-κB, MMP-9, CXCR4) and epithelial-
to-mesenchymal transition-factors (increased vimentin and slug,
decreased E-cadherin) in TNF-induced activation of CRC cells by
preventing EMT and CSC formation (Buhrmann et al., 2018). RES
treatment results in elevated levels of DNA topoisomerase-II
(TOPO), an enzyme that is commonly found in malignancies
and plays a crucial role in maintaining DNA structure during
transcription and DNA replication. Furthermore, the RES-treated
group exhibited significantly higher levels of Topo-II compared to
other groups. It appears that RES promotes drug-induced DNA
damage in Dox-resistant PUMC-91/Dox cells (Skok et al., 2020;
Choi et al., 2022). 5-FU resistant (5-FU-R) cells may exhibit
resistance to the DNA-damaging chemical 1,3-bis(2-chloroethyl)-
1-nitrosourea (BCNU). However, when RES and BCNU are
combined, it is enhance the sensitivity and induce DNA damage
in 5-FU-R cells (Choi et al., 2022).

A significant polyphenolic component of green tea called
epigallocatechin-3-gallate (EGCG) has several beneficial
properties, including the capacity to lower stress, regulate
metabolism, prevent cancer, and offer protection from various
diseases. In drug-resistant KB-A1 cells, EGCG has been found to
alter P-gp activity and increase intracellular Dox concentration
(Tang et al., 2017; Li H. et al., 2018). The primary copper influx
transporter CTR1 is in charge of copper’s resistance to platinum.
Because EGCG raises CTR1 expression at the mRNA and protein
levels in ovarian cancer cells and upregulates the rapid DDP-
induced degradation of CTR1, OVCAR3 and SKOV3 ovarian
cancer cells are more vulnerable to DDP when it is present
(Wang et al., 2015). Ovarian cancer and non-small-cell lung
cancer (NSCLC) cells were made more susceptible to DDP when
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supplemented with EGCG by increasing ROS generation and
CTR1 expression through activating the ERK1/2/NEAT1 pathway
(Chen A. et al., 2020). Through suppression of the Bcr/Abl
oncoprotein and control of its downstream p38-MAPK/JNK and
JAK2/STAT3/AKT pathways, EGCG was able to decrease cell
proliferation and cause apoptosis in CML (Xiao et al., 2019). The
DDP-induced DNA damage is substantially repaired by the 5′-3′
structure-specific endonuclease ERCC1/XPF. A DNA-endonuclease
incision test based on fluorescence was used to identify (Heyza et al.,
2018). EGCG exhibits inhibitory effects on colorectal CSCs and lung
CSCs. It downregulates the activation of theWnt/β-catenin pathway
(Chen et al., 2017; Fujiki et al., 2018).

Curcumin (Cur) is an active polyphenolic pigment obtained
from the rhizomes of Curcuma longa. Cur is typically used for its
antioxidant, anti-inflammatory, wound-healing, and anti-
carcinogenesis qualities that halt the onset or progression of
cancer (Tomeh et al., 2019). The inhibition of ABC family
transporters by Cur in various cancer cells causes drug
accumulation within cancer cells (Dong et al., 2023). Cur is a
helpful medicine when used in conjunction with significant
chemotherapeutic medications to combat MDR. Cur causes DNA
damage in several cell lines and inhibits particular DNA repair
enzymes. Rad51-dependent homologous recombination is a crucial
DNA repair pathway that enables cancer cells to develop resistance
to medications that target tumor DNA damage. However, Cur has
been found to lower the expression of Rad51, leading to DNA
damage in cancer cells (Zhao et al., 2018; Wong, 2021). According to
reports, Cur is a powerful DNA hypomethylation agent that inhibits
DNMT1 activity by covalently attaching to and inhibiting the
catalytic thiol group of cysteine (C1226) (Wu et al., 2016; Tong
et al., 2020). By preventing the expression of DNMT1, Cur slows
down cell growth and triggers apoptosis in hepatocellular carcinoma
(Liu et al., 2017). Numerous varieties of multidrug resistant cancer
cells were revealed to have improper NF-κB regulation. The
expression of genes regulated by NF-κB is decreased as a result
of Cur’s suppression of NF-κB activity and prevention of NF-κB
binding to DNA (Zhou et al., 2017). Cur reduces IκBα kinase activity
in human head and neck squamous cell carcinoma cell lines, which
blocks NF-κB activity. By blocking the PI3K/AKT pathway, which
reduces NF-κB expression, Cur increases the sensitivity of cancer
cells to treatment (Mortezaee et al., 2019a; Villegas et al., 2021; Abadi
et al., 2022). Cur may demethylate in theMEG3 promoter area in the
A2780cp ovarian cancer cell line, which downregulates miR-214
and, indirectly, lowers DDP resistance (Zhou et al., 2017). Liu et al.
proposed a potential regulatory network involving HOX transcript
antisense RNA (HOTAIR), miR-20a-5p, and Wilms’ tumor 1
(WT1). Their findings demonstrated that Cur inhibits the levels
of WT1 in human acute myeloid leukemia cells (HL-60) or HL-60/
Dox cells. They also observed that the suppression of miR-20a-5p,
resulting in increased WT1 expression, attenuated the effect of Cur
on the resistance of leukemia cells to Dox. These results indicate that
Cur inhibits the resistance of tumor cells to Dox by targeting the
HOTAIR/miR-20a-5p/WT1 axis. Cur slows the proliferation of
cancer cells, as evidenced by the downregulation of NF-κB in
mantle cell lymphoma, oral MCF-7, and non-small-cell lung
carcinoma (Meiyanto et al., 2014). Additionally, the activation of
redox processes within cells leads to the generation of ROS, which
upregulates the apoptotic receptors on the membrane of tumor cells

(Mortezaee et al., 2019b). Cur decreases tumor cell growth and
increases apoptosis by upregulating the expression and activity of
p53, attenuating the regulation of antiapoptosis PI3K signaling and
MAPKs to boost endogenous ROS generation, and overexpressing
antiapoptosis genes such Bcl-2 (Mortezaee et al., 2019b). By
controlling oxidative stress, modulating fibrosis, activating SIRT1,
and encouraging cellular apoptosis, Cur may kill MCF7/TH,
HCT116R, and A549/Dox cancer cells (Gabr et al., 2022). A
therapeutic target, nicotinamide N-methyltransferase (NNMT)
has a variety of effects on CRC aggressiveness and 5-FU
resistance (Abadi et al., 2022). Cur has the ability to reduce
NNMT and p-STAT3 expression. Particularly in CRC cell lines
with significant NNMT expression, Cur may also lessen ROS
generation, G2/M phase cell cycle arrest, and cell growth
(Keyvani-Ghamsari et al., 2020; Gabr et al., 2022).

Cur plays a wide range of roles in cancer cells’ multidrug
resistance, but its clinical application is challenging. Cur’s weak
solubility, minimal absorption, restricted tissue distribution, and
quick metabolism are its significant drawbacks. Generating novel
Cur analogues is onemethod to solve these issues. EF24 is a developed
Cur analog. By suppressing NF-κB, HIF-1α, controlling the creation
of ROS, and controlling important genes by miRNA, EF24 prevented
cancer cells from going through the cell cycle and caused apoptosis
(Bisht et al., 2016; Ibáñez Gaspar and McMorrow, 2023). EF24 makes
ovarian cancer resistant cells more susceptible to DDP by causing an
overexpression of the p53 and p21 proteins in the G2/M checkpoint.
In DDP-resistant cells, it also induces apoptosis by promoting PTEN
phosphorylation and inhibiting Akt, a resistance cell (Su et al., 2023).
Go-Y030, EF24 analog of Cur, can stop K562/mitoxantrone cells from
producing mitoxantrone and pheophorbide A from ABCG2/BCRP
(Murakami et al., 2017). Another Cur homologue with better
bioavailability is CDF. Pancreatic cancer cells underwent apoptosis
and had their NF-κB activity inhibited when CDF and gemcitabine
were combined (Lee et al., 2018). Additionally, PTEN expression was
increased while overexpressed miR-21 expression was decreased by
CDF, which prevented cells resistant to gemcitabine from undergoing
cellular arrest (Lee et al., 2018). The androgen receptor (AR) in
prostate cancer has been reported to promote treatment resistance.
In vitro and in vivo, a Cur analog named ALZ003 significantly lowers
the survival of TMZ-sensitive and -resistant glioblastoma by
triggering FBXL2-mediated AR ubiquitination, which leads to its
degredation (Bott et al., 2016; Chen T. C. et al., 2020).

3.4 Terpenoids and Coumarins

3.4.1 Terpenoids
Terpenoid is a class of natural compounds that is both

extensively studied and structurally diverse. Terpenoids are
classified into monoterpenoids (C10), sesquiterpenoids (C15),
diterpenoids (C20), sesterterpenoids (C25), triterpenoids (C30),
tetraterpenes (C40), and polyterpenes based on the number of
isoprene units present in the parent structure. Terpenoids display
numerous medicinal benefits, such as hypoglycemia, liver
protection, antibacterial, anti-inflammatory, and anti-tumor
characteristics (Kumar and Jaitak, 2019) (Figure 3; Table 1).

The sesquiterpene chemical β-Elemene (β-ELE), derived from
Curcuma Rhizoma, exhibits properties such as inhibiting cell
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proliferation, arresting the cell cycle, inducing cell death, and
reversing MDR in chemotherapy. β-ELE may be able to
overcome drug resistance in human NSCLC A549/ER cells that
are resistant to erlotinib (ER) in vitro by lowering P-gp expression,
suppressing P-gp dependent drug efflux, and increasing intracellular
concentrations of anticancer drugs (Lin et al., 2018). MiRNAs found
in exosomes, function in the mechanism of intercellular
communication and modify chemosensitivity. The intercellular
transfer of certain miRNAs is partly responsible for the MDR of
tumor cells. The ability of MDR Breast Cancer Anti-Estrogen (BCA)
cells to propagate drug resistance is determined by the exosomes
they produce. Recent research has demonstrated that β-ELE
influences exosome content, affects the expression of certain
MDR-related miRNAs, and reduces the exosome-mediated
transmission of drug resistance, thereby enhancing the cells’
capacity to overcome MDR (Zhang J. et al., 2015). In the
exosomes of multidrug-resistant gastric cancer cells, miR-1323 is
significantly expressed, which encourages EMT of gastric cancer
sensitive cells and enhances their capacity for invasion and
migration (Tan et al., 2021). The expression of Cbl-b is likewise
suppressed by miR-1323, resulting in the attenuation of drug
resistance in cancer cells with MDR. By reversing the drug
resistance and metastasis generated by exosomes, β-ELE reduces
the ability of SGC7901 cells to resist drugs and migration (Tan et al.,
2021). In terms of internal miRNA-29a and miRNA222, human
MCF-7 cells that were resistant to Docetaxel (MCF-7/Doc) and Dox
(MCF-7/Dox), respectively, were significantly downregulated by β-
ELE. The tumor cells’ medication resistance was overcome by
suppression of the PI3K-AKT signaling pathway. PTEN, a
common tumor suppressor gene that blocks the PI3K-AKT
signaling pathway, is the two miRNAs’ target gene and is
significantly increased after miRNA-29a and miRNA222 are
downregulated (Hu et al., 2019). A549/DDP cells underwent
apoptosis when exposed to β-ELE because it decreased the
mitochondrial membrane potential and increased intracellular ROS
levels whichmay cause apoptosis andmitochondrial damage (Liskova
et al., 2021) By increasing Caspase-3 protein expression, β-ELE may
be used to overcome gastric cancer resistance (Low et al., 2021). β-ELE
can additionally reduce chemoresistance in lung cancer by inhibiting
the paracrine activities mediated by cyclin-dependent kinase inhibitor
P21, which are regulated by CDK8. SPC-A1/DDP, a DDP-resistant
lung cancer cell line, is more susceptible to apoptosis and medication
treatment when β-ELE which is accomplished via fostering Beclin-1-
induced autophagy (Li et al., 2021).

PU-1 is a sesquiterpene with the α-methylene-γ-lactone moiety
that has been isolated from numerous plant species of the genera
Inula and the genus Pulicaria. It might have anti-inflammatory and
anti-cancer effects. In CCRF-CEM leukemic cells, the PI3K/AKT
pathway prevents the development of drug-resistant tumor cells by
causing DNA damage, obstructing the G2/M cell cycle, and
triggering apoptosis. Resazurin reduction tests showed that PU-1
suppressed this pathway (Hegazy et al., 2021).

3.4.2 Coumarins
Coumarins are a class of organic compounds that are widely

distributed in nature, including in plants such as fruits, vegetables,
and herbs. They are characterized by a benzene ring fused to an
alpha-pyrone ring. The phenylfurocoumarin derivative (R)-9-(3,4-

dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo
[3,2-g]chromen-7-one (PFC) in HCT-116/BCRP colon cancer cells,
drastically lowers the IC50 of SN-38 while inhibiting ABCG2/BCRP-
mediated drug transport function. Additionally, in the ABCG2/
BCRP-overexpressing HCT-116/BCRP cell xenograft mice model,
PD-stimulated ABCG2/BCRP-mediated ATP hydrolysis reduced
irinotecan resistance without resulting in toxicity (Kokubo et al.,
2021). In a recent study, fifteen sesquiterpene coumarins were
extracted and purified from various Ferula species and tested for
their ability to reverse MDR. The study found that the sesquiterpene
coumarins enhanced Dox cytotoxicity in MCF-7/Dox cells, which
are Dox-resistant derivatives of MCF-7 cells that overexpress the
P-gp protein. Further analysis of the structure-activity relationship
of these sesquiterpene coumarins indicated that ring-opened
drimane-type compounds, specifically farnesiferol B, farnesiferol
C, and lehmferin, exhibited the most potent inhibitory effects on
P-gp pump efflux. These compounds could be considered as lead
scaffolds for future modifications to improve their efficacy in
reversing MDR (Kasaian et al., 2015) (Figure 3; Table 1).

4 Conclusion

Drug resistance is usually the reason why cancer treatments fail,
despite major advancements in the manufacturing of new
chemotherapeutic medications. Researchers have started taking
conventional treatments like natural components more into
consideration recently because of their reduced cost and adverse
effects. Numerous studies have shown that the efficacy of natural
products can influence various elements of cancer medication
resistance. As described in this review, natural products have
significant effects in overcoming drug resistance and enhancing
the efficacy of chemotherapy. Natural products modulate inhibition
of ABC transporters, increase in DNA damage, regulate ncRNA-
mediated multidrug resistance, activate apoptotic cells, regulate the
expression of metabolic enzymes, and chemosensitivity in various
types of cancers both in vitro and in vivo.

Natural products are easily obtainable, but improving their qualities
requires considering factors such as biological availability,
biocompatibility, and half-life to enhance clinical efficacy and reduce
risks to patients. To create more efficient antitumor drug delivery
systems, the structure of tumor drugs is utilized to optimize drug
properties. Additionally, computer-aided drug design can help in the
development of natural products by predicting drug targets, modifying
drug structure, and predicting toxicity. The focus of cancer therapeutic
medication research is now on creating safe and effective natural
products with fewer harmful side effects.

Patients who have developed medication resistance are being
treated in clinical settings using a multi-targeted approach. For
example, MET amplification causes cells to bypass EGFR and
activate the PI3K/AKT pathway, allowing them to resist the effects
of the EGFR inhibitors and develop resistance. For patients who have
both MET amplification and EGFR mutations, the best treatment
strategy is to use a dual-targeted EGFR/MET regimen to inhibit both
EGFR and MET. To delay the development of resistance in KRAS-
G12C patients, combination therapy is likely to become the preferred
approach. When compared to mono-therapeutic regimens,
combination techniques can significantly increase a therapy’s safety
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and effectiveness, particularly if the combined medications have
different modes of action. The creation of biomarker-driven
therapeutics is the result of the identification of certain resistance
mechanisms. Both targeting tactics that anticipate the selection of
resistant and combinatorial strategies that target multiple resistance
nodes are being considered. Clinical research on natural products
currently available indicate that they are primarily adjuvant
medications. For instance gemcitabine coupled with celecoxib and
curcumin in the treatment of patients with pancreatic cancer, in a
prospective phase II trial, the safety and efficacy of curcumin (2000 mg/
day in four capsules of 500 mg each) and gemcitabine (10 mg/m2) were
evaluated in 44 patients with advanced and metastatic pancreatic
cancer. The data showed a median progression-free survival and
overall survival of 8.4 and 10.2 months, respectively. These findings
suggest that the combination of gemcitabine and curcumin phytosome
can safely and effectively increase the rate of response to first-line
treatment for advanced pancreatic cancer. Natural substances may act
as sensitizing agents in the therapy of cancer when used in
combination, according to a growing body of research. In order to
bring more effective treatments for reversing MDR to the clinic, it is
crucial to uncover more potent and less dangerous chemicals and
research their pharmacological mechanisms using cutting-edge
technology, such as high-throughput screening methods, next-
generation sequencing, advanced imaging techniques, and
computational modeling. These technologies enable researchers to
analyze complex biological systems at a molecular level, identify
novel drug targets, and design innovative therapeutic strategies. By
harnessing cutting-edge technology, scientists can accelerate the
discovery and development of new drugs that can overcome
multidrug resistance and improve patient outcomes. In order to
encourage their clinical application and offer fresh ideas for the
treatment of tumor drug resistance, this review covers the research
progress of natural products in tumor drug resistance during the past
few years.
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