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Background: Microarrays are a well-established and widely adopted technology
capable of interrogating hundreds of thousands of loci across the human
genome. Combined with imputation to cover common variants not included
in the chip design, they offer a cost-effective solution for large-scale genetic
studies. Beyond research applications, this technology can be applied for testing
pharmacogenomics, nutrigenetics, and complex disease risk prediction.
However, establishing clinical reporting workflows requires a thorough
evaluation of the assay’s performance, which is achieved through validation
studies. In this study, we performed pre-clinical validation of a genetic testing
workflow based on the Illumina Global Screening Array for
25 pharmacogenomic-related genes.

Methods: To evaluate the accuracy of our workflow, we conductedmultiple pre-
clinical validation studies. Here, we present the results of accuracy and precision
assessments, involving a total of 73 cell lines. These assessments encompass
reference materials from the Genome-In-A-Bottle (GIAB), the Genetic Testing
Reference Material Coordination Program (GeT-RM) projects, as well as
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additional samples from the 1000 Genomes project (1KGP). We conducted an
accuracy assessment of genotype calls for target loci in each indication against
established truth sets.

Results: In our per-sample analysis, we observed a mean analytical sensitivity of
99.39% and specificity 99.98%. We further assessed the accuracy of star-allele calls
by relying on established diplotypes in the GeT-RM catalogue or calls made based
on 1KGP genotyping. On average, we detected a diplotype concordance rate of
96.47% across 14 pharmacogenomic-related genes with star allele-calls. Lastly, we
evaluated the reproducibility of our findings across replicates and observed 99.48%
diplotype and 100% phenotype inter-run concordance.

Conclusion:Our comprehensive validation study demonstrates the robustness and
reliability of the developed workflow, supporting its readiness for further
development for applied testing.

KEYWORDS

SNP microarray, copy number variation (CNV) calling, microarray-based genotyping,
pharmacogenomics, single nucleotide variant (SNV) calling

1 Introduction

Pharmacogenomics (PGx) is a specialized field of medicine that
explores the interplay between an individual’s genetic makeup and
their response to medications (Pirmohamed, 2023). It investigates
how genetic variants influence drug metabolism, efficacy, and safety,
aiding in understanding and predicting individual responses to
specific drugs. One prominent example of its application is found
in the study of the cytochrome P450 family 2 (CYP2), an extensively
researched and well-understood enzyme family responsible for
metabolizing approximately 25% of available drugs (Goh et al.,
2017). For example, individuals with loss-of-function alleles in
CYP2C19 exhibit reduced activation of the prodrug clopidogrel,
while those with extra copies of CYP2D6 genes may experience
adverse effects from standard doses of codeine (Scott et al., 2013;
Crews et al., 2014). Additional drug-metabolizing enzymes, such as
DPYD, TPMT, NUDT15, and VKORC, as well as transporters like
SLCO1B1, also constitute common PGx targets (Pirmohamed,
2023). By identifying and interpreting these genetic variations,
PGx facilitates the development of personalized therapeutic
strategies aimed at enhancing drug efficacy and minimizing
adverse drug reactions (ADRs).

Studies have shown that up to 70% of ADRs have strong genetic
associations (Chan et al., 2016; Swen et al., 2023), and the financial
burden of trial-and-error prescriptions is estimated to be immense,
amounting to USD 30 billion (Sultana et al., 2013). To date,
consortia such as the Clinical Pharmacogenetics Implementation
Consortium (CPIC) and the Dutch Pharmacogenetics Working
Group (DPWG) have published genotype-based guidelines for
over a hundred gene-drug pairs, providing a robust and
evidence-backed framework to facilitate the integration of PGx
into everyday clinical practice (Relling and Klein, 2011; Bank
et al., 2018; Relling et al., 2020; Abdullah-Koolmees et al., 2021).
Remarkably, it is estimated that over 90% of the population carries at
least one actionable pharmacogenomic variant, indicating the vast
potential of PGx testing in guiding drug therapy and reducing the
risk of ADRs (Dunnenberger et al., 2015; Pirmohamed, 2023). Thus,
when contemplating a broad implementation of PGx testing, it is

important to select a technology that is both widely accessible and
cost-effective. Additionally, as outcomes of the tests can be used to
guide therapeutic decisions, it is important to establish the analytical
and clinical validity of the results before implementing them into
patient care. For many molecular tests, assessing the analytical
performance is relatively simple, as they yield binary outcomes
like positive or negative results. However, PGx markers present a
spectrum of genotypes which, when combined, can lead to diverse
phenotypes. For example, CYP enzyme metabolizer phenotypes can
range from “poor metabolizers” to “ultra-rapid metabolizers”.
Therefore, careful consideration needs to be taken when
designing validation studies to endorse the use of PGx tests
(Huebner et al., 2023).

In this study, we describe the development and validation of a
clinical reporting workflow for pharmacogenomics testing. This
workflow uses the Illumina GSA chip, a widely available and
cost-effective genetic testing solution, to report on 503 distinct
variants across 25 PGx genes associated with 303 clinically
actionable drugs. While previous studies have described the use
of the GSA chip for PGx reporting (e.g., Reisberg et al., 2019), they
did not include an accuracy assessment based on well-established
reference materials. Our study addresses this gap by providing a
comprehensive analytical validation of the Illumina GSA chip,
specifically focusing on its application in preemptive
pharmacogenomics testing.

2 Materials and methods

2.1 PGx reporting workflow and validation
study design

We have developed a pharmacogenomics reporting workflow
centered around the Illumina GSA v3 chip (see Figure 1 and
Methods). The patient journey begins with a pre-test counseling
session, during which eligibility for the pharmacogenomics (PGx)
test is determined by a qualified physician. Typically, this test is
recommended for patients who are currently taking the
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medications being examined, those about to start treatment, or
those with a specific interest. During this session, eligible
participants receive an overview of the test’s purpose
and procedure.

Following this informative session, participants provide consent
and submit buccal samples that will be used during the genotyping
process. In addition, they also complete an indication-specific survey
detailing their current medications, information that will be used
during the post-test consultation discussion. The buccal swab
sample is then sent to a clinically accredited laboratory for DNA

extraction and genotyping (see Section 2.2). Finally, a PDF report is
generated and provided to the patient during a post-test
consultation (example recommendation: Supplementary File S1).

Our reporting workflow encompasses a total of
25 pharmacogenes and 503 distinct variants corresponding to
429 haplotypes (Supplementary Tables S1, S2). These genes have
been selected to include the Very Important Pharmacogenes
listed in PharmGKB which overlap with markers in the Illumina
GSA chip (N = 21 out of 35 Tier 1 VIPs) (Whirl-Carrillo et al.,
2012). To validate the accuracy of the test results, we designed a

FIGURE 1
Patient journey for PGx testing workflow. During the pre-test consultation, patients provide informed consent, complete a PGx survey, and submit a
DNA sample from a buccal swab. This sample undergoes DNA extraction and array genotyping, followed by bioinformatic analysis to characterize variants
in selected PGx genes. Genotype calls are subsequently interpreted into metabolizer profiles and annotated with actionable recommendations from
published guidelines. Finally, results are compiled into a PDF report, which is discussed with the patient during a post-test consultation.

FIGURE 2
Validation study design. (A). DNA from a total of 73 unique reference cell lines were genotyped on the GSA chip to assess genotyping accuracy.
Samples were selected due to the availability of well-characterized reference genotype calls (1KGP, GIAB) or reference calls for important PGx genes that
have been validated experimentally by multiple labs (GeT-RM). (B). Breakdown of samples by experiment. GIAB samples were ran in triplicate in a 3:1:
1 design to enable measurement of inter- and intra-run reproducibility. Selected GeT-RM samples with known copy number variations (CNV) were
also run across three runs to assess inter-run reproducibility of CNV calling.
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comprehensive validation study using well-established reference
materials, selected to represent a broad range of PGx outcomes
(Figure 2; Supplementary Table S3). Specifically, we utilized
three GIAB cell lines, 45 cell-lines from the United States
Centers for Disease Control and Prevention (CDC) Genetic
Testing Reference Material (GeT-RM) Coordination Program
(Pratt et al., 2010), including 37 samples that are also part of the
1000 Genomes Project (1KGP) (Byrska-Bishop et al., 2022), and
an additional 26 cell lines from the 1KGP to conduct six distinct
experiments, which included assessments of accuracy (per-
sample, per-site, CYP2D6 copy number variation (CNV)
calling and star allele concordance) as well as intra- and
inter-run reproducibility. Importantly, among the
429 haplotypes included in the reportable range of our test,
84 could be directly tested under this experimental design.

2.2 Samples and genotyping

The three Genome-In-A-Bottle (GIAB) DNA samples were
obtained from the National Institute of Standards and
Technology (NIST). In addition, a total of 70 DNA samples were
purchased from the Coriell Institute for Medical Research, (https://
www.coriell.org). These samples were selected to cover an array of
ethnicities and pharmacogenes (Supplementary Table S2).

Infinium Global Screening Array-24 v3.0 BeadChips were
processed according to the standard Infinium High-throughput
Screening (HTS) protocol according to manufacturer’s
instructions. Signal intensities were converted into idat files using
an iScan® machine (Illumina Inc.).

For CNV calling, B-allele frequency (BAF) and log normalized
intensity ratio (LRR) data were generated using GenomeStudio
v2.0.5 (Illumina Inc.) with a custom cluster file created according
to the manufacturer’s instructions. Array-based sample genders
were also estimated in this step.

2.3 Data processing

2.3.1 Quality control
For genotyping, idat files were converted to gtc format based on

human genome build GRCh38. p13 using the Illumina Array
Analysis Platform Genotyping Command Line Interface (iaap cli)
(v1.1.0) followed by conversion to VCF using the python script gtc_
to_vcf.py (v1.2.1) (https://github.com/Illumina/GTCtoVCF).

Chip-wide autosomal call rates were calculated using plink2 (v
alpha3.7) and only samples with greater than 0.98 call rate and
whose array-based genders matched to the expected genders were
processed. Sites with >90% missing calls and with less than 0.5%
minor allele frequency were removed prior to phasing with Eagle2
(Loh et al., 2016) and imputation with minimac4 (Das et al., 2016)
using the 1KGP Phase 3 (Byrska-Bishop et al., 2022) data as a
reference panel. The final set of genotypes used for diplotype calls
includes both directly genotyped as well as imputed calls with
genotype likelihoods above 0.8. Where a site has both a
genotyped and imputed call, the directly genotyped site is utilized
for diplotype calling instead of the imputed call.

2.3.2 CNV calling
CNV calls were made with PennCNV (Wang et al., 2007) using a

custom PFB (Population frequency of B allele) file and GC-content
model generated using scripts from PennCNV. CNV calls for
samples with LRR standard deviation greater than 0.2, BAF drift
greater than 0.01 and a wave factor greater than 0.05 after GCmodel
adjustment are not considered further. CNV calls supported by less
than 10 probes or covering less than 250 bp were removed using the
filter_cnv.pl script from PennCNV.

Reference CNV calls were obtained based on GeT-RM and
PacBio calls (Chen et al., 2021). In addition, reference calls for
WT copy number, whole gene duplications and deletions were
obtained from a 1KGP WGS analyzed dataset generated in a
previous study from Lee et al. (2022) (Lee et al., 2022). When a
duplication is detected, the CYP2D6 allele that is duplicated cannot
be assigned based on the available information and is reported as
“copy number≥3” in order to indicate that while a duplication is
detected, the exact duplicated allele cannot be specified.

2.3.3 Diplotype calling
Diplotype calls for CYP2D6, CYP2C19, CYP2B6, CYP2C9,

CYP3A5, CYP4F2 and SLCO1B1 were made using a combination
of PharmCAT (v2.2.3) (Sangkuhl et al., 2020) and in-house custom
scripts to resolve ambiguous genotypes. When more than one
diplotype is possible based on the genotyped SNPs, this is
classified as an “ambiguous” call and the call is resolved where
possible based on the frequency in the population to which the
sample belongs. In addition, the metabolizer profile is classified as a
“Possible” call to indicate that other calls may be possible based on
the information acquired. For CYP2D6, in-house scripts were also
used to make additional adjustments based on copy number changes
detected: *5 reported when a deletion was detected, or “copy
number≥3” added when duplications were detected. Calls for
other genes were generated using in-house scripts based on allele
tables from PharmGKB.

Additionally, pypgx ver 0.20.0 (Lee et al., 2022) was utilized by
running the “run-chip-pipeline” with the parameter:
–assembly GRCh38.

2.3.4 Metabolizer profiles
In general, for genes with diplotype calls, metabolizer profiles were

assigned based on diplotype calls referring to a curated set of gene,
diplotype and phenotype calls obtained from PharmGKB. For samples
with CYP2D6 duplications, metabolizer profiles were assigned after
calculation of copy number (Crews et al., 2014) using in-house
scripts. In such a case, the activity score for duplications of either
haplotype is calculated assuming a maximum of three CYP2D6
copies and a range of activity scores is obtained (i.e., activity score
for two copies of star allele 1 and one copy of star allele 2 as well as one
copy of star allele 1 and two copies of star allele 2). Based on the
minimum and maximum values of the activity scores, the metabolizer
phenotype is assigned. If the activity scores fall within the ranges of two
different metabolizer profiles, the activity score of the more frequent
combination of all possible copy number permutations of the two star
alleles according to PharmGKB is reported. In all cases, the word
“possible” is added to the metabolizer profile to indicate that another
metabolizer profile is still possible.

Frontiers in Pharmacology frontiersin.org04

Gan et al. 10.3389/fphar.2024.1349203

https://www.coriell.org
https://www.coriell.org
https://github.com/Illumina/GTCtoVCF
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1349203


2.4 Assessment of Accuracy and precision

Genotyping accuracy was assessed using GIAB samples (HG001,
HG002, HG005) and 1KGP samples. For 1KGP samples, genotype
calls from the 30× 1,000 Genome Phase 3 Reanalysis with DRAGEN
3.7.6 accessed from https://registry.opendata.aws/ilmn-dragen-1kgp
on 3 November 2023 were used as the truth set. For GIAB samples,
DeepVariant genotype calls from UltimaGenomics accessed on
7 June 2023 (GIAB, 2023) were used as the truth set. Variant
calls were classified as true positive, true negative, false positive
and false negative as previously described (Kishikawa et al., 2019).
Discordant calls in CYP2D6, which is known to have many
structural variants, and G6PD, on the X chromosome, were
adjusted manually, if supported by external information
(expected copy numbers or gender).

The following metrics were calculated as such:

• Callability: The percentage of successfully genotyped loci out
of all considered genotypes.

• Genotype concordance: The percentage of genotyped sites
with a correct call.

• Analytical sensitivity: The percentage of variant sites
correctly identified.

• Analytical specificity: The percentage of non-variant sites
correctly identified.

• Precision: The percentage of variants correctly genotyped
relative to the number of reported variants.

• No-call rate: Percentage of missing genotypes out of all
considered genotypes.

Per-site concordances were calculated using the same definitions
for all 503 variants on a per-site basis out of 65 samples per site.

For diplotype concordance, concordance was defined as the
percentage of samples with a correct call out of samples with a
reference call. For UGT1A1, CYP2D6 and SLCO1B1 genes,
diplotype calls that differed between the reference dataset calls
and our pipeline were still considered concordant if appropriate
based on the pipeline’s reportable range. Specifically, *1 and *2 for
CYP2D6 were evaluated as equivalent as the key variant for *2 is
not directly genotyped, in the absence of an imputed call, will
default to *1. For UGT1A1, *60 was considered equivalent to *1.
Further, as only *80 was genotyped, a call for *80 was considered to
be concordant with calls for *28 and *37 in the reference set. As in
the PharmGKB UGT1A1 notes (version: 04/28/2023), as only
*80 is tested, in the report, the decreased function of *80 based
on its high linkage equilibrium with *28 and *37 is inferred,
although it is noted that it is not 100%. For CYP2C19, *38,
which is the reference allele reported in the absence of any
mutation, was considered equivalent to *1. The truth set for
CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4,
CYP3A5, CYP4F2, TPMT, and UGT1A1 diplotype calls were
obtained from GeT-RM. However, for DPYD, G6PD, NUDT15,
and SLCO1B1, the truth sets were PharmCAT calls based on 1KGP
NGS VCFs. This was due to either a scarcity of samples with GeT-
RM calls in the validation set or updates in the haplotype
definitions since the GeT-RM studies were conducted
(SLCO1B1 and DPYD). Diplotypes were considered concordant
as long as there were samples with consistent calls in the truth sets.

Confidence intervals for point estimates of the above metrics
were estimated using the Wilson score interval (Wilson, 1927;
Newcombe and Altman, 2011). Confidence intervals for means of
the above metrics were estimated by bootstrapping (n = 10,000).

2.4.1 Allele frequencies
Alleles frequencies were obtained from the Phase

31,000 Genomes dataset described above. Samples were subsetted
by population and allele frequencies were calculated using bcftools
(v1.9) +fill-tags. In addition, population level aggregated allele
frequencies per-site were obtained from the Tohoku Medical
Megabank project (Kuriyama et al., 2016; Tadaka et al., 2023).

3 Results

3.1 Accuracy assessment of genotype calls

First, we aimed to assess the accuracy of our genotyping and
imputation workflow by evaluating our ability to obtain correct
genotype calls at individual PGx loci. We conducted two
complementary analyses: one centered on per-site assessments
and the other on per-sample evaluations.

In the per-site analysis, we evaluated variant calling performance
for 503 PGx loci, including 33 imputed sites (Supplementary Table
S1) in the 65 samples of the validation set with reference genotype
calls. Out of 503 sites, 278 loci had a call in the 1KGP Phase
3 reference set. Of these, 114 sites (41.00%) could be evaluated
with a true positive with the genotyping validation set. For the
remaining sites, only two loci (rs114096998 in DPYD and
rs34223104 in CYP2B6) are present in the 1KGP dataset with an
allele frequency of higher than 1% and 15 loci (rs35350960 in
UGTA1 genes; rs55951658 in CYP3A4; rs2306282,
rs72559747 and rs71581941 in SLCO1B1,
rs72559747 rs186364861 in NUDT15; rs1135835, rs1135833,
rs72549352, rs567606867, rs567606867 and rs118203758 in
CYP2D6; and rs72554664, rs72554665, rs137852342 and
rs137852327 in G6PD) have an allele frequency of higher than
1% in at least one of the East Asian populations represented in the
dataset (CHS, CDX, KHV, CHB and JPT). Further, only 18 of the
unassessed SNPs had a minor allele frequency of greater than 0.1%
in the Tommo 54K dataset consisting of 54,300 Japanese individuals,
indicating that the majority of unevaluated sites are present at low
frequencies in Asian populations.

Of the 114 sites that could be evaluated, only four (rs1135840,
rs1058164 and rs1065852 in CYP2D6; and rs3093105 in CYP4F2) had a
concordance of less than 95%. Among these, for the three loci associated
with CYP2D6, discrepancies could be attributed to differences in query
versus reference dosages. For these sites, the discordant samples were
known to harbor structural variants of CYP2D6, and the dosages
reported in the reference calls were not consistent with the expected
diplotypes. For example, all three were reported to be homozygous
alternate (dosage = 2) in the 1KGP dataset for HG01190 and NA18861,
which are known to have only a single copy of the CYP2D6 gene each,
while the microarray results reported the expected dosage of 1. This led
to the calls being labelled as false negatives, due to the discordance with
the truth data. Further, rs1058164 for NA19207, which has a duplicated
copy of CYP2D6 *2, was reported as heterozygous according to the
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reference VCF, whereas the microarray results reported the expected
dosage of 2 for the same SNP, thus resulting inmisclassification as a false
positive. After adjustment, the results indicated that 99.80% of sites (502/
503) exhibited 95% concordance with the expected calls (Figure 3), thus
demonstrating a high level of per-site accuracy in our workflow.

After manual review of discordant calls, our results revealed
consistently high analytical sensitivity and specificity across all tested
samples, withmeans of 99.39% [95%CI = 91.67–100.00] and 99.98 [95%
CI = 99.79–100.00], respectively (Table 1). Altogether, these findings
demonstrate the applicability of our workflow in accurately determining
genotypes for small variants at PGx loci.

Additionally, we conducted an extensive evaluation of the
CYP2D6 gene, which encodes the Cytochrome P450 2D6 enzyme
responsible for metabolizing approximately 25% of clinically used

drugs. This gene exhibits significant genetic diversity among
individuals, including structural variants and complex events like
hybrid rearrangements (Zhou et al., 2017; Gaedigk et al., 2018). The
presence of two pseudogenes in the human genome further
complicates genotyping efforts. In this study, our primary
objective was to assess the capability of our assay to accurately
genotype complex variants within the CYP2D6 gene. To achieve this,
we included 22 cell lines with challenging CYP2D6 haplotypes into
our experimental design, encompassing whole gene deletions,
duplications, and complex events such as hybrid rearrangements
and co-occurring deletions and duplications. Based on this dataset,
we estimate the analytical sensitivity and specificity for CNVs in
CYP2D6 gene to be 60.00% [95% CI = 35.75–80.18] and 100.00%
[95% CI = 89.85–100.00], respectively (Table 2). To troubleshoot the
observed decrease in analytical sensitivity, we divided the
performance assessment by structural variant type. We identified
that the drop in performance was primarily driven by hybrid tandem
duplications, where analytical sensitivity was 0.00% (95% CI = 0.00,
39.03), compared to 90.91% (95% CI = 62.26, 98.38) for duplications
and deletions (Table 2).

3.2 Concordance of PGx star alleles

Next, we proceeded to evaluate diplotype calling accuracy in
14 out of 25 pharmacogenes that are reported as star-alleles in our
test (Supplementary Table S2). An inherent challenge of this analysis
lies in the extensive number of star-alleles associated with each

FIGURE 3
Genotyping concordance against 65 accuracy controls (per-site analysis). Heatmap showing concordance of 114 variants with true positives. 1KGP
and GIAB samples were utilized as accuracy controls. Imputed sites have a lower callability compared to sites that are directly genotyped. TP (hom alt),
True positive homozygous alternate; TN (het), true positive heterozygous; TN, True negative; FP, false positive; FN, false negative; NA, not in reference.

TABLE 1 Per-sample accuracy assessment (SNPs and INDELs). Mean sample
callability, genotype concordance, analytical sensitivity, analytical
specificity, precision and no-call rates of 65 samples, focusing on 503 loci,
with 95% confidence intervals estimated by bootstrapping.

Metric Mean (%)

Callability 96.08 [94.11, 97.45]

Genotype concordance 99.96 [99.79, 100.00]

Analytical sensitivity 99.39 [91.67, 100.00]

Analytical specificity 99.98 [99.79, 100.00]

Precision 99.54 [93.75, 100.00]

No-call rate 3.92 [2.55, 5.89]
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pharmacogene, best exemplified by CYP2D6, which includes over
100 known star-alleles in PharmGKB (Zhou et al., 2017; Gaedigk
et al., 2018). As a result, finding reference materials to cover each of
the alleles during validation is a challenging task, and some alleles
(e.g., population-specific ones or novel additions) may not even be
present in the current reference material resources. To address this
challenge, we selected samples from the GeT-RM database to cover
as many samples as possible with the highest diversity of star alleles
for the pharmacogenes in our test, prioritizing frequent haplotypes.
We curated a final validation set of 73 samples, covering star-alleles
for 84 out of 429 possible haplotypes that can be identified by the
503 sites in our test, and achieving a coverage rate of 35.40%. Among
the genes considered, UGT1A1 displayed the highest coverage level,
while G6PD had the lowest coverage (3.39%), aligning with known
variation and lack of reference data in GeT-RM, where only two out
of the 186 non-reference haplotypes are represented, and where the
majority of “haplotypes” are single SNP calls (McDonagh
et al., 2012).

Having identified an appropriate sample set that maximizes star-
allele representation, we proceeded to genotype each sample using
our PGx workflow and subsequently evaluated the concordance of
predicted diplotype calls against their respective truth sets. Two
sources of truth sets were utilized: GeT-RM calls were used as the
truth set for CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6,
CYP3A4, CYP3A5, CYP4F2, TPMT and UGT1A1. For DPYD,
G6PD, NUDT15 and SLCO1B1, truth sets were generated based
on 1KGP NGS VCFs run on PharmCAT and pypgx. For NUDT15
and G6PD, this was due to the limited number of samples with GeT-
RM calls among the validation set, and for DPYD and SLCO1B1, the
1KGP dataset was used as a reference based on PharmCAT calls due
to updates in the haplotype definitions since the GeT-RM studies
were carried out. Per-gene concordances were calculated using only
samples that had calls with either the GeT-RM or PharmCAT 1KGP
reference truth sets (Table 3). For genes that were evaluated against
PharmCAT calls (NUDT15, G6PD, DPYD and SLCO1B1), samples
assessed with another diplotype caller, pypgx (Lee et al., 2022). The
results for the comparison against pypgx were consistent: 93.44%
concordance for calls from the current pipeline for SLCO1B1
compared to both callers, and 100% concordance against G6PD,
NUDT15 and DPYD (Supplementary Table S4). For DPYD, calls
were considered concordant if the same mutations were reported.

For example, the call was considered concordant for HG01608,
where pypgx identified haplotype 1 as Reference and haplotype 2 as
c.1627A>G (*5); c.85T>C (*9A) and the current pipeline reported
c.85T>C (*9A)/c.1627A>G (*5).

The results of this analysis revealed an average diplotype
concordance of 96.47% across the 14 genes assessed (Table 3).
Notably, certain genes, including NUDT15, DPYD, G6PD,
UGT1A1, CYP3A5, CYP3A4, CYP2C8, and CYP2C9, displayed a
high degree of concordance consistent with the relatively low
number of variants under consideration (average of three
diplotypes), in part due to other genotypes being relatively rare.

In contrast, the CYP2D6 gene displayed the lowest diplotype
concordance (87.50%), which was expected due to the
aforementioned challenges. Specifically, fusion or hybrid
haplotypes, such as *10+*36, *68+*4, were identified as *10 or *4,
respectively, which aligns with the lowest performance in detecting
CNVs previously discussed. In addition, rarer star alleles such as *15,
*82, *17 and *56 were either not identified or were reported as wild
type (the absence of a reportable mutation). Further, for SLCO1B1,
*37/*37 was incorrectly called as *14/*37 in five samples due to the
inability to resolve the correct diplotype based on the expected
frequency in the population.

Importantly, when interpreting diplotypes into metabolizer
profiles, phenotype concordance improved across all genes, with
an average observed value of 98.07% (Table 3). The same
improvement was also detected for CYP2D6 (97.22% phenotype
concordance), despite the diplotype call differences due to hybrid/
tandem duplications described above. This is most likely due to the
most common CYP2D6 hybrid tandem duplications being
associated with star alleles with similar allele functions. For
example, *10+*36, which is the fusion of a no-function *36 allele
and a decreased function *10 allele, is itself a decreased function
allele, which is functionally the same as the *10 allele detectable by
the pipeline. Another example is *68+*4 (no function allele), which
is functionally the same as *4 only, that is reportable by the pipeline.
For SLCO1B1, *14/*37 and *37/*37 both evaluated as normal
function and overall, the phenotype concordance was 100.00%.
The lowest phenotype concordance was CYP2C19 (92.31%).

For CYP2C19, there were two samples with discordant diplotype
calls out of the 26 samples assessed with truth set calls (92.31%
concordant). The mismatched calls were for NA19109 (reported as

TABLE 2 CYP2D6 structural variation detection accuracy assessment. Concordance, sensitivity, specificity and precision metrics are shown along with the
95% confidence intervals. The assay had a callability of 78.79% [95%CI = 67.49–86.92] and a no-call rate of 21.21% [95%CI = 13.08–32.51] across the 66 cell
lines included in the analysis.

Structural variation
class

Number in
reference set

Genotype
concordance (%)

Analytical
sensitivity (%)

Analytical
specificity (%)

Precision
(%)

All 22 88.46 [77.03, 94.60] 60.00 [35.75, 80.18] 100.00 [90.59, 100.00] 100.00 [70.09,
100.00]

Duplication + Deletion 17 98.08 [89.88, 99.66] 90.91 [62.26, 98.38] 100.00 [91.43, 100.00] 100.00 [72.25,
100.00]

Duplication (xN) 9 98.08 [89.88, 99.66] 85.71 [48.69, 97.43] 100.00 [92.13, 100.00] 100.00 [60.97,
100.00]

Deletion (*5) 8 100.00 [93.12, 100.00] 100.00 [51.01, 100.00] 100.00 [92.59, 100.00] 100.00 [51.01,
100.00]

Hybrid tandem duplication 8 88.46 [77.03, 94.60] 0.00 [0.00, 39.03] 100.00 [92.29, 100.00] N/A

Frontiers in Pharmacology frontiersin.org07

Gan et al. 10.3389/fphar.2024.1349203

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1349203


*38/*38 Possibly Normal Metabolizer, while *17/*17 Ultrametabolizer is
the expected call) and NA19178 (*38/*38 Possibly Normal Metabolizer
reported while *1/*6 Intermediate Metabolizer is the expected call). The
*17 haplotype is identified by a mutation in rs12248560. In this pipeline,
this site is imputed and was a no call in the case of NA19109. For
NA19178, *6 is defined by rs72552267, a site that is directly genotyped by
the GSA chip. In the absence of calls in these two cases with two separate
underlying causes, theCYP2C19WTstar allele was reported (i.e., *38). In
addition, the pipeline reported these as ‘Possibly Normal Metabolizer’s)
to indicate the potential of another metabolizer profile being possible.

Apart from this, it was noted that CYP2C9, CYP2B6 and DPYD
have diplotype callabilities of less than 95% (92.59, 88.89% and
86.05% respectively) although the diplotype concordances are still
high (100, 95, 100% respectively). In these cases, this was due to
multiple potential diplotype calls which could not be resolved
resulting in no calls.

3.3 Precision (reproducibility) study

Finally, we conducted a precision study to evaluate the
reproducibility of our workflow, considering both intra-run and
inter-run consistency at both the genotype and diplotype levels.

To assess intra-run precision of genotype calls, we utilized three
GIAB samples (HG001, HG002, and HG005), each ran in triplicate,
achieving 100% concordance across all replicates (Supplementary
Table S5). In the inter-run evaluation of genotype calls, we expanded
the dataset to include five additional GeT-RM samples, also ran in
triplicate, consistently observing 100.00% concordance across all
runs (Supplementary Table S5). These additional GeT-RM samples
were deliberately selected because they harbor known duplications
and deletions in CYP2D6. Further analysis of intra-run performance

for CYP2D6 diplotype calling confirmed 100.00% diplotype calling
concordance across all runs (Supplementary Table S6). Lastly, by
expanding the analysis to include all reported genes, we identified an
average of 100.00% intra-run concordance and 99.50% inter-run
concordance (Supplementary Table S6). The slight reduction in
inter-run genotype concordance was influenced by differences in
variants called for MT-RNR1 between runs of NA19226. However,
phenotype concordance was 100.00% between all samples, including
for MT-RNR1 of NA19226 where all samples were assigned a
Normal Risk based on the results.

4 Discussion

Pharmacogenomics (PGx) is revolutionizing personalized
medicine by providing insights into individual drug responses
based on genetics. This approach has the potential to
significantly improve treatment outcomes, reduce adverse drug
reactions, and ultimately lower treatment costs (Pirmohamed,
2023). It is estimated that over 90% of the population carries at
least one actionable pharmacogenomic variant (Dunnenberger et al.,
2015; Pirmohamed, 2023). Furthermore, PGx information is already
actionable: the DPWG and CPIC consortia have to date curated
dosing guidelines based on genetics for over 140 drugs (Bank et al.,
2018; Abdullah-Koolmees et al., 2021). As such, with the increasing
incorporation of PGx information into patient care, there emerges a
pressing need for the development and validation of routine PGx
tests. Our study introduces a pre-emptive PGx reporting workflow
that utilizes the widely available Illumina GSA chip, covering
503 variants across 25 pharmacogenes, and including 21 out of
the 35 Tier 1 Very Important Pharmacogenes listed in PharmGKB
(those with markers in the Illumina GSA chip).

TABLE 3 Concordance of PGx star alleles. Diplotype and phenotype callability and concordance for 14 genes with haplotype calls. For UGT1A1, genotype
concordance was adjusted by assuming *60 is equivalent to *1 and that *80 is equivalent to *27 and *37. For CYP4F2, the phenotype concordance is
assessed based on if *3 is present or absent since *3 is used for the drug recommendation.

Gene Size of reference
call set

Diplotype
callability (%)

Diplotype
concordance (%)

Phenotype
callability (%)

Phenotype
concordance (%)

CYP2B6 27 88.89 [71.94, 96.15] 95.83 [79.76, 99.26] 88.89 [71.94, 96.15] 95.83 [79.76, 99.26]

CYP2C19 27 96.30 [81.72, 99.34] 92.31 [75.86, 97.86] 96.30 [81.72, 99.34] 92.31 [75.86, 97.86]

CYP2C8 27 100.00 [87.54, 100.00] 100.00 [87.54, 100.00] NA [NA, NA] NA [NA, NA]

CYP2C9 27 92.59 [76.63, 97.94] 100.00 [86.68, 100.00] 92.59 [76.63, 97.94] 100.00 [86.68, 100.00]

CYP2D6 40 80.00 [65.24, 89.50] 87.50 [71.93, 95.03] 90.00 [76.95, 96.04] 97.22 [85.83, 99.51]

CYP3A4 27 100.00 [87.54, 100.00] 100.00 [87.54, 100.00] 100.00 [87.54, 100.00] 100.00 [87.54, 100.00]

CYP3A5 27 100.00 [87.54, 100.00] 100.00 [87.54, 100.00] 100.00 [87.54, 100.00] 100.00 [87.54, 100.00]

CYP4F2 25 100.00 [86.68, 100.00] 92.00 [75.03, 97.78] 100.00 [86.68, 100.00] 100.00 [86.68, 100.00]

DPYD 43 86.05 [72.74, 93.44] 100.00 [90.59, 100.00] 90.70 [78.40, 96.32] 100.00 [91.03, 100.00]

NUDT15 64 100.00 [94.34, 100.00] 100.00 [94.34, 100.00] 100.00 [94.34, 100.00] 100.00 [94.34, 100.00]

SLCO1B1 63 96.83 [89.14, 99.13] 93.44 [84.32, 97.42] 98.41 [91.54, 99.72] 100.00 [94.17, 100.00]

TPMT 31 100.00 [88.97, 100.00] 93.55 [79.28, 98.21] 100.00 [88.97, 100.00] 93.55 [79.28, 98.21]

UGT1A1 25 100.00 [86.68, 100.00] 96.00 [80.46, 99.29] 100.00 [86.68, 100.00] 96.00 [80.46, 99.29]

G6PD 63 100.00 [94.25, 100.00] 100.00 [94.25, 100.00] 100.00 [94.25, 100.00] 100.00 [94.25, 100.00]
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To assess the accuracy and reliability of our test, we designed a
comprehensive validation study, incorporating a selection of well-
established reference materials from the GIAB (Springer Nature,
2015) and GeT-RM consortia (Pratt et al., 2010; 2016; 2022; Gaedigk
et al., 2022). Additionally, we included cell lines from the
1000 Genomes Project (Byrska-Bishop et al., 2022) to address
loci not covered by the aforementioned resources, but that were
part of the reportable range of our test. In total, our study
comprised 73 unique samples, strategically chosen to maximize
the representation of star-alleles across the 25 genes covered by our
test. It complements previous studies utilizing the GSA chip for
PGx reporting (Reisberg et al., 2019) by providing a
comprehensive performance evaluation based on well-
established reference materials.

We analyzed the results from this sample set to establish the
analytical performance of the assay, including per-sample and
per-site accuracy, CNV calling performance in CYP2D6, star
allele concordance, and as intra- and inter-run reproducibility.
From these studies, and focusing on the target 503 PGx loci, we
determined the assay’s mean analytical sensitivity to be 99.39%
[95%CI = 91.67–100.00] and the analytical specificity to be
99.98% [95%CI = 99.79–100.00]. To complement these
performance metrics, and identify systematic sources of error
at each locus, we also conducted a more detailed per-site
analysis, evaluating each target site across all samples in the
validation set. We observed that 99.80% of loci (502/503)
consistently demonstrated concordance with the expected
calls across samples. Next, following the interpretation of
genotype calls into star-alleles and diplotype calls, we
continued our assessment by comparing diplotype results to
those in the truth set. On average, for the 14 genes with
haplotypes, the diplotype concordance was 96.47%. Notably,
the evaluation of a subset of samples in replicate settings yielded
consistent results, with an average 99.48% inter-run and 100%
intra-run concordance rates. Overall, our workflow was
demonstrated to exhibit both accuracy and precision. When
compared to other array-based PGx assays, our test exhibited
performance levels closely aligned with the reported literature
standards for accuracy (ranging from 93% to 100%) and
precision (ranging from 97% to 100%) (Hartshorne et al.,
2013; Martins et al., 2013; Borobia et al., 2018; Collins et al.,
2019; Tang et al., 2021; Kanji et al., 2023).

While our study provides an in-depth analysis of the
Illumina GSA chip for PGx testing, it is also important to
address its limitations. Firstly, our validation, conducted
using cell lines, highlights the need for further research with
clinically relevant samples before deployment in healthcare
settings, as these samples would more accurately represent
the complexity of genetic variation and its impact on drug
metabolism. Secondly, using microarrays as the genotyping
platform presents specific challenges. For instance, complex
genetic events, particularly in genes like CYP2D6, are difficult
to accurately genotype due to structural variants, hybrid
rearrangements, and pseudogenes. In our assessment of SV
calling performance for CYP2D6, we noted that no signature
of a duplication was detected except for one instance of a non-
identical whole gene duplication (NA18526, *1/*36 × 2+*10). In
general, such hybrid genes are detected only over specific exon/

introns depending on whether the tandem duplication occurs
over the 3′ or the 5′ end of the gene. Based on the current
settings, the minimum size of a reported CNV is 250 bp, which
may be too small to identify most of such duplications.
Potentially, reducing the minimum CNV size may allow
better detection of such variations, however, it is expected
that a higher number of false positives may also be reported.
Additionally, diplotype concordance for SV-containing star-
alleles in CYP2D6 was lower than that of the other evaluated
diplotypes (91.30% if ignoring tandem hybrid samples vs 87.50%
for all samples). Similarly, we encountered limitations in
detecting repeats in UGT1A1. These observations led us to
exclude this specific variant type from the reportable range of
the assay, a decision aligned with common practices in the field,
including the Association for Molecular Pathology’s guidelines
for PGx testing (Pratt et al., 2018; Pratt et al., 2019; Pratt et al.,
2021). However, it does mean that not all possible diplotypes are
captured by the assay. Another limitation of microarrays is their
restricted ability to fully phase variant calls, which has affected
our resolution of calls for genes such as CYP2C9. Furthermore,
when specific markers are missing on the chip, or signal does not
overlap with the expected clusters, we rely on imputation,
limiting our ability to detect rare or novel alleles, as observed
in our variant calls for SLCO1B1 and CYP2C19. Emerging
sequencing technologies, especially long-read sequencing, are
poised to bridge this performance gap and standardize
reportable loci, thereby minimizing discrepancies across tests
(van der Lee et al., 2020). However, these methods are
comparatively more expensive and are typically reserved for
situations where cost-efficiency is not the primary
consideration. Targeted assays that could reduce the costs of
long-read sequencing are beginning to emerge (e.g., Twist
Alliance Long-Read PGx Panel), but they still require
significant upfront investment in the instrument. Therefore,
our primary goal in this study was to develop a
pharmacogenomics test with broad adoption potential,
leading us to choose the Illumina GSA platform for its
widespread availability and cost-effectiveness. Furthermore,
the platform’s capacity to provide data beyond the target loci
of the PGx assay opens the door to various additional
applications.

Altogether, the notion of pre-emptive PGx testing seamlessly
integrating into healthcare frameworks is no longer a distant vision
but an impending reality. Numerous research endeavors, including
randomized controlled trials, have gathered evidence supporting the
customization of drug therapy based on pharmacogenetic testing
targeting specific drug-gene interactions to improve patient
outcomes (Mallal et al., 2008; Pirmohamed et al., 2013; Coenen
et al., 2015; Henricks et al., 2018; Claassens et al., 2019).
Additionally, several studies have reported significant reductions
in hospital admissions, emergency department visits, and overall
healthcare expenditures, indicating the potential cost-effectiveness
of genetics-informed treatment approaches (Brixner et al., 2016;
Finkelstein et al., 2016; Elliott et al., 2017). Notably, the PREPARE
study, conducted across seven European countries with diverse
healthcare settings and encompassing a cohort of 6,944 patients,
evaluated the impact of genotype-guided prescriptions using a 12-
gene pharmacogenetic panel (Swen et al., 2023). This prospective
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real-world implementation study revealed a 30% reduction in
clinically relevant adverse drug reactions when employing a
panel-based pharmacogenetic testing strategy.

However, the universal integration of PGx into the standard
healthcare landscape is not without its challenges. These encompass
a range of practical considerations that extend beyond the accuracy
of the underlying genetic tests (Pirmohamed, 2023). Among them,
the notable lack of awareness and training among healthcare
professionals often leads to suboptimal utilization of
pharmacogenomic testing. This knowledge gap extends beyond
healthcare practitioners to include patients, who frequently
remain uninformed about the potential benefits and accessibility
of such tests. Operational challenges are also present and entail the
need for streamlined processes for test ordering, result
interpretation, and the immediate availability of results to
healthcare professionals during patient care. Furthermore, the
financial aspect should not be underestimated, particularly in
countries lacking uniform insurance coverage, where the cost
implications of pharmacogenomic testing can be prohibitive, even
with cost-efficient solutions like microarrays. Lastly, navigating the
ethical and privacy dilemmas associated with issues such as
informed consent, data confidentiality, and the potential for
genetic discrimination adds further layers of complexity.
Addressing these intricate challenges requires a collaborative
effort involving researchers, healthcare experts, policymakers,
educators, and various stakeholders. Based on our research,
which leverages an easily accessible microarray chip, we maintain
an optimistic outlook that our solution, alongside others, will serve
as a catalyst for the broader adoption of PGx testing.
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