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With the rapid advancement of genetic and protein engineering, proteins and
peptides have emerged as promising drugmolecules for therapeutic applications.
Consequently, there has been a growing interest in the field of chemical
modification technology to address challenges associated with their clinical
use, including rapid clearance from circulation, immunogenicity, physical and
chemical instabilities (such as aggregation, adsorption, deamination, clipping,
oxidation, etc.), and enzymatic degradation. Polyethylene glycol (PEG)
modification offers an effective solution to these issues due to its favorable
properties. This review presents recent progress in the development and
application of PEGylated therapeutic proteins and peptides (TPPs). For this
purpose, firstly, the physical and chemical properties as well as classification
of PEG and its derivatives are described. Subsequently, a detailed summary is
provided on the main sites of PEGylated TPPs and the factors that influence their
PEGylation. Furthermore, notable instances of PEG-modified TPPs (including
antimicrobial peptides (AMPs), interferon, asparaginase and antibodies) are
highlighted. Finally, we propose the chemical modification of TPPs with PEG,
followed by an analysis of the current development status and future prospects of
PEGylated TPPs. This work provides a comprehensive literature review in this
promising field while facilitating researchers in utilizing PEG polymers to modify
TPPs for disease treatment.
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1 Introduction

With the development of gene recombinant technology, therapeutic proteins and
peptides (TPPs) currently account for 10% of the global pharmaceutical market and are
projected to exceed US$70 billion annually due to their distinctive attributes, including high
specificity, potent bioactivity, and minimal side effects (Wang et al., 2002; Leader et al.,
2008; Manning et al., 2010; Du et al., 2015). The Food and Drug Administration (FDA) has
granted clinical approval for more than 239 medicinal TPPs. However, despite their
increasing utilization in clinical practice, most TPPs suffer from several drawbacks such
as low solubility, poor stability, short half-life, and high immunogenicity that compromise
their efficacy and restrict their therapeutic applications (Veronese and Pasut, 2005).
Chemical modification emerges as a robust strategy to enhance the stability, solubility,
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and reduce the immunogenicity profile of TPPs (Braman, 2002;
Sung et al., 2003; Qin et al., 2005; Veronese and Mero, 2008).
Notably, significant attention has been directed towards developing
novel polymers aimed at improving the properties of TPPs.

The linear polymer polyethylene glycol (PEG) is composed of
repeated ethylene glycol units [-(O-CH2-CH2)n] and has a
molecular weight (MW) range of 0.4–150 kDa. It has been
extensively used in the pharmaceutical industry for several
decades due to its favorable properties, such as high
hydrophilicity, low viscosity, non-immunogenicity, and excellent
biocompatibility (Guichard et al., 2017; Zuma et al., 2022a). The
covalent conjugation of PEG to TPPs plays a crucial role in
regulating and determining the structure, function, activity,
immunogenicity, and pharmacokinetic profiles of drug molecules.
In the late 1970s, PEG was initially employed to modify bovine
serum albumin (BSA), resulting in improved immunological and
soluble properties compared to its unmodified form (Abuchowski
et al., 1977). In the subsequent two or three decades, PEG
modification technology has undergone rapid development to
prolong the biological half-life of TPPs, diminish their
immunogenicity, and promote their stability, therapeutic efficacy,
as well as accumulation in target organs or cells through improved
permeability and retention effects (Knauf et al., 1988; Nakaoka et al.,
1997; Chapman, 2002; Basu et al., 2006; Treetharnmathurot et al.,
2008; Nojima et al., 2009b; Park et al., 2010; Erak et al., 2018;

Guichard et al., 2018). It has been demonstrated that PEGylated
interferon λ (PEG-IFN-λ) exhibits no inflammatory side effects or
broad-spectrum antiviral activity both in vitro or in vivo, including
against hepatitis and symptomatic coronavirus disease 2019
(COVID-19) (Leader et al., 2008; Manning et al., 2010; Du et al.,
2015). Reis et al. evaluated the effectiveness of PEG-IFN-λ in
preventing COVID-19 and reported a 41% reduction in time to
COVID-19-related deaths or hospitalizations following
administration of a single subcutaneous injection containing
180 μg of PEG-IFN-λ (Manning et al., 2010). Currently, PEG-
IFN-λ1 is the sole available IFN-λ therapeutic agent. The use of
PEGylated IFN-λ significantly decreases viral loads among patients
with acute COVID-19, and it may serve as an effective therapeutic
agent against this disease (Reis et al., 2023). Moreover, pegilodecakin
(PEGylated interleukin-10) has been demonstrated to play a pivotal
role in the inhibition of tumor growth and metastasis (Autio and
Oft, 2019; Tannir et al., 2021). Recently, several PEGylated
antimicrobial peptides (AMPs), such as OM19r-8, N6, Onc72,
SAAP-148, etc., have shown potential in enhancing resistance
against proteolytic enzymes, promoting antibacterial/
immunomodulatory activities, and prolonging in vivo half-time
(Cui et al., 2021; Li et al., 2022; Mohammed et al., 2023; Van
Gent et al., 2023). In general, PEGylation of TPPs offers various
advantages for overall efficacy. These include improving solubility,
stability, permeability, and pharmacokinetic properties, while

FIGURE 1
Some advantages and disadvantages of PEGylated TPPs. Challenges in the clinical application of TPPs include their short half-life, poor
pharmacokinetics, instabilities, and immunogenicity, which limit their therapeutic effectiveness. PEGylation can enhance the solubility and membrane
permeability of TPPs through the hydrophilicity of PEG molecules and improve their pharmacokinetics and efficacy by increasing accumulation in target
organs or sites (Levy et al., 1988; Casey et al., 2000; Guiotto et al., 2003; Chae et al., 2009; Singh et al., 2014; Cui et al., 2021; Li et al., 2022).
Additionally, PEGmodification can reduce clearance by the reticuloendothelial system and immunogenicity by shielding from proteolytic enzymes while
decreasing cytotoxicity (Vugmeyster et al., 2012; Benincasa et al., 2015). Moreover, PEGylation of TPPs may promote membrane permeability (Tan et al.,
2019; Li et al., 2022). However, a major disadvantage of TPPs is the potential loss of bioactivity or function following PEGylation due to significant
conformational changes involved. Subcutaneous administration of PEGylated TPPs may result in low bioavailability due to their waxy nature, and
unnatural PEG polymers used can contribute to poor biodegradability. To address these issues, several solutions exist including careful selection
appropriate PEG molecules, optimization of reaction conditions for PEGylation (including temperature, time, pH, molar ratio, etc.), and utilization of
natural PEG polymers (Witt et al., 2001; Armstrong et al., 2007; Imura et al., 2007b; Schlapschy et al., 2013; Cao et al., 2021; Li et al., 2022).
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reducing glomerular filtration clearance rate, immunogenicity, and
toxicity. Additionally, it extends drug circulation time (Figure 1)
(Knauf et al., 1988; Nakaoka et al., 1997; Chapman, 2002; Basu et al.,
2006; Nojima et al., 2009b; Park et al., 2010; Li et al., 2022). However,
the widespread application of PEGylated TPPs also presents certain
potential drawbacks, such as diminished bioactivity, poor
bioavailability and limited biodegradability due to waxy behavior
or the use of unnatural PEG polymers (Figure 1) (Witt et al., 2001;
Imura et al., 2007a; Armstrong et al., 2007; Schlapschy et al., 2013;
Ko and Maynard, 2018; Cao et al., 2021; Li et al., 2022).

Several studies have comprehensively reviewed various aspects
of PEGylation, focusing on the technology and modification of non-
TPP drugs. In this study, we conducted a comprehensive survey on
PEGylated TPPs, providing detailed insights into the
physicochemical properties and classification of PEG and its
derivatives, sites modified by PEGylation in TPPs, as well as
factors influencing the PEG modification process. Furthermore,
we highlighted typical cases and current developments in the
field of PEGylated TPPs, followed by an analysis of the potential
application of this technology in TPPs.

2 Physicochemical properties and
classification of PEG and its derivatives

2.1 Chemical structure of PEG and its
derivatives

PEG is a linear polymer with hydroxyl groups at both ends,
which is formed by gradually adding ethylene oxide to water or
ethylene glycol. It consists of repeated oxyethylene units. The
simplest structure of PEG is a straight-chain hydroxyl-terminated
polyether represented by the following structural formula: HO-
(CH2CH2O)n-CH2CH2-OH (Roberts et al., 2002) (Figure 2). The
terminal hydroxyl group of PEG serves as the functional group in
chemical modification reactions, but its reactivity is low; therefore, it
needs to be activated for modifying TPPs. Monomethoxy PEG
(mPEG) is commonly used for TPP modification, and its general
structure can be depicted as CH3O–(CH2CH2O)n-CH2CH2-OH

(Figure 2). mPEG is obtained by blocking one end hydroxyl
group of PEG with a methyl group to prevent crosslinking and
agglomeration with TPPs during the modification process (Zhang
et al., 2007).

2.2 Biological properties of PEG and its
derivatives

The MWs of linear and branched chain PEGs used in TPPs
typically range from 3 to 60 kDa, which is larger compared to
nanomedicines like Doxil and mRNA-based COVID-19 vaccines
that have a size of 2 kDa (Na et al., 2008; Shi et al., 2022). PEG
exhibits hydration in aqueous solution, with each ethane oxide unit
(-CH2-CH2-O-) binding 2–3 water molecules. Consequently, the
apparent MW of PEG in solution is significantly higher than that of
proteins or peptides with the same MW (Antonsen and Hoffman,
1992). Youn et al. (2008) used PEGylated salmon calcitonin (sCT)
with a relative MW of 5 kDa and observed that the MW of sCT
modified with PEG5000 reached as high as 259 kDa, for exceeding
its actual MW of 84 kDa. This property not only prolongs the
circulating half-life of PEGylated protein drugs but also enhances
their stability in solution. Moreover, PEG demonstrates good
solubility in water and most organic solvents while being
insoluble in ether and aliphatic hydrocarbons, making it an
amphiphilic molecule (Henning, 2002). Interestingly, the
immunogenicity of PEGylated TPPs may be reduced due to steric
hindrance caused by PEG, which can impede immune recognition
(Harris et al., 2001; Shi et al., 2022). For instance, PEGylation of
asparaginase could eliminate its antigenicity (Abuchowski et al.,
1977; Duval et al., 2002; Molineux, 2003; Wang et al., 2012).

2.3 Classification of PEG derivatives

With the development of biotechnology, PEG derivatives have
been categorized into three distinct generations based on their MWs
(Table 1; Figure 3). The first-generation of lowMW PEG derivatives
primarily involved coupling with the amino group of TPPs (Miron

FIGURE 2
Synthetic chemical formula of PEG andmonomethoxy PEG. “n” represents the average number of repeating oxyethylene groups (Zhang et al., 2007).
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and Wilchek, 1993). Notable examples from this first generation
include PEG succinimide carbonate (PEG-SC), PEG benzotriazole
carbonate (PEG-BTC), PEG dichlorotriazine, PEG tresylate, PEG
p-nitrophenyl carbonate, and PEG trichlorophen. Among these,
both PEG-SC (Zalipsky et al., 1992) and PEG-BTC are extensively
employed in TPPs (Dolence et al., 1997) as they selectively react with
lysine residues within protein molecules to form carbamates.

Additionally, Adagen (PEG-ademase bovine), OncoSpar (PEG-
aspargase), and PEG-Intron (PEG-interferon α-2b) were also
modified using linear PEG from the first generation (Veronese
and Pasut, 2005). However, first-generation PEG derivatives often
exhibit weak interactions upon conjugation with proteins and
undergo side reactions with protein drugs. Consequently,
numerous issues arise, including the formation of multiple side

TABLE 1 Characteristics of PEG and its derivatives used in TPPs.

Classification Features Cases References

The first generation Instability,
strong toxicity,

poor
homogeneity,

etc.

PEG-dichlorotriazine
derivatives, PEG-
trifluoroethyl

sulfonate, PEG-
succinimide succinate,

PEG-succinimide
carbonate, etc.

Abuchowski et al.
(1977), Zalipsky and
Lee (1992), Miron and
Wilchek (1993), Gais
and Ruppert (1995),
Dolence et al. (1997)

The second
generation

Better
protection
the active

sites of TPPs

N-terminal site-modified
PEG derivatives, such as
mPEG-propionaldehyde;
mercap to site-modified
PEG derivatives, such as
PEG-maleimide (MAL-
PEG); controlled release
PEG derivatives: such as

PCLA-PEG-PCLA;
heterobifunctional PEG
derivatives: such as FA-

PEG-SPIONs

Kinstler et al.
(1996),

Brocchini et al.
(2008), Kizilel
et al. (2010);
Wang et al.
(2011), Pasut
and Veronese

(2012)The third generation Higher stability
and longer half-
life of PEG-

modified TPPs

Y-type and tree-type
MAL-PEG, etc.

Zhang et al. (2012),
Vugmeyster et al.

(2012)

FIGURE 3
Classification of PEG and its derivatives. The market currently utilizes five types of PEG materials, namely, linear, Y-shaped, multiarm, fork-shaped,
and branchedmaterials. Among these options, linear PEG is commonly employed for the PEGylation of TPPs (Kolate et al., 2014; Lu and Zhang, 2018). “n”
represents the average number of repeating oxyethylene groups.

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2024.1353626

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1353626


reaction products (Abuchowski et al., 1977) and degradation
products (Gais and Ruppert, 1995), as well as difficulties in
separating modified products (Zalipsky et al., 1992).
Furthermore, these derivatives display poor stability, high
toxicity, and inadequate homogeneity. In contrast, second-
generation PEG derivatives employ more efficient functional
groups such as aldehydes, esters, and amides for specific and
functional chemical modifications (Wang et al., 2011). For
instance, Kinstler et al. (1996) initially discovered PEG-aldehyde
derivatives to achieve site-specificmodification of theN-terminal amino
group of polypeptides. Second-generation PEG derivatives can also
accomplish targetedmodifications of sulfhydryl groups (Brocchini et al.,
2008); commonly used sulfhydryl-modified PEG derivatives include
PEG-maleimide (MAL-PEG), PEG-vinyl sulfone (VS-PEG), etc. (Pasut
and Veronese, 2012). As the field of PEGylation chemistry advances
further, there is a growing demand for heterobifunctional PEG
derivatives. Yoo et al. (2012) conjugated folate (FA) to one end of
PEG and superparamagnetic iron oxide nanoparticles (SPIONs) to the
other end, resulting in the formation of FA-PEG-SPIONs. The
introduction of biocompatible PEG into the drug mixture conferred
excellent biocompatibility on FA-PEG-SPIONs, including low
cytotoxicity, stable dispersion, non-aggregation, and strong optical
imaging ability in a mouse model of lung cancer. The third
generation of PEG derivatives was developed as branched PEG
derivatives, such as tree-type PEG, Y-type PEG, and comb-type
PEG, etc.) (Figure 3) (Zhang et al., 2012). Vugmeyster et al. (2012)
performed site-specific modification of the antitumor necrosis factor
alpha (TNF-α) nano antibody using linear, Y-shaped, and tree-shaped
PEG, respectively. Among them, the two-arms branching structure
exhibited the longest half-life in rats.

3 PEG-modified sites on TPPs

PEG can be covalently conjugated to specific sites in protein
drugs, and the common modification sites of TPPs are illustrated in
Figure 4 (Pasut and Veronese, 2012). Different activated PEGs were
chosen for various modified groups. The modification reactions
involving PEG and TPPs exhibit distinct properties, including
acylation, alkylation, redox, and aromatic ring substitution. PEG

chemically modifies side chain groups such as amino, sulfhydryl and
carboxyl groups of TPPs (Herman et al., 1995; Veronese, 2001). This
review discusses the methodologies employed for amino, sulfhydryl,
and carboxyl group modifications in PEG-conjugated TPPs along
with their advantages and disadvantages (Table 2).

3.1 Site-modified amino

The groups involved in the PEGylation of TPPs typically consist
of α- and ε-amino groups. Therefore, the PEGylation of amino
groups in TPPs can be categorized into N-terminal α-NH2

modification and lysine ε-NH2 modification. Lysine is one of the
most prevalent amino acids in TPPs, usually located on the surface
of protein molecules’ three-dimensional structure, making it easily
accessible for conjugation with PEG modifiers. A unique two-step
site-specific PEGylation method was employed to produce Lys21-
amine PEGylated growth hormone-releasing factor (GRF) (1–29)
through a newly devised site-specific PEGylation process using a 9-
fluorenylmethoxycarbonyl (FMOC)-protection/deprotection
method at N-α Tyr1 and Lys12 (Youn and Lee, 2007). The His7-
(N-terminus), Lys26-or Lys34-amine specific PEGylation of
glucagon-like peptide-1 (GLP-1) was prepared by a site-specific
PEGylation process using a maleic anhydride (MA)-protection/
deprotection method (Youn et al., 2007a). Similarly, Lys18-, Cys1-
or Lys11-amine mono-PEGylated salmon calcitonin (sCT) was
generated using an FMOC protection/deprotection technique
(Youn et al., 2007b). This strategy resulted in higher production
yield, longer half-lives, and improved biological stability compared
to conventional non-specific PEGylation (Youn et al., 2007a; Youn
et al., 2007b; Youn and Lee, 2007). Regarding the N-terminal α-NH2

modification, the pKa of the protein’s N-terminal α-NH2 is typically
around 7.6 to 8.0, while the pKa of lysine ε-NH2 is generally in the
range of 10.0–10.2. Therefore, precise modification of the
N-terminal α-NH2 can be achieved by controlling pH under
acidic conditions (Kinstler et al., 2002). Yamamoto et al. (2003)
and Yoshioka et al. (2004), Yoshioka et al. (2011) proposed a novel
method for site-specific PEGylation at fixed points on TPPs that lack
lysine residues entirely, such as TNF-α. These Lys-deficient TPPs
were mono-PEGylated exclusively at their N termini and exhibited

FIGURE 4
PEG-modified sites in TPPs. The modification reactions can be categorized into acylation, alkylation, redox, and aromatic ring substitution. Theses
reactions involve N-terminal PEGylation, C-terminal PEGylation, amino PEGylation, sulfhydryl PEGylation, and bridging PEGylation (Herman et al., 1995;
Veronese, 2001; Pasut and Veronese, 2012).
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enhanced bioactivity in vitro as well as superior antitumor
therapeutic efficacy compared to randomly mono-PEGylated
wild-type counterparts. Additionally, when a peptide or protein
has serine or threonine at its N-terminus, periodic acid can be used
to oxidize the functional group into an aldehyde group, enabling
subsequent site-directed modification with PEG-hydrazide
(Gaertner and Offord, 1996; Zhou et al., 2014).

3.2 Site-modified thiol

Modification of the cysteine-free sulfhydryl group or disulfide
bond on the protein surface is a method employed to achieve
targeted modifications. Thiol modification of cysteine refers to
the introduction of PEG fixed-point modification on proteins
containing a single cysteine residue. Examples of site-directed
PEG modifications include Cys34 in human serum albumin
(HSA) and Cys17 in granulocyte colony-stimulating factor
(G-CSF) (Hao et al., 2006; Zhao et al., 2012). For peptides or
proteins lacking sulfhydryl groups, site-specific modifications can
be achieved through genetic engineering by introducing sulfhydryl
groups at appropriate locations. Chi et al. (2008) employed a
microwave-assisted solid-phase synthesis technique to synthesize
GLP-1 (7–36), wherein Gly and Cys were substituted for Ala at
positions 8 and 30, respectively, followed by PEG-modification of
Cys at position 30. In the context of disulfide bond modification, the
presence of a disulfide bond in a peptide or protein plays a crucial
role in stabilizing its secondary and tertiary structure; however,
modifying this bond may potentially lead to loss of activity. Hence,
the development of highly efficient PEG modifiers and feasible
strategies for site-specific disulfide bond modification has become
pivotal. Brocchini et al. (2006) devised a dialkylated PEG reagent
capable of alkylating both thiols within the reduced disulfide bond to
form a three-carbon bridge. By employing such a three-carbon
bridge, PEG can be covalently attached to proteins while
preserving their biological activity of TPPs (Balan et al., 2007).

3.3 Site-modified carboxyl groups

The side chains of TPPs contain a significant number of carboxyl
groups, with modification sites including glutamic acid, aspartic
acid, and carboxyl groups at the end. In recent years, mPEG-
hydrazine has emerged as a specific modifier capable of binding
to carboxyl groups. In the presence of 1-ethyl-3-
dimethylaminopropylcarbodiimide hydrochloride (EDC) or
dicyclohexylcarbodiimide (DCCI), the carboxyl group can form
an amide bond with the amino group of mPEG-NH2 (Gault
et al., 2008). Additionally, in acidic conditions (pH 4.5–5.0) and
in the presence of EDC, protonation occurs without any cross-
linking reactions involving the amino group in proteins or peptides
(Veronese, 2001).

3.4 Site-specific modifications of the
other groups

Other groups on TPPs can also be utilized as potential sites for
PEGylation, such as amino acid residues located at the protein or
peptide’s C-terminus (Cazalis et al., 2004), glycosylation sites
consisting of serine and threonine residues (Giorgi et al., 2014),
and histidine residue (Wylie et al., 2001; Zuma et al., 2022b; Zuma
et al., 2022a; Khataminezhad et al., 2023). Both IFN α-2b and IFN β-
1b were fused to the Mycobacterium xenopi GyrA intein and
expressed in Escherichia coli. They were subsequently cleaved by
hydrazine to generate the corresponding IFN α-2b C-terminal
hydrazide, followed by site-specific modification with a pyruvyl
derivative of PEG with a MW of 10 kDa (Thom et al., 2011).
The PEGylated forms of IFN α-2b and IFN β-1b exhibited
excellent antiviral activity, indicating that intein technology is
compatible with TPPs containing disulfide bonds and can be
used for C-terminal PEGylation of other TPPs, including
antibody fragments, using PEGs with different MWs. Both
domain antibody (dAb) and IFN α-2a tagged with His tags at the

TABLE 2 Comparison of three major PEG modification methods used in TPPs.

Method Modification
site

Advantage Disadvantage References

Site-modified
amino

N-Terminal amino
group and amino
groups on lysine
residues on the
molecular surface

It is the most
frequently

modified group
in the chemical
modification of
TPPs, and has

higher
nucleophilic
reactivity

There are many free
amino groups in the
protein molecules,
which are randomly
modified, and the
modification is easy
to cause the loss of
protein activity and
the heterogeneity of
the final product

Gaertner and
Offord (1996),
Kinstler et al.

(2002),
Yamamoto et al.
(2003), Yoshioka
et al. (2004),
Youn and Lee
(2007), Youn
et al. (2007a),
Youn et al.

(2007b), Zhou
et al. (2014)

Site-
modified
thiol

Molecular
surface
cysteine
free thiol

and
disulfide
bond

TPPs are
usually not
high in

content, the
position is
determined,

and
quantitative
and site-
specific

modifications
can be

performed

Low
modification

rate

Hao et al.
(2006),

Brocchini
et al.
(2006),
Shaunak
et al.
(2006),

Zloh et al.
(2007),
Balan
et al.
(2007),
Chi et al.
(2008),

Brocchini
et al.
(2008),
Zhao
et al.
(2012)

Site-modified
carboxyl

Glutamic acid,
aspartic acid and
terminal carboxyl

group

Mild reaction It is easy to produce
other cross-linking

reactions

Gault et al.
(2008), Veronese

(2001)
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C-terminus and the N-terminus underwent site-specific PEGylation
at their histidine tags, resulting in extended circulation half-lives
(Cong et al., 2012).

Additionally, genetic engineering and other techniques have
been employed to introduce specific groups at the C-terminus or
N-terminus of proteins or peptides for site-mediated PEGylation
using histidine tags (Thom et al., 2011; Cong et al., 2012). Moreover,
noncanonical amino acids have also been incorporated into
recombinant TPPs for targeted PEGylation (Nischan and
Hackenberger, 2014).

4 Factors affecting PEGylation of TPPs

The reaction of PEGylated TPPs can be influenced by various
factors, including the selection of an appropriate PEG modifier, the
molar ratio between PEG and protein drugs, the optimization of
reaction conditions (such as temperature, pH, and time), the MW
distribution of PEG, and the structural characteristics of its
molecular chains.

4.1 Selection of PEG modifiers

The selection of PEG modifiers should take into account the
relative molecular mass (Mn), MW distribution coefficient (PDI),
modification sites, functional groups, and molecular chain structure.
Previous studies have demonstrated that the reaction time ofmodified
protein drugs is directly proportional to the amount of PEG and Mn
conjugated, while the biological activity is inversely proportional to
this amount (Chiu et al., 2010; Ma et al., 2013; Morgenstern et al.,
2017). However, excessive Mn in PEG-modified protein drugs may
lead to a decrease in their overall biological activity (Weinberg et al.,
2018). Moreover, it is preferable for PEGylated agents to have a small
PDI and a narrowerMWdistribution as this facilitates separation and
purification of PEG-modified TPPs (Chen et al., 2018). When
selecting the modification site, it is important to consider the
structure‒activity relationship analysis of TPPs. Preferably, residues
on the protein surface that do not bind to receptors should be chosen
as modification sites for modified TPPs to retain their high biological
activity (Dozier and Distefano, 2015).

For the specificity of the modification reaction, it is crucial to
select and utilize PEG modifiers with appropriate functional groups,
such as cross-functionalized mono-sulfone PEG, in TPPs (Pasut and
Veronese, 2012). It should be noted that PEGylated molecules with
distinct chain structures of linear and branched chains have various
biological characteristics that can affect numerous pharmacokinetic
parameters of TPPs (Vugmeyster et al., 2012; Zhang et al., 2012).
Branched PEGmodifiers exhibit reduced accessibility to hidden sites
and enhanced stability against proteolysis compared to linear PEG
modifiers (Wan et al., 2017; Sun et al., 2023).

4.2 Molar ratio of PEG to TPPs

Generally, PEG molecules with lower MWs and degrees of
PEGylation may lead to higher residual activities of TPPs, while
higher PEG MWs and degrees of PEGylation can enhance the

conformational and colloidal stability of TPPs (Morgenstern
et al., 2017). The increase in the molar ratio of PEG to TPPs,
results in elevated relative MWs of the PEG-modified TPPs and
modification rate, which affect the biological activity of the TPPs.
Behi et al. (2018) conducted modifications on rhG-CSF using
different molar ratios of methoxy PEG propionaldehyde (mPEG-
ALD) and recombinant human granulocyte colony stimulating
factor (rhG-CSF), finding that a molar ratio of 5:1 for mPEG-
ALD to protein yielded optimal single-PEGylated rhG-CSF.
Chinol et al. (1998) modified avidin (AV) with monomethoxy
PEG (mPEG) at various molar ratios, observing a gradual
decrease in AV-biotin binding rate as more mPEG was attached
to AV. BSA modified with PEG800 exhibited maximum
conformational stability at a BSA:PEG molar ratio of 1:0.75 due
to surface residue protection and buried hydrophobic residue
shielding by PEG (Rawat et al., 2020). Therefore, it is crucial to
control the appropriate proportion between PEG and TPPs during
modification processes (de Lencastre Novaes et al., 2010).

4.3 Reaction pH and time and TPPs’
concentration

The pH is a critical factor that can influence the modification of
PEG-modified TPPs. By controlling the appropriate pH, specific
modifications can be made to the amino acid residues in the protein,
thereby enhancing modification specificity and reducing separation
difficulties. Lactoferrin was modified with N-hydroxysuccinimide-
activated PEG (PEG-NHS) to enhance its pharmacokinetic
properties (Nojima et al., 2009a). The results demonstrated that
pH played a crucial role in achieving optimal conditions for PEG-
NHS-modified bovine lactoferrin. While increasing reaction time
led to higher modification rates of PEGylated products, it also
resulted in increased heterogeneity of the modified products.
Laccase was subjected to monomethoxy PEG (20, 30, 40 kDa and
40 kDa-branched) modification durations of 4 h and 17 h,
respectively (Mayolo-Deloisa et al., 2015). The optimal reaction
time for laccase PEGylation was found to be 4 h at a PEG:protein
molar ratio of 4:1; furthermore, laccases modified with 30 kDa linear
PEG exhibited greater activity compared to other types of PEGs
(Mayolo-Deloisa et al., 2015).

Additionally, the concentration of TPPs plays a crucial role in
PEGylation reactions. Koussoroplis et al. (2013) reported that higher
concentrations of recombinant human deoxyribonuclease I
(rhDNase) result in more efficient PEGylation reactions. When
the concentration of rhDNase was 1 mg/mL, and the molar ratio
of PEG to protein was 16:1, the reaction time lasted for 96 h
(Guichard et al., 2017). However, increasing the concentration of
rhDNase to 10 mg/mL resulted in a reduced molar ratio of PEG to
protein to 4:1 and a shortened reaction time with overnight
incubation (Mahri et al., 2021).

4.4 MWs and molecular chain structures
of PEG

Increasing theMWof PEG can extend the half-life of a drug, and
branched PEG offers more advantages compared to linear PEG.
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Higher MWs of branched PEG exhibit a stronger steric hindrance
effect, thereby reducing the likelihood of accessing the active site.
Additionally, binding of branched PEG to the surface of TPPs
effectively screens for surface antigens and enzymatic hydrolysis
sites while minimizing immunogenicity (Pasut and Veronese, 2007).
Yoshioka et al. (2004) utilized linear PEG with MWs of 5 and 20 kD
as well as branched PEG with MWs of 10 and 40 kDa to modify
lysine-deficient TNF-α. The in vitro activity retention rates were
found to be 82%, 58%, 93%, and 65% respectively. Lysine-deficient
TNF-α modified with linear PEG at a MW of 20 kDa and branched
PEG at a MW of 10 kDa exhibited higher antitumor activity in mice
compared to linear PEG at a MW of 5 kDa; however, modification
with branched PEG at a MW of 40 kDa resulted in loss of activity
(Yoshioka et al., 2004). Furthermore, increasing the MW of PEG
leads to enhanced half-life for modified TPPs in vivo when
compared to unmodified TPPs. rhDNase was conjugated with
linear 20 kDa, linear 30 kDa or 2-armed 40 kDa PEG. While
PEG20-rhDNase and PEG30-rhDNase progressively lost their
activity over time in the lungs of mice, PEG40-rhDNase
remained active. Notably, PEG20-rhDNase lost most of its
activity. Additionally, compared to PEG20-rhDNase and PEG30-
rhDNase, PEG40-rhDNase had lower thermodynamic stability
(Guichard et al., 2017; Mahri et al., 2023). Similar destabilization
upon PEGylation was also observed in cytochrome C modified with
a 5 kDa PEG and recombinant human interleukin-1 receptor
antagonist (rhIL-1ra) modified with a 20 kDa PEG, where TPPs’
thermodynamic stability decreased due to the modification by the
polymer (García-Arellano et al., 2002; Sorret et al., 2019). The
thermal stability of PEGylated green fluorescent protein (GFP)
was assessed by de Lencastre Novaes et al. (2010) at temperatures
ranging from 70°C to 95°C, considering different molar masses and
concentrations of PEG. It was found that only PEG with molar
masses of 600 and 4,000 g/mol provided protection to GFP
molecules at 75°C, while the stabilization effect was not observed
for GFP when using PEG with a molar mass of 10,000 g/mol
between temperatures of 75°C and 95°C.

5 Typical cases of PEGylated TPPs

Among PEG-modified TPPs, several promising PEG-modified
TPPs are highlighted in this study.

5.1 PEGylated AMPs

AMPs, also known as host defense peptides (HDPs), play a
crucial role in innate immunity in multicellular organisms (Yang
et al., 2017). Due to their broad antimicrobial spectrum and low
toxicity, AMPs have emerged as potential candidates for novel
therapeutic agents (Zasloff, 2002; Wang et al., 2020). Over the
last three decades of AMP research, these peptide molecules have
been proven to possess multiple biological functions including
antibacterial, antifungal, antiviral, antiparasitic, anticancer and
immunomodulatory activities (Mahlapuu et al., 2016;
Mazurkiewicz-Pisarek et al., 2023). However, the clinical
application of many AMPs is limited to topical medications only
due to issues such as instability, potential antigenicity, rapid renal

clearance, short circulation half-life and low therapeutic indices in
vivo (Darveau et al., 1991; Steinberg et al., 1997; Zasloff, 2002; Harris
and Chess, 2003; Chan et al., 2006; Hancock and Sahl, 2006;
Răileanu et al., 2023). Furthermore, some AMPs exhibit reduced
activity when exposed to serum (Johansson et al., 1998; Yeaman
et al., 2002), plasma (Yeaman et al., 2002) or divalent cations
(Matsuzaki et al., 1997; Johansson et al., 1998).

To address the limitations of AMPs, researchers have employed
various strategies. These include targeted mutation techniques
(Braman, 2002), fusion expression with proteins like albumin and
immunoglobulin that possess longer half-lives (Sung et al., 2003; Qin
et al., 2005), and chemical modifications to alter the structure of AMPs
(Veronese andMero, 2008). Among these approaches, PEG-modified
AMPs have garnered significant attention due to the favorable
biocompatibility of PEG. For instance, PEGylation substantially
enhanced the enzymatic resistance of nisin A (34 aa) (Guiotto
et al., 2003). Singh et al. (2014) demonstrated that PEGylation
effectively reduced toxicity, increased selectivity, maintained anti-
inflammatory effects, and decreased serum protein clearance of
KYE28 peptide. Similarly, other AMPs such as M33, MA, and
SAAP-148 exhibited improved stability and selectivity after being
modified with different MWs of PEG. Additionally, they showed
reduced scavenging by serum proteins while retaining their anti-
inflammatory activity and promoting antimicrobial activity following
PEGylation (Table 3) (Zhang et al., 2008; Falciani et al., 2014; Van
Gent et al., 2023). Compared to the unmodified peptide, C-terminal
PEGylated N6 displayed broader biodistribution in mice along with
slower renal clearance and prolonged in vivo half-life (Li et al., 2022).

5.2 PEGylated interferon

In clinical application, interferon α-2b exhibits a short circulating
half-life, limited immunogenicity and antigenicity, as well as rapid
clearance by the circulatory system, resulting in significant
inconvenience for patients’ daily life (Bell et al., 2008).
Furthermore, high-dose regimens of interferon α-2b are associated
with considerable toxicity (Kirkwood et al., 2002). Conjugation of
PEG to therapeutically valuable proteins represents an important and
effective strategy to address these challenges and has been extensively
employed in TPPs to reduce elimination rate while enhancing
systemic exposure without compromising biological activity
(Roberts et al., 2002). Several studies have demonstrated that
peginterferon α-2b is more efficacious than non-PEGylated
interferon in the treatment of hepatitis (Carrat et al., 2004; Khalili
et al., 2005), which can be attributed to its altered pharmacokinetic
(PK) profile leading to prolonged drug exposure (Zeuzem et al., 2000;
Lindsay et al., 2001). Clinical evidence indicates that high-dose
PEGylated interferon α-2b significantly reduces disease recurrence
in resected stage III melanoma patients compared to unmodified
interferon α-2b (Daud et al., 2010). Additionally, PEGylated
interferon α-2b has shown effectiveness in treating hepatitis C
virus (HCV) among children with end-stage renal disease (ESRD)
(Mogahed et al., 2016). Moreover, PEGylation of interferon β-1a has
been found to improve its pharmacokinetic and pharmacodynamic
properties (Pepinsky et al., 2001; Cocco and Marrosu, 2015). These
findings collectively demonstrate that optimal PEG modification
enhances the bioavailability of interferons.
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TABLE 3 Typical cases of PEGylated TPPs.

Name Modification position Molecular mass
of PEG (Da)

Improved performance References

Peptide drugs

M33 The C-terminus of the three lysine-
branching cores

175 Improved stability of elastase against Pseudomonas
aeruginosa

Falciani et al.
(2014)

KYE28 N- and C-terminus 200, 600, 1,100 and 2,200 The combination of reduced toxicity, increased selectivity,
and retained anti-inflammatory effect after PEGylation, as
well as reduced scavenging by serum proteins

Singh et al. (2014)

CaLL N-terminus 671.4 and 1,007.3 Reduced cytotoxicity of CaLL; airway administration of
PEG-CaLL did not disrupt the lung epithelial barrier,
whereas CaLL caused pulmonary edema

Morris et al. (2012)

Nisin A C-terminus and the α-amino group 5,000 PEGylation improves its solubility and protect it toward
enzymes present in nonoptimally processed food

Guiotto et al.
(2003)

MA C-terminus 750 and 1,100 The stability of PEGylated peptides was significantly
enhanced in the presence of chymotrypsin and serum; the
antibacterial activity of PEGylated peptides in serum was
significantly enhanced

Zhang et al. (2008)

Tachyplesin I N-terminus 5,000 PEGylation significantly reduced cytotoxicity Imura et al. (2007a)

Magainin 2 N-terminus 5,000 PEGylation significantly reduces cytotoxicity and the
antimicrobial activity at the same time

Imura et al. (2007b)

73c Cysteine residue 2,000 PEGylation significantly alleviates toxicity toward human
cells and reduced aggregation

Kumar et al. (2019)

Bac7(1–35) Amide or ester bond C-terminal
PEGylation of Bac7(1–35)

20,000 PEGylation allows the peptide to have a wide distribution
in mice, and a slow renal clearance

Benincasa et al.
(2015)

CPP Covalently bonded on the surface
of CPP

4,000 and 10,000 PEGylation promoted cellular uptake and
pharmacodynamics

Tan et al. (2019)

OM19r-8 N-terminus 5,000 PEGylation prolonged the half-life of OM19r-8 Cui et al. (2021)

N6 N-terminus, C-terminus, and Cys
residues

145–1,127 PEGylated N6 at the C-terminus improved its proteolytic
stability, antibacterial and anti-inflammatory activity, and
prolonged in vivo half-time; PEGylated N6 at the
N-terminus and Cys residues reduced its antibacterial
activity

Li et al. (2022)

Onc72 C-terminus 5,000–20,000 PEGylation improved proteolytic stability and reduced
hemolytic activity

Mohammed et al.
(2023)

SAAP-148 C-terminus 201.6–1,302.9 PEGylation improved antibacterial selectivity index and
immunomodulatory activities of SAAP-148

Van Gent et al.
(2023)

Polypeptide
L-P(EG3Glu)

N-/C-terminus 20,000–40,000 PEGylation reduced immunogenicity and increased safety
in rats

Sun et al. (2023)

Antibodies

F9 NN 5,000 PEGylated F9 enhanced accumulation in tumors,
improved tumor specificity, and altered the
pharmacokinetics

Delgado et al.
(1996)

DFM (cross-linked
di-Fab’ of A5B7)

NN 5,000 and 25,000 PEGylated DFM significantly increased the circulating
half-life and tumor uptake levels

Casey et al. (2000)

mCC49 Fab’ Site-specific (Cys) attachment of
three branched Mal-dPEG at Fab’

1,600–2,691 PEGylated Fab’ induced AUC increases and slower blood
clearance

Ding et al. (2013)

IL-17A F(ab′)2 and
IL-13 Fab′

Site-selective thiol (Cys) 40,000 PEGylated IL-17A F(ab′)2 and IL-13 Fab′ prolonged the
residence time in the lungs of mice

Koussoroplis et al.
(2014)

IL-17A Fab′ Site-selective thiol (Cys) 40,000 PEGylated IL-17 Fab’ increased the residence time in the
lungs of mice, rats and rabbits

Freches et al.
(2017)

NN: no data.
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5.3 PEGylated asparaginase

The bacterial enzyme L-asparaginase, found in Gram-negative
bacteria, can inhibit normal protein synthesis in tumor cells by
degrading L-asparagine, leading to cell death (Narta et al., 2007).
However, due to short half-life and antigenicity, L-asparaginase
induces severe allergic reactions (Chung, 2010). PEGylated
L-asparaginase has the ability to shield antigenic epitopes, reduce
immunogenicity, prolong plasma retention time, and decrease
proteolysis and renal excretion (Duval et al., 2002; Wang et al.,
2012; Molineux, 2023). Clinical trials of PEGylated L-asparaginase
began in 1984 and it was found to be safe for patients who had
previously experienced allergic reactions to E. coli or Erwinia
L-asparaginase (Graham, 2003). FDA approval for PEGylated
asparaginase (Rhone-Poulenc Rorer as Oncaspar®) was granted in
1994 for the treatment of acute lymphoblastic leukemia (ALL)
patients who are hypersensitive to the two native isoforms of the
enzyme (Pasut and Veronese, 2009) (Table 3). Currently, improved
PEGylated asparaginase with reduced hyposensitivity and a longer half-
life is widely used in pediatric ALL patients (Avramis and Tiwari, 2006;
Zhang et al., 2020; Riley et al., 2021). These findings demonstrate that
PEGylated asparaginase can effectively reduce immunogenicity while
extending its half-life for improved clinical applications.

5.4 PEGylated antibodies

Over the past decade, PEGylated antibodies have been extensively
reported in the field of tumor immunotherapy (Table 3). PEGylation of
antibodies prolonged circulation half-life and reduced immunogenicity
when introduced into xenograft models (Casey et al., 2000; Chapman,
2002). Kitamura et al. (1990) evaluated the efficacy of murine
monoclonal antibodies A7 (MAb A7) and F(ab′)2 fragments
modified with PEG (MW of 5,000 Da) both in vitro and in vivo;
their findings demonstrated that PEGylated MAb A7 and F(ab′)2
exhibited prolonged half-lives and enhanced accumulation within
tumors compared to their unmodified counterparts. Furthermore, it
has been shown that PEGylation of F(ab′)2 fragment and Fab’
fragments derived from the A5B7 antibody targeting
carcinoembryonic antigen (CEA), significantly enhances antibody
accumulation within tumors while prolonging circulating half-life
and reducing immunogenicity. However, no significant advantage
was observed for PEGylated immunoglobulin G (IgG) over
unmodified forms, indicating that PEGylated antibody fragments
may possess an advantage over intact IgG modified with PEG for
tumor targeting due to improved tumor penetration capabilities (Pedley
et al., 1994). The findings suggest that PEGylated antibody fragments
hold promise as effective drug carriers for targeted cancer
chemotherapy. Several studies have demonstrated altered
biodistribution of antibodies or antibody fragments, such as the Fab’
fragment (F9) of A5B7 and mCC49 Fab’ after PEG modification,
resulting in increased tumor accumulation and reduced levels in
normal tissues (Table 3) (Delgado et al., 1996; Chapman, 2002;
Ding et al., 2013). Moreover, PEGylation significantly prolongs the
local residence time of antibody fragments like anti-interleukin-17A
(IL-17A) F(ab′)2 and anti-IL-13 Fab’ greatly in the lungs of rats, mice,
and rabbits without causing significant pulmonary toxicity. In contrast,
unconjugated IL-17A is cleared from the lungs within 24 h

(Koussoroplis et al., 2014; Freches et al., 2017; Freches et al., 2019).
Overall, PEGylated antibodies have great potential to revolutionize
immunotherapy for chronic diseases.

6 Prospects of PEG-modified TPPs

Since Davis’s pioneering research on PEGylated protein drugs in
the 1970s, the field of long-acting protein drugs has increasingly focused
on PEGylation of TPPs (Davis et al., 1979; Davis, 2002). In 1981, Davis
and Abuchowski established Enzon, the first company dedicated to
PEGylation, which gained FDA approval in March 1990 for their
groundbreaking PEGylated protein drug (Adagen) (Lee et al., 1991).
Subsequently, numerous PEGylated TPPs have emerged in research;
however, many are still undergoing clinical trials or under development.
As research on PEGderivatives andmodification technology intensifies,
the limitations of non-specific site modification technology used to
generate PEGylated TPPs have gradually come to light. Consequently,
targeted modifications of PEGylated protein drugs have entered clinical
trials. In 2002, Amgen’s pegfilgrastim (trade name: Neulasta®), a
recombinant human granulocyte colony stimulating factor modified
with site-directed PEGylation technology, became one of the most
successful and also the first FDA-approved PEGylated protein drug (de
Graaf et al., 2009). Pegfilgrastim is a mPEG covalently linked to the
N-terminal amino group of rhG-CSF, resulting in an approximately 10-
fold increase in its in vivo half-life compared to the unmodified form
(Kinstler, et al., 1996; Bowen et al., 1999). Cetuzumab (Cimzia®) is a
protein drug that has been modified with PEG and was introduced into
themarket in 2008. It represents the first PEGylated anti-TNF antibody,
where a 40 kDa PEGmoietywas specifically attached to the free cysteine
residue at the C-terminus of the Fab’ fragment of this humanized
monoclonal antibody against TNF-α (Pasut, 2014).

Pegcetacoplan (APL-2/Empaveli) is a PEGylated cyclic peptide
that functions as a complement C3 inhibitor. It received FDA
approval in 2019 for the treatment of ocular diseases, including
age-relatedmacular degeneration (AMD) and paroxysmal nocturnal
hemoglobinuria (PNH), based on successful clinical trials (Turecek
et al., 2016; Hoy, 2021; Ji et al., 2021; Weitz, 2023). Other PEGylated
TPPs, such as α1-antitrypsin, IFN α, and Fab fragments, have
demonstrated increased residence time in the lungs and
improved stability within the airways (Cantin et al., 2002;
Koussoroplis et al., 2014; McLeod et al., 2015; Freches et al.,
2017; Patil et al., 2018). These modifications enhance the ocular
and pulmonary penetration and retention capabilities of TPPs,
resulting in prolonged duration of action and reduced dosage
frequency. This approach holds promise for improving patient
compliance while minimizing systemic side effects associated
with systemic administration of PEGylated TPPs for retinal
disorder treatment.

With the advancement of science and technology, progressively
more sophisticated PEG-modified TPPs currently in experimental
or theoretical stage will gradually transit into clinical trials, thereby
expanding the scope of applications and enhancing the development
prospects for PEG-modified TPPs. Simultaneously, as the human
genome project (HGP) undergoes comprehensive exploration, an
increasing number of bioactive TPPs will be unearthed, further
establishing PEG modification as a pivotal approach to maximize
the efficacy of TPPs. Table 4.
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TABLE 4 PEGylated TPPs in clinical practice.

Product
name

PEG conjugate Modified situation Adaptation disease Approved
year

References

Adagen® PEG-bovine adenosine
deaminase

Random, single-chain 5 kDa
PEG, amino multimodified

mixture

Severe combined immunodeficiency
disease caused by amide deaminase

deficiency (SCID)

1990 Booth and Gaspar (2009)

Oncaspar® PEG-asparaginase Random, single-chain 5 kDa
PEG, amino multimodified

mixture

Acute lymphocytic leukemia 1994 Vimal and Kumar (2017)

Doxil Liposomal 2 kDa Ovarian cancer, multiple myeloma 1995 Bhowmik et al. (2018)

PegIntron® PEG-interferon-α2b Random, linear 12 kDa PEG,
amino modified

Alone or with ribavirin combination
medication, treatment of hepatitis c

2000 Cheng et al. (2014)

Pegasys® PEG-interferon-α2a Random, branched 40 kDa
PEG, amino modified

Alone or with ribavirin combination
medication, treatment of hepatitis c

2002 Rajender Reddy et al.
(2002); Cooksley (2005)

Neulasta® PEG-G-CSF Selective, linear 20 kDa PEG,
N-terminal modification

Neutropenia 2002 Aapro et al. (2017)

Somavert® PEG-human growth
hormone mutein

antagonist

Random, linear 5 kDa PEG,
amino modified

Acromegaly 2002 Trainer et al. (2000)

Macugen® PEG-anti-VEGF aptamer Selective, branched 40 kDa
PEG, amino modified

Wet age-related macular degeneration 2004 Ng EW et al. (2006)

Mircera® PEG-erytropoietin Random, linear 30 kDa PEG,
amino modified

Anemia associated with chronic kidney
disease

2007 Seo et al. (2023)

Cimzia® PEG-anti-TNF Fab’ Selectivity, branched 40 kDa
PEG, thiol modification

Rheumatoid arthritis and Crohn’s
disease

2008 Punzi et al. (2014)

Krystexxa® PEG-uricase Random, branched 10 kDa
PEG, amino modified

Chronic gout 2010 Sherman et al. (2008);
Schlesinger and Lipsky

(2020)

Asclera Dodecyl alcohol 400 Da Varicose veins 2010 Rabe et al. (2021)

Sylatron Peginterferon-alfa-2b 12 kDa Melanoma 2011 Cheng et al. (2014)

Omontys® PEG-erythropoiesis
stimulant

Selective, branched 40 kDa
PEG, amino modified

Anemia in patients with chronic kidney
disease undergoing dialysis

2012 Fishbane et al. (2013)

Plegridy Peginterferon beta-1a 20 kDa Multiple sclerosis 2014 Hoy (2015)

Movantik Naloxone 339 Da Constipation 2014 Floettmann et al. (2017)

Adynovate Recombinant
antihemophilic factor

≥1 × 20 kDa Hemophilia A 2015 Walsh and Walsh (2022)

Jivi Recombinant
antihemophilic factor

2 × 30 kDa Hemophilia A 2017 Gogia et al. (2023)

Rebinyn Recombinant coagulation
factor lX

40 kDa Hemophilia B 2017 Syed Y Y (2017)

Udenyca G-CSF 20 kDa Infection during chemotherapy 2018 Brokx et al. (2017)

Palynziq Recombinant
phenylalanine ammonia

lyase

~9 × 20 kDa Phenylketonuria 2018 Longo et al. (2019)

Revcovi Recombinant adenosine
deaminase

80 kDa ADA-SCID 2018 Bradford et al. (2017)

Fulphila G-CSF 20 kDa Infection during chemotherapy 2018 Aapro et al. (2017)

Asparlas L-asparaginase 31–39 × 5 kDa Leukemia 2018 Vrooman et al. (2021)

Esperoct Recombinant
antihemophilic factor

40 kDa Hemophilia A 2019 Takedani and Hirose
(2015)

Ziextenzo G-CSF 20 kDa Infection during chemotherapy 2019 Aapro et al. (2017)

(Continued on following page)
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7 Conclusion

The therapeutic potential of TPPs is widely recognized; however,
their short circulating half-life, poor pharmacokinetics, rapid internal
clearance, and high immunogenicity present significant challenges.
PEG modification has emerged as a crucial approach to address these
clinical limitations of TPPs and has garnered considerable attention in
the biotechnology and biomedicine field. In this review, we provide a
comprehensive overview of PEG properties, modification sites, factors
influencing PEGylation response, typical cases of PEG-modified
TPPs, and the future prospects of PEGylated TPPs. Furthermore,
we emphasize that PEGylation offers promising benefits such as
prolonged half-life, enhanced tumor accumulation, improved
efficacy profiles, etc. Nevertheless, there remains ample room for
further exploration and innovation in this field:

i) Future research aims to further investigate the mechanism of
PEGylation and its impact on the structural and functional
aspects of TPPs. Researchers should strive to elucidate the
underlying principles governing PEG-TPP conjugation,
ensuring optimal bioactivity and stability of resulting drugs.

ii) The variability in sizes and structures of PEG poses a
significant challenge. Exploring different MWs and
structures of PEG can provide valuable insights into the
effects of these variables on drug delivery, biodistribution,
and pharmacokinetics. By investigating these factors,
researchers can optimize the PEGylation process to
maximize therapeutic potential while minimizing side effects.

iii) Another area of exploration should involve the development of
innovative PEGylation strategies. Currentmethods primarily rely
on the conjugation of PEG to the TPPmolecule through reactive
chemistry. While effective, this approach may encounter specific
limitations such as restricted site specificity and potential
modification of drug functionality. Therefore, researchers may
focus on exploring alternative PEGylation techniques, including
enzymatic or chemoenzymatic approaches, to overcome these
limitations and enhance drug efficacy. Additionally, researchers
are investigating the utilization of other polymer systems, such as
polypropylene glycol, poly(ethylene oxide-co-propylene oxide)
or carboxybetaine, as substitutes for PEG.

iv) It is crucial to comprehend the impact of PEGylation on immune
response. While PEGylation of TPPs generally enhances drug
circulation time and reduces immunogenicity, certain studies have

reported potential immunotoxicity associated with PEG-modified
drugs. Therefore, it is imperative for researchers to delve deeper
into the immunological aspects, investigating the mechanisms
underlying the observed immune responses and striving towards
strategies that mitigate any undesirable reactions.

By focusing on these key areas, researchers can advance the field
of TPPs, fostering the development of more efficient and safer PEG-
modified options.
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TABLE 4 (Continued) PEGylated TPPs in clinical practice.

Product
name

PEG conjugate Modified situation Adaptation disease Approved
year

References

Nyvepria G-CSF 20 kDa Neutropenia Associated with
Chemotherapy

2020 Aapro et al. (2017)

Besremi Interferon 40 kDa Polycythemia vera 2021 Verstovsek et al. (2022)

Skytrofa Human growth hormone 4 × 10 kDa Growth hormone deficiency 2021 Lamb (2022)

Empaveli Pentadecapeptide 40 kDa Paroxysmal nocturnal
hemoglobinuria (PNH)

2021 Hoy (2021)

Fylnetra G-CSF 20 kDa PEG, N-terminal
methionine

Neutropenia 2022 Yang and Kido (2011)
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