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The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic
technology that uses the low pH (or high acidity) at the surfaces of cells within the
tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for
extracellular and intracellular delivery of a variety of imaging and therapeutic
payloads. Unlike therapeutic delivery targeted to specific receptors on the
surfaces of particular cells, pHLIP targets cancer, stromal and some immune
cells all at once. Since the TME exhibits complex cellular crosstalk interactions,
simultaneous targeting and delivery to different cell types leads to a significant
synergistic effect for many agents. pHLIPs can also be positioned on the surfaces
of various nanoparticles (NPs) for the targeted intracellular delivery of
encapsulated payloads. The pHLIP technology is currently advancing in pre-
clinical and clinical applications for tumor imaging and treatment.
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1 Tumor targeting

Targeted delivery of cytotoxic and immuno-activating agents has emerged as a highly
advantageous approach to treating tumors. Targeting enhances the therapeutic index (TI)
to provoke immune activation and/or killing of cancer cells within the TME while
attenuating systemic toxicity and immuno-activation. Successful targeting strategies
have included the uses of antibodies where suitable biomarkers are particularly
abundant in a tumor, or the use of specific ligands where binding proteins are enriched
on tumor cell surfaces. Approaches using these strategies have extended lives and relieved
symptoms, but the long-term benefits have been challenged by the selection of resistant
tumor cell clones, resulting in tumor resurgence. In the present discussion, we consider the
targeting of a general biomarker that is present as a consequence of the highly active
metabolism in the TME: cell surface acidosis.

1.1 Acidity of the tumor microenvironment

Highly proliferative cancer cells, tumor stroma and activated immune cells within the
TME tend to employ enhanced glycolysis in response to high energy demands, either in the
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presence of oxygen (Warburg effect) or in hypoxic conditions
(Pasteur effect) significantly acidifying the extracellular space
(Warburg et al., 1927; Krebs, 1972; Damaghi et al., 2013;
Swietach et al., 2014). Also, cancer cells located next to the
stroma, primarily consisting of cancer-associated fibroblasts
(CAFs), tumor-associated macrophages (TAMs), myeloid derived
suppressor cells (mMDSCs) and regulatory Treg cells, can consume
lactate and other metabolites promoting oxidative phosphorylation
(OXPHOS), a phenomenon known as the Reverse Warburg effect
(Wilde et al., 2017). This metabolite flow allows a “crosstalk”
between cancer and stroma cells, which leads to tumor expansion
and triggers the development of “cold” tumor phenotypes
characterized by excluded or impaired cytotoxic T- and NK-cells
(Mantovani et al., 2017; Wu et al., 2020; Tu et al., 2021). The main
byproduct of OXPHOS is carbon dioxide (CO2), which can freely
diffuse across membranes along its concentration gradient. In the
extracellular space, the membrane-bound enzyme carbonic
anhydrase 9 (CAIX), which is overexpressed in many tumors,
catalyzes the hydration of CO2 to produce protons (H+) and
bicarbonate (HCO−3) ions, contributing to acidification of the
extracellular space (Swietach et al., 2007). Thus, either
overactivated glycolysis or OXPHOS can lead to an excess of
protons (H+) around metabolically active cells.

1.2 Cell surface acidity

Acidity is the highest (or pH is the lowest) at the cell surface. The
flux of exported acidity lowers the pH surrounding a cell, and the
proton concentration is accentuated near the cell surface both by
flux and by the membrane electrochemical potential. As a result,
extracellular pH (pHe) is lowest at the surfaces of diseased cells,
where it is significantly lower than normal physiological pH or the
typical bulk extracellular tumor pH (Anderson et al., 2016; Ohgaki
et al., 2017; Podder et al., 2021). The low pH region persists at cell
surfaces even in well-perfused areas within a diseased tissue (Gillies
et al., 2012). The acidity on cell surfaces is a targetable characteristic
that is not subject to clonal selection, and the level of acidity is a
predictor of disease progression, with cells in more aggressive

tumors being more acidic than in less aggressive ones (Estrella
et al., 2013). Studies over the last few decades have demonstrated
that the intracellular pH (pHi) of solid tumors is maintained within a
range of pHi ~ 7.2–7.4, whereas the extracellular pH is acidic,
i.e., pHe < 6.5 (Gillies et al., 2002; Swietach et al., 2007; Zhang
et al., 2010; Chen and Pagel, 2015). Additionally, it has been shown
that pH at the surface of metabolically active cells is pHsurf < 6.0
(Krahling et al., 2009; Anderson et al., 2016; Ohgaki et al., 2017; Wei
et al., 2019).

Thus, agents that can sense pH at the surfaces of cells may
achieve high sensitivity and specificity. pHLIPs are a family of
moderately hydrophobic peptides with a modest affinity for cell
plasma membranes at normal pH. When they are at a cell surface,
they respond to the surface pHsurf and, if the pH is acidic, they insert
into the membrane to form stable transmembrane (TM) helices,
typically with the C terminus positioned in the cytoplasm and the N
terminus remaining in the extracellular space (Figure 1). Any
protonated carboxyl groups on the inserting end of the peptide
are translocated in their neutral form across membrane into the
cytoplasm. Since the pH in the cytoplasm is nearly neutral; and de-
protonation of carboxyl groups occurs, they become negatively
charged. These charges help to serve as anchors for pHLIP
peptides in the membrane, significantly reducing the exit rates of
pHLIP’s from the cellular membranes (Barrera et al., 2011;
Karabadzhak et al., 2012; Weerakkody et al., 2013; Demoin
et al., 2016).

1.3 Discovery of pHLIP

The first pH-sensitive peptide of the pHLIP family was
discovered by John Hunt during his Ph.D. work with Engelman
in 1993–1997, in the course of fundamental studies directed toward
understanding membrane protein folding. Seven polypeptides
corresponding to the alpha helices of the membrane protein
bacteriorhodopsin (BR) were synthesized, and the structure of
each individual polypeptide was studied in phospholipid vesicles
to test the then-current idea that they would be independently stable
in a membrane (Hunt et al., 1997a). It was found that a 36-amino

FIGURE 1
Membrane-associated folding of pHLIP. A pHLIP peptide is reversibly associated with amembrane lipid bilayer in normal (healthy) tissues, where the
extracellular pH is in the range of 7.2–7.4 (state II). Asp and Glu residues in the pHLIP sequence carry negative changes, which prevent propagation of the
pHLIP into the hydrophobic layer of themembrane at normal and high pHs, and the binding is readily reversible. Thus, peptides are eventually washed out
of normal tissues in vivo. However, when the extracellular pH, and specifically, the cell surface pH (pHsurf) is low, it triggers the protonation of the
negatively charged carboxyl groups, which in turn leads to an increase of the peptide’s hydrophobicity, leading to insertion and folding (coil-helix
transition) within the membrane and culminating by transmembrane helical orientations of pHLIP (state III).
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acid polypeptide containing the C helix of BR (BRC peptide)
spontaneously equilibrates in a pH-dependent manner between a
TM alpha-helical conformation (state III), a peripherally bound
nonhelical conformation (state II), and a fully water soluble
conformation (state I), with the transmembrane form
predominating at low pH (Hunt et al., 1997b). Insertion of the
BRC peptide into the lipid bilayer occurred with a pK of 6.0, and the
process was rapid and fully reversible. The phenomenon was
interesting, and it was felt that there might be practical
applications, but it was only 10 years later, in 2003–2006, that
Drs. Reshetnyak, Andreev and Engelman continued the
investigation to measure thermodynamic and kinetic parameters
and to explore more details of the molecular mechanism of bilayer
interactions (Reshetnyak et al., 2007; Reshetnyak et al., 2008; Tang
and Gai, 2008; Zoonens et al., 2008; Andreev et al., 2010). At that
time the BRC peptide was renamed as pHLIP (specifically, it was
WT pHLIP, for Wild Type), and the first biomedical applications of
the pHLIP technology were pursued (Reshetnyak et al., 2006;
Andreev et al., 2007; Andreev et al., 2009; Segala et al., 2009;
Vavere et al., 2009).

1.4 Molecular mechanisms of pHLIP action

The mechanism of the pH-triggered membrane-associated
folding of pHLIPs has been investigated in detail using single
tryptophan pHLIP variants, which allowed to follow propagation
of the different parts of the peptides into and across the membrane
lipid bilayer, the process associated with coil-helix transition
(Karabadzhak et al., 2012; Slaybaugh et al., 2020). It was shown
that the equilibrium is shifted from coil to helical structures as the
peptide partitions deeper into the hydrophobic region (Figure 1). The
activation barrier for membrane insertion increases (by orders of
magnitude) with an increase of the number of protonatable groups in
the peptide sequence and with the presence of polar or charged
payloads at the membrane-inserting end of the peptides
(Karabadzhak et al., 2012; Karabadzhak et al., 2018). Also, the
membrane lipid composition and the presence of ions have been
shown tomodulatemembrane-associated folding (Barrera et al., 2012;
Kyrychenko et al., 2015; Narayanan et al., 2016; Wyatt et al., 2018;
Karabadzhak et al., 2018; Vasquez-Montes et al., 2018; Schlebach,
2019; Scott et al., 2019; Westerfield et al., 2019; Vasquez-Montes et al.,
2022a; Vasquez-Montes et al., 2022b). The sequence of the original
WT pHLIP was varied, and a family of pHLIP peptides was designed
and investigated (Musial-Siwek et al., 2010; Barrera et al., 2011;
Fendos et al., 2013; Weerakkody et al., 2013; Nguyen et al., 2015;
Onyango et al., 2015; Deskeuvre et al., 2022; Silva et al., 2023; Zong
et al., 2023). While there are interesting influences of other factors, it
seems clear that the pronation of Asp and Glu residues, or their non-
canonical analogs, located in the peptide’s membrane-inserting TM
and flanking sequences, play key roles in the pH-triggeredmembrane-
associated folding/unfolding. These protonation/deprotonation
events frame the biomedical relevance and applications of the
pHLIP technology. The pKa of membrane insertion is determined
by the pKa’s of protonation of individual carboxyl groups, and their
pKa shifts to higher pH values with the lowered dielectric constant as
the peptide propagates into the hydrophobic core of the lipid bilayer,
where water is scarce (Vila-Vicosa et al., 2018; Silva et al., 2021; Silva

et al., 2022; Silva et al., 2023). pHLIP peptides of different sequences
without and with payloads attached to one or both of the termini may
have very different configurations and bilayer affinities in state II
(adsorbed by the membrane at neutral or high pHs), ranging from
loosely bound and mainly unstructured to partially folded and
embedded deeper in the bilayer. However, in most cases, the
membrane-inserted states of pHLIPs (state III) are similar due to
the formation of main chain H-bonds, which drives similar helical
backbone conformations. Since starting positions in the folding
pathways (or membrane-associated coil-helix transitions) are
different for different pHLIPs, the thermodynamic and kinetics
parameters could vary considerably. Some investigators have
observed intermediate states in the pathway of folding for
particular pHLIP peptides (Otieno et al., 2018; Vasquez-Montes
et al., 2018; Otieno and Qiang, 2021). The presence and existence
of observable intermediate states is largely dependent on many
variables, including pHLIP’s sequence, the lipid composition,
bilayer asymmetry, ionic strength, and the nature of any payloads.
However, pHLIP peptides with a minimum number of protonatable
groups and a truncatedmembrane-inserting end undergo an apparent
all-or-none transition for membrane insertion and helix formation
(Karabadzhak et al., 2012). Employing the approaches of statistical
physics, free-energy landscapes were constructed for pHLIP in
membranes at high and low pHs, describing pHLIP’s states
(Sharma et al., 2015; Sharma et al., 2022). Two viewpoints seem
essential: first, the statistical ensemble of different states should always
be considered, so one is viewing a predominant subset and not a single
state, and second, the kinetics is especially important for in vivo
applications in systems with a constant and fast blood flow. From a
clinical perspective, the variables that count are those that modulate
the behaviors of clinical lead compounds in cells, where the complex,
asymmetric membranes, pH gradient and compositional
environments set a stage that is not represented by the simple
model systems. The complexity is significantly greater in tumors,
with added variables arising from mutual cell interactions and
influences from the animal host. Thus, the observations in simple
systems serve as helpful guides, but cannot fully define the choices
needed for the clinical uses of pHLIP.

1.5 pHLIPs target the TME

Much has been learned about possible clinical applications from
attaching reporter molecules to pHLIP and using their signals to
study tumor targeting in vivo. A minimal perturbation is expected
from attaching probes to the end of a pHLIP that remains outside
the membrane after insertion, and kinetic influences, but not major
equilibrium influences may arise from positioning probes on the end
that inserts across. Influences may also arise given the complexity of
interactions in an animal or in intact tissue. However, the
consistency of results across many variations of composition,
kinds of tumor, varieties of administration, and variations in
constructs leads to a well-supported view that tumors are
successfully targeted in vivo.

Many different fluorescent dyes (Andreev et al., 2007;
Reshetnyak et al., 2011; Adochite et al., 2014; Cruz-Monserrate
et al., 2014; Karabadzhak et al., 2014; Tapmeier et al., 2015; Adochite
et al., 2016; Miska et al., 2021; Visca et al., 2022) and positron
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emission tomography (PET) and single photon emission computed
tomography (SPECT) imaging agents (Vavere et al., 2009; Daumar
et al., 2012; Macholl et al., 2012; Viola-Villegas et al., 2014; Demoin
et al., 2016; Yu et al., 2021; Chen et al., 2022; Wu et al., 2022) have
been conjugated with different pHLIPs to observe tumor-targeting.
Routes of administration have included intraperitoneal, intravenous,
retro-orbital and sub-cutaneous injections. pHLIP uptake has been
followed in more than 20 different animal tumor models including
transgenic mouse models (Reshetnyak et al., 2011; Adochite et al.,
2014; Cruz-Monserrate et al., 2014; Cheng et al., 2015; Tapmeier
et al., 2015) and human cancer tissue specimens (Loja et al., 2013;
Luo et al., 2014; Golijanin et al., 2016; Brito et al., 2020; Mitrou
et al., 2021).

A variety of results support the idea that targeting in vivo is
based on tumor acidity. Targeting has been shown to be positively
correlated with tumor extracellular pH (Vavere et al., 2009; Macholl
et al., 2012; Tapmeier et al., 2015), and it is enhanced by acidification
using co-injection of glucose (Reshetnyak et al., 2011) or
overexpression of CAIX (Tapmeier et al., 2015). Conversely,
tumor targeting has been shown to be reduced by alkalization of
tumors in mice fed with bicarbonate drinking water (Rohani et al.,
2019). In multiple studies, it was found that non-protonatable (at
low pH) pHLIP variants, where some or all Asp/Glu residues were
replaced by Lys, did not target tumors and did not exhibit pH-
dependent membrane insertion (Andreev et al., 2007; Reshetnyak
et al., 2011; Cruz-Monserrate et al., 2014; Wyatt et al., 2018).
Distributions of pHLIP peptides within tumors and their
correlation with a variety of markers of tumor aggressiveness and
invasiveness including CAIX, lactate dehydrogenase (LDH),
Ki67 nuclear protein, and matrix metalloproteinases 7 (MMP7)
have been demonstrated (Adochite et al., 2014; Rohani et al., 2019).
Acidic regions targeted by pHLIP were not restricted to hypoxic
areas. Highly proliferative, invasive regions at the tumor-stroma
interface are very well marked by pHLIP peptides (Rohani et al.,
2019; Gillies, 2021; Moshnikova et al., 2022a). Within the TME,
cancer cells, CAFs, TAMs and mMDSC are marked by pHLIP
(Sahraei et al., 2019; Moshnikova et al., 2022a; Visca et al., 2022).
In addition to primary tumors, satellites near the primary tumor,
pre-metastatic niche and micro-metastases in distant organs have
been shown to be well targeted by pHLIP peptides (Segala et al.,
2009; Reshetnyak et al., 2011; Cruz-Monserrate et al., 2014; Adochite
et al., 2016; Rohani et al., 2019; Crawford et al., 2020; Gillies, 2021;
Matsui et al., 2023).

Currently, pHLIP-based imaging and therapeutic agents are
advancing in clinical trials, and more agents are in the process of
clinical translation. The straightforward interpretation of a large and
growing body of diverse evidence is that pHLIPs target different
types of cells in tumors based on their surface acidity, and that they
are a promising tumor-agnostic targeted delivery approach for the
imaging and treatment of tumors.

2 Extracellular delivery of imaging and
therapeutic payloads by pHLIP

When a pHLIP peptide inserts into a cell membrane, it spans the
membrane lipid bilayer, positioning one terminus (typically the
N-terminus) in the extracellular space and the other terminus

(typically the C-terminus) in the intracellular space, creating an
opportunity for targeted delivery of cargoes either to the outside or
to the inside surfaces of the membrane by conjugation to one or the
other terminus. Imaging and immuno-activating agents can be
conjugated via non-cleavable links or expressed as fusion
proteins together with pHLIP for extracellular delivery (Figure 2).
It is important to note that cells eventually take up these
extracellularly delivered payloads by endocytosis. This
intracellular uptake does not influence most imaging applications,
while it may limit the immuno-activating function of immuno-
stimulating agents. Targeted cell surface delivery offers a wide range
of applications.

2.1 pHLIP-ICG imaging agent for
fluorescence-guided surgery

pHLIP-ICG is a novel imaging agent, where indocyanine green
(ICG) is a near infrared (NIR) fluorescent dye chosen for clinical
development with pHLIP, since ICG is FDA-approved and widely
used for blood flow imaging (Crawford et al., 2020). Importantly, the
fluorescence of pHLIP-ICG is enhanced about 20-fold when
tethered to a cellular membrane when compared with the
emission of pHLIP-ICG in aqueous solution (Golijanin et al.,
2016; Roberts et al., 2019; Crawford et al., 2020). pHLIP-ICG
was used to image tumors in various mouse tumor models
(Crawford et al., 2020; Moshnikova et al., 2022a; Visca et al.,
2022) and ex-vivo in human bladder and upper urinary tract
specimens using different clinical instruments including da Vinci
(Golijanin et al., 2016) and Stryker endoscopic systems (Brito et al.,
2020; Moshnikova et al., 2022b). Compared to white light, NIR
fluorescence pHLIP-ICG imaging evaluation had a higher sensitivity
of 98% vs. 81% in the detection of malignant lesions in human
bladders (Moshnikova et al., 2022b). The sensitivity of pHLIP-ICG
imaging was 100% compared to 79% for white light examination in
human upper urinary tract specimens (Brito et al., 2020). Currently,
pHLIP-ICG agent is tested in fluorescence-guided surgery clinical
trials on breast cancer patients in combination with Stryker SPI-
PHY clinical imaging device (NCT05130801). Due to the tumor-
agnostic nature of the agent it will be tested on other tumors as well.
pHLIP-ICG has the potential to decrease the rate of positive surgical
margins. The utility of pHLIP-ICG was also demonstrated in opto-
acoustic and short-wave infrared (SWIR) imaging (Roberts et al.,
2019; Mc Larney et al., 2023).

2.2 pHLIP-Zr for PET imaging of TME

Quantitative whole-body imaging using PET has proven to be
very useful in visualizing cancer lesions. The acidic TME can be
imaged with pHLIP-based PET-compatible radiotracers and the
following radiotracers were evaluated 18F, 99mTc, 64Cu, [18F]AlF, and
68/67Ga with pHLIP peptides in various tumor models (Vavere et al.,
2009; Daumar et al., 2012; Macholl et al., 2012; Viola-Villegas et al.,
2014; Demoin et al., 2016; Pereira et al., 2020). A PET imaging agent,
pHLIP-18F, was evaluated in a phase I microdose study. The agent
was found to be safe, no-adverse events were observed and tumor
targeting was established. However, even at 4 h post-injection, a
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significant amount of the signal was observed as high background in
the blood and major organs. To improve contrast, the longer-lived
PET radionuclide zirconium-89 (89Zr) (half-life of 3.3 days) was
bound to pHLIP (Bauer et al., 2022). 89Zr’s relatively low positron
energy (EAvg = 395 keV) allows for high-resolution PET imaging,
comparable to 18F (Lee et al., 2015). A straightforward chemical
conjugation route was introduced and six Zr-radiolabeled pHLIP
imaging agents were tested in tumors in animal models, resulting in
a candidate for clinical translation. The biological blood clearance
half-life was 16.0 ± 0.4 h, and the biological half-life for total body
excretion was 415 ± 10 h. Optimal tumor uptake was detected at the
48-h timepoint (9.7 ± 1.7 %ID/g). The pHLIP agent was present in
the entire tumor mass, and the highest activity areas overlapped with
the tumor stroma. Preclinical biodistribution results, together with
human dosimetry estimates, suggest that pHLIP-Zr is expected to be
safe and effective at the administered activities required to obtain
diagnostic quality PET images in patients. pHLIP-Zr is expected to
be a first-in-class PET agent for imaging of TME acidity. It could be
used to assess the metabolic status of tumors, enabling prediction of
the responsiveness to therapy by pHLIP-based therapeutics and a
variety of immune therapies.

2.3 Antigen-pHLIP immuno-activating
therapeutic agents

The idea of targeting immunogenic epitopes to cancer cells to
promote immunological responses or cytotoxic activity has been
recognized as an attractive approach to tumor therapy. One of the
widely investigated immunogenic epitopes is α-Gal
(Galα1,3Galα1,4GlcNAc-R), since humans exhibit specific anti-
Gal reactivity. Humans possess anti-Gal antibodies (~1% of
immunoglobulins), and these antibodies are responsible for the
strong allergic reaction triggered during organ transplantation
from animals to humans (xenotransplantation), since the α-Gal
epitope induces complement-dependent cytotoxicity (CDC) and
antibody-dependent cell-mediated cytotoxicity (ADCC) leading to
organ rejection (Larsen et al., 1990; Commins and Platts-Mills, 2013;
Hamanova et al., 2015; Cooper, 2016). Therefore, the α-Gal epitope
was being developed for decoration of cancer cells to induce immune
attack and “tumor rejection” (Macher and Galili, 2008; Tanemura

et al., 2013; Huai et al., 2016; Anraku et al., 2017). In clinical trials
with the α-Gal epitope, lipids were used to position α-Gal at the
surfaces of cancer cells via intra-tumoral administration of α-Gal-
lipid (Whalen et al., 2012; Albertini et al., 2016), but the agent is not
suited for systemic administration. Systemic administration of the α-
Gal epitope in animals was achieved using pHLIP targeted delivery
(DuPont et al., 2022). The α-Gal epitope was conjugated to a pHLIP
peptide via a polyethylene glycol (PEG) linker to obtain Gal-pHLIP,
and therapeutic efficacy was tested in immunized A3galt2 knockout
mice, lacking α-Gal epitopes, and using a B16F10 melanoma tumor
model (Thall et al., 1995; Porubsky et al., 2007). The treatment led to
a reduction of tumor growth by 66% (DuPont et al., 2022).

The repertoire of immunogenic epitopes could be significantly
enhanced if therapeutic efficacy did not rely on the presence of
natural antibodies, but instead relied on the production of anti-
epitope endogenous antibodies induced by immunization against
the selected epitope. Therefore, several HA-pHLIP agents were
designed and tested (DuPont et al., 2022). The HA peptide
(YPYDVPDYA) from the influenza virus was selected as a highly
immunogenic exogenous epitope, since it is absent in the human
genome (Wilson et al., 1984), and since a high titer of anti-HA
antibodies is developed in mice after immunization with KLH-HA
(DuPont et al., 2022). HA peptides were attached to the N-terminal
sequence of pHLIPs either directly or via PEG polymers. To enhance
the overall binding affinity of HA-pHLIP to anti-HA antibodies,
double headed HA-pHLIP agents were introduced, where two HA
epitopes were linked to a single pHLIP peptide via PEG12 polymers.
The pHLIP sequence was modified to compensate for the addition of
polar HA peptides and PEG polymers and to ensure the proper pKs
(in the range of pH 5–6) for insertion of the entire construct into
membranes. The HA epitope was targeted to cancer cells by pHLIP
in a mouse tumor model, and it remained exposed to the
extracelullar space within tumors for about 24 h. Treatments of
imunized mice, bearing 4T1 triple negative or B16F10 MHC-I
negative melanoma tumors, with a double-headed HA-pHLIP
resulted in a 55% reduction of tumor growth. Further reduction
of tumor growth was problematic to achive, since all of the anti-HA
antibodies in the blood were captured after 3 injections of HA-
pHLIP and additional boosts would be required to restore the level
of free anti-HA antibodies to potentially induce a more significant
therapeutic efficacy.

FIGURE 2
Extracellular delivery of imaging or therapeutic payloads. Various payloads can be positioned at cell surfaces within tumors by conjugation to the
pHLIP terminus that remains outside of the cell. Among the useful payloads are fluorescent dyes, PET and SPECT imaging agents, various antigens, or
immune-cell-recruiting molecules, and proteins. Peptide and protein payloads might be expressed with pHLIP as a single polypeptide.
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In addition to the targeted delivery of antigens, the surface
display of cancer cell molecules that promote the recruitment of
immune cells was investigated (Sikorski et al., 2022). pHLIP was
conjugated with a formyl peptide receptor ligand (FPRL) to form
FPRL-pHLIP agent. FPRL interacts with the N-formyl peptide
receptor (FPR) primarily expressed in phagocytic leukocytes
(neutrophils, monocytes, dendritic cells, and natural killer cells).
It was shown that FPRL-pHLIP activates FPR and enhances
recruitment of immune cells and their tethering to cancer cells,
which is expected to trigger an immune response.

As mentioned above, a challenge for the immune display
approach is the turnover of the cell surface via endocytosis. The
time needed for intracellular uptake depends on the type and size of
a payload and type of targeted cells. If phagocytotic cells, such as
macrophages, are targeted, rapid intracellular uptake will be
observed, while antigens could be exposed longer to the
extracellular space within tumors (about 24 h) when cancer cells
are targeted (DuPont et al., 2022; Frolova et al., 2022; Visca et al.,
2022). Nevertheless, the targeted extracellular delivery of antigens
and immune stimulating molecules by pHLIPs opens opportunities
to overcome the limitation of tumor antigen heterogeneity,
broadening the applications of NK cell immunotherapy for tumors.

2.4 Protein-pHLIP fusion therapeutic agents

Since pHLIP is a polypeptide, it can be expressed as a fusion with
a protein, potentially targeting the protein to tumors. Fusion of WT-
pHLIP with green fluorescent protein (GFP) (GFP-pHLIP) was
studied in HeLa cancer cells for cellular uptake (Frolova et al.,
2022). However, the first functional example of a fusion agent is a
tTF-pHLIP fusion protein, where the N-terminus of pHLIP was
fused to the C-terminal region of coagulation-inducing truncated
tissue factor (tTF) protein (Li et al., 2015). pHLIP targeted tTF to
tumors and positioned it at the surfaces of tumor cells. tTF anchored
to cellular membrane triggered a coagulation cascade, which
resulted in a reduction of tumor perfusion and promoted tumor
regression. Another example is an Fc fragment fusion with pHLIP
(Fc-pHLIP) (Ji et al., 2019). The membrane inserted pHLIP-Fc
fragments efficiently activated NK cells, initiating ADCC, which
led to the death of cancer cells, including antigen-negative cells.
Therapeutic efficacy was demonstrated on both primary solid
tumors and tumor metastasis.

A more complex fusion protein was tested consisting of
3 components: i) CD19 for targeting of anti-CD19 chimeric
antigen receptor (CAR) T-cells (CAR-T) (FDA approved
therapy); ii) an extracellular domain of junctional adhesion
molecule (JAM) proteins that play a key role in assembly of the
tight junctions and control cell-cell adhesion; and iii) pHLIP peptide
(Mendoza and Mizrachi, 2022). JAMs are members of the
immunoglobulin superfamily that act as barriers in controlling
the permeability of the paracellular space, responsible for
compartmentalization of the cellular environment and the
separation of tissues (Ebnet, 2017; Steinbacher et al., 2018).
pHLIP targets the fusion protein CD19-JAM-pHLIP to tumors
and inserts into cancer cell membranes. JAM binds to other JAM
proteins in the existing cell–cell interactions, allowing homotypic or
heterotypic interactions to occur, and may also establish de novo

cell–cell interactions, thus preventing and restraining weakly
interacting cells from metastasizing. As a result, treatment with
CD19-JAM-pHLIP led to a decrease of cancer cell proliferation and
metastasis. The CD19 part of the fusion protein may attract anti-
CD19 CAR-T cells, which will induce cancer cell eradication.

Targeted delivery of chemokines and cytokines has also attracted
attention and has been the subject of many studies. For example,
interleukin 2 (IL-2) plays a fundamental role both in immune
activation and tolerance, since IL-2 signaling is a key contributor
to downstream T cell fate through activation of different
transcription factor programs (Ross and Cantrell, 2018). The
ability of IL-2 to mediate tumor regression led to FDA approval
for its use in the treatment of metastatic renal cell carcinoma and
metastatic melanoma in the 1990s. However, the therapeutic efficacy
was modest, while a wide array of side effects ranging from flu-like
symptoms to life-threatening conditions such as vascular leak
syndrome was reported, and so significant efforts were devoted
to targeted activation or delivery of IL-2 to the tumor or secondary
lymphoid tissue (MacDonald et al., 2021). Recently, a fusion protein
of IL-2 and pHLIP (IL2-pHLIP) demonstrated tumor targeting and
resulted in effective reduction of breast and melanoma tumors in
animal tumor models (Chu et al., 2023). Another example of
targeted delivery of chemokines is a fusion of chemokine C-C
motif ligand 21 (CCL21) with pHLIP (Li et al., 2023).
CCL21 binds to the CCR7 cell-surface chemokine receptor found
on leukocytes (Yoshida et al., 1998). A fusion of CCL21 with pHLIP
was performed with and without a thioredoxin (Trx) tag to obtain
CCL21-pHLIP and Trx-CCL21-pHLIP. The yield of expression was
high and both fusion proteins were displayed on cancer cell surfaces
at low pH, where they successfully recruited CCR7-positive cells.

Recently, pHLIP was fused with the SOPP3 mutant of a singlet
oxygen generating protein (miniSOG). The SOPP3 mutant of
miniSOG is an effective light-driven single oxygen generator
(Westberg et al., 2017). The miniSOG-pHLIP fusion agent
selectively bound HeLa cells at pH < 6.8 and induced cell death
after exposure to light (Frolova et al., 2023).

It seems that many pHLIP fusion constructs have promising
characteristics. These constructs may prove to be of clinical value in
the future.

3 Intracellular delivery of therapeutic
payloads by pHLIP

Over several decades, a vast variety of small molecule agents
have been developed to target key functions inside tumor cells, with
the aim of having some selective inhibitory effect between normal
and diseased tissue. Inevitably, these agents have had problematical
side effects that attend their uses, giving rise to a focus on means to
enhance selective targeting. Selective targeting of tumor cells
presents two basic problems: targeting and delivery. For example,
Antibody-Drug Conjugates (ADCs) have had successes in the clinic
by targeting specific epitopes that are abundant in certain tumors,
and delivering by endocytic uptake followed by lysosomal
degradation and release of the agent. As mentioned above, clonal
selection and limited availability of suitable biomarkers are imposing
limits on the success of ADCs. pHLIP peptides may provide a viable
alternative, since they target acidity, a general feature of cells in most
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tumors, and can deliver small molecules directly to the cytoplasm,
bypassing endocytosis.

Many examples of successful intracellular delivery of polar and
moderately hydrophobic (drug-like) payloads by pHLIP have been
reported. In most cases, the payloads are conjugated to pHLIPs via
disulfide linkers to the membrane-inserting end of pHLIP peptides
(Figure 3). These linkers are stable outside of cells, but they are
cleaved in the reducing environment of the cytoplasm, releasing the
cargo. The linkers may be self-immolating, releasing the cargo in its
original form—an important advantage. In early work, the
intracellular delivery of fluorescent molecules and model cyclic
peptides was studied to tune properties of payloads in a
systematic manner and to probe the feasible ranges of delivery
pHs (Reshetnyak et al., 2006; Thevenin et al., 2009), followed by the
many studies of intracellular delivery of functional immuno-
stimulating, cytotoxic or cell-regulating molecules described below.

3.1 pHLIP-STINGa for immunotherapy of
solid tumors

The progression of immune-excluded “cold” tumors is
associated with the formation of dense stroma consisting of
acidic CAFs, TAMs and mMDSC, generating immuno-
suppressive signals and impairing the homing of T and NK cells
and their cytotoxic functions (Gascard and Tlsty, 2016; Sahai et al.,
2020; Wu et al., 2020; Tu et al., 2021). Immuno-stimulating
molecules, such as an agonist of the stimulator of interferon
genes (STING) pathway (STINGa), cause the release of factors
that trigger the immune response in the TME and can convert
“cold” tumors into “hot” inflamed tumors (Woo et al., 2014).
However, nonspecific systemic immuno-activation can be very
dangerous, and the first clinical trials with small molecule
STINGa have resulted in disappointingly modest efficacy
(Motedayen Aval et al., 2020). Also, recent findings indicate that
activation of the STING pathway in different types of cells within the
TME has different benefits (Decout et al., 2021; Chamma et al.,
2022). Reprogramming of M2-type TAMs (M2-TAMs) toward an
M1 phenotype, suppression of CAFs and mMDSCs, as well as

activation of dendritic cells (DCs) to train T cells are
advantageous, while activation of T cells is associated with the
development of pro-apoptotic signals. pHLIP was able to
accomplish a number of desirable tasks in the delivery of
STINGa: i) pHLIP-STINGa extended the lifetime of a STINGa in
the blood; ii) > 70% of CAFs and M2-TAMs, and >50% of mMDSCs
and DCs within TME were targeted by pHLIP-STINGa, resulting in
activation of cytokines within the TME; iii) the tumor stroma was
destroyed (the number of CAFs was reduced by 98%), triggering
intratumoral hemorrhage, which led to an increase of pH within the
TME (Moshnikova et al., 2022a). As a result, a single dose of pHLIP-
STINGa administered either by intravenous or intraperitoneal
injection eradicated tumors in 18 out of 20 mice, and tumors
were not developed upon a re-challenge by an additional
injection of cancer cells (90 days after a single dose of pHLIP-
STINGa). Thus, pHLIP-targeted delivery of STINGa to tumor
stroma and TAMs induces activation of signaling, potentially
resulting in the recruitment and infiltration of T and NK cells,
which gain access to the tumor core. The cytotoxic activity of T and
NK cells was not impaired by being subjected to an acidic
environment, and immune memory was developed. pHLIP-
STINGa is under development for translation to clinical trials
by pHLIP, Inc.

3.2 Cytotoxic drug payloads

Since pHLIP delivery facilitates the entry of a small molecule
agent compared to diffusion of the agent by itself, the properties of a
therapeutic agent can cover a larger chemical space, including more
expanded criteria for polarity and molecular weight. The first polar,
cell-impermeable functional payloads delivered intracellularly by
pHLIP peptides include mushroom phallo- and amanita toxins
(Reshetnyak et al., 2006; An et al., 2010; Wijesinghe et al., 2011;
Moshnikova et al., 2013). Phalloidin is a cyclic heptapeptide
cytotoxin that binds actin filaments and stabilizes them against
depolymerization (Wieland, 1977). It is known that when a
sufficient amount of phalloidin is microinjected into a cytoplasm,
cell proliferation is inhibited (Wehland et al., 1977), but phalloidin is

FIGURE 3
Intracellular delivery of therapeutic payloads. A large variety of payloads can be delivered across the plasma membrane into the cytoplasm of an
acidic cell, and either positioned at the inner surface of the plasma membrane or released to find intracellular targets, for example, by conjugation via a
cleavable disulfide bond. Among the many payloads discussed in this review are imaging agents, drugs, peptides, proteins, PNAs and siRNAs.
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large and polar, and does not enter a cell on its own. WT pHLIP was
shown to deliver phalloidin and phalloidin-tetramethylrhodamine
(TRITC) to a variety of cancer cells in a pH-dependent manner,
leading to stabilization of the actin cytoskeleton and formation of
multinucleated cells, and resulting in the inhibition of cell
proliferation (Reshetnyak et al., 2006; An et al., 2010). To
facilitate pHLIP-mediated delivery of polar phallacidin, an analog
of phalloidin, diamines of various lengths of hydrophobic chains
were attached to it (Wijesinghe et al., 2011). The results indicated
that translocation of polar cargoes by pHLIPs can be facilitated by
hydrophobic molecular entities; however, a balance is required, since
the hydrophobic facilitators can induce aggregation of a pHLIP-
payload construct and reduce its affinity for a membrane. The pK of
pHLIP-mediated intracellular delivery of amanitin was tuned by
using linkers of different hydrophobicity, and cancer cell viability
was assessed after exposure to the agents (Moshnikova et al., 2013).
Amanitin is a highly selective allosteric inhibitor of eukaryotic
polymerase II, and is one of the deadliest toxins known,
exhibiting toxicity against both dividing and quiescent cells,
which has made it an attractive payload for antibody drug
conjugates (ADCs) (Davis and Preston, 1981; Moldenhauer et al.,
2012; Nicolaou and Rigol, 2019; Li Y. et al., 2021). The cytotoxic
effect was monitored when amanitin was conjugated to the pHLIP’s
membrane inserting end via a S-S cleavable linker, and no
cytotoxicity was observed when a non-cleavable linker was used,
or when amanitin was conjugated to the membrane non-inserting
end of pHLIP (Moshnikova et al., 2013). Potency, which was defined
as a difference between cell viability at low and physiological pHs at
different concentrations of the constructs, was enhanced by
bundling 2 or 4 pHLIP-amanitin agents in a single bundle
(Wyatt et al., 2018). Despite the promising data obtained on
cultured cells, systemic administration of pHLIP-amanitin was
associated with liver toxicity, since hepatocytes have a special
transporting system for the uptake of small cyclic molecules like
phallo- and amanita toxins (Munter et al., 1986), and pHLIP
peptides conjugated with these toxins did not prevent uptake by
liver cells (unpublished results). Recently it was shown that a 3-4x
enhanced cytotoxicity of pHLIP-amanitin was observed for
urothelial cells with a 17p loss after 2 h of treatment at pH6
(Moshnikova et al., 2022b). While systemic use appears unlikely
to succeed, an application for bladder cancer may be possible using
instillation into the bladder lumen. Based on the data so far, it
appears that such a topical treatment of superficial bladder cancers
with pHLIP-amanitin may be feasible.

Tubulin inhibitors constitute another group of cytotoxic
compounds widely used in ADCs, including monomethyl
auristatin E and F (MMAE and MMAF) and maytansinoid,
ravtansine (DM4). When the tubulin protein is targeted to
prevent microtubule formation, cell death by apoptosis results.
The anti-CD30-MMAE (brentuximab vedotin) ADC is approved
for the treatment of Hodgkin’s lymphomas. pHLIP was tested with
MMAE and MMAF for inhibition of cancer cell proliferation and
treatment of solid tumors in mice (Burns et al., 2015; Burns et al.,
2017). pHLIP-DM4 (CBX-13) and pHLIP-MMAE (CBX-15) are
under development for translation to clinical trials by Cybrexa
Therapeutics. DM4 and MMAE inhibitors are linked to pHLIP’s
membrane-inserting end via cleavable self-immolating linkers, and a
candidate has been designated, CBX-15. The promising data

presented at the 35th AACR-NCI-EORTC (ANE) Symposium in
2023 indicate that CBX-15 rapidly regressed tumors in animal
models, resulting in complete responses without damaging
healthy tissues such as bone marrow, and invoked an increased
resistance to live tumor rechallenge and a doubling of bone marrow-
resident CD4 T-cells 50 days post-dose.

A pHLIP-drug conjugate that is under clinical development by
Cybrexa and Exelixis is CBX-12 or pHLIP-exatecan
(NCT04902872). Exatecan is a potent DNA damaging agent that
acts as an inhibitor of topoisomerase, an enzyme that regulates DNA
structure by cleaving and rejoining DNA during normal cell cycle
progression (Pommier et al., 2016). In multiple xenograft models
pHLIP delivered exatecan to tumors, inducing tumor cell killing
with minimal to no bone marrow or gastrointestinal toxicity, which
are typical for free exatecan (Gayle et al., 2021). Also, pHLIP-
exatecan combined with anti-PD-1 or anti-CTLA4 agents
resulted in delayed tumor growth and some complete responses
(Gayle et al., 2022). The agent stimulated expression of MHC-1 and
PD-L1 and induced immunogenic cell death resulted in a long-term
immune recognition of tumor cells and antitumor immunity, which
could be associated with delivery of exatecan to stroma and activated
myeloid cells within the TME.

Among other cytotoxic drugs that have been explored for
intracellular delivery by pHLIP, are doxorubicin (DOX), etomoxir
and calicheamicin. pHLIP-DOX was effective on both drug-sensitive
and drug-resistant cells, which may allow a way to overcome the issue
of multi-drug resistance (MDR) (Song et al., 2016). Also, it was shown
that the dendrimeric display of DOX on the pHLIP carrier facilitates
the pH-dependent release of drug to the cytosol, eliminating endosomal
sequestration of the drug, and augments DOX cytotoxicity relative to
the free drug (Burns and Delehanty, 2018). pHLIP-etomoxir, where
etomoxir is an inhibitor of carnitine palmitoyltransferase 1, efficiently
slowed down the growth of various cancers (Deskeuvre et al., 2022).
Calicheamicin, a potent cell-cycle independent enediyne antibiotic that
binds and cleaves DNA, has been approved in ADCs with an anti-
CD33 antibody (gemtuzumab ozogamicin or Mylotarg) and an anti-
CD22 antibody (inotuzumab ozogamicin or Besponsa) for the
treatment of liquid cancers (Hamann et al., 2002; Ricart, 2011; de
Vries et al., 2012; Kantarjian et al., 2016). pHLIP-calicheamicin was
effective in inhibiting tumor growth in mice and depleting CD206+

TAMs within the TME.

3.3 Peptide and protein therapeutic payloads

pHLIPs have been used for targeted delivery of peptides and
proteins either conjugated via S-S cleavable or non-cleavable bonds
or expressed as single polypeptide chains with the goal of triggering
cell-regulation pathways. Such constructs could be regarded as
synthetic membrane receptors, with extracellular and/or
intracellular domains and pHLIP as a tumor-targeting TM part
of the receptor. One of the scaffolds for such a receptor was
introduced using amphiphilic DNA tetrahedrons (Ts) composed
of a pendent DNA and cholesterol tags (Li et al., 2019; Li et al., 2021)
as an extracellular domain and protein recruiter (Pr) as an
intracellular domain to locate proteins at the inner leaflet of the
plasma membrane bilayer. Ts-pHLIP-Pr was tested on cells to
demonstrate proof of principle (Wu et al., 2023).
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In another example, a P1AP peptide (KKSRALF) that mimics
i3 of the protease-activated receptor (PAR1) was conjugated to the
C-terminus of different pHLIPs through a non-labile chloro-
acetylchloride linker (Burns and Thevenin, 2015), cleavable S-S
linker (Yu et al., 2020) or was synthesized as a single polypeptide
(Chen et al., 2021). PAR1 is a member of G protein-coupled
receptors (GPCRs) family and targeting of its intracellular
portion modulates the interaction of GPCRs with G proteins
(Covic et al., 2002). P1AP peptide, intracellularly delivered by
pHLIP, was anchored to the cytosolic face of the plasma
membrane to stabilize PAR1 in its nonactive conformation and
effectively downregulate it signaling cascade. As a result, cytotoxicity
was observed in cancer cells, and tumor targeting was confirmed by
SPECT imaging using I125-pHLIP-P1AP (Chen et al., 2021).

A Trx-pHLIP-beclin1 construct composed of a Trx tag, pHLIP
and an evolutionarily conserved motif of beclin1 was studied (Ding
et al., 2018). Beclin1 phosphorylation releases the anti-apoptotic
protein Bcl2 and activates the lipid kinase vacuolar protein sorting
34 (Vps34), which induces autophagosome formation (Pattingre
et al., 2005). The Trx-pHLIP-beclin1 fusion protein was prepared by
connecting of the N-terminus of the conserved motif of beclin1 to
the C-terminus of pHLIP and linking N-terminus of pHLIP with Trx
tag, highly hydrophilic and heat-stable protein with strong folding
properties. Trx-pHLIP-beclin1 inhibited breast and ovarian cancer
cells proliferation and induced autophagy. The antitumor efficacy
was confirmed on SKOV3 xenograft tumor mouse model.

A different pathway, which was demonstrated to play an
important role in the regulation of autophagy and cell death, is
based on the interactions of transmembrane protein TM219 with
insulin-like growth factor binding protein 3 (IGFBP3), which
induces caspase 8 dependent apoptosis (Ingermann et al., 2010).
The SCTT peptide (CFHPRRESHWSRTRL) of the cytoplasmic
domain of TM219 was conjugated via an S-S bond to the
C-terminal part of pHLIP (Joyce and Nour, 2019). A significant
reduction of beclin1 phosphorylation was observed after
intracellular delivery of SCTT by pHLIP in the presence of
IGFBP3, indicating that SCTT inhibits TM219-IGFBP3 signaling
when delivered to the cytoplasm and can block autophagy in 3D
cell culture.

A cancer treatment might also be developed by inhibition of
epidermal growth factor receptor (EGFR) (Yarden and Pines, 2012)
by competitive binding to inhibit the association of its cytoplasmic
juxtamembrane (JM) domain, which is essential for receptor
dimerization and kinase function. The C-terminal end of a
pHLIP peptide was fused with a JMA peptide (TLRRLLQ,
residues 645–663 of JM) (Gerhart et al., 2018). JMA forms a
short α-helix that interacts in an antiparallel manner to stabilize
the asymmetric dimer (Jura et al., 2009; Red Brewer et al., 2009).
pHLIP-JMA inhibited EGFR phosphorylation, and the downstream
signaling resulted in cytotoxicity.

A pHLIP peptide has been used to deliver antimicrobial cationic
peptides that form amphipathic α-helices when bound to negatively
charged lipid membranes. (KLAKLAK)2 and its six peptide
derivatives were conjugated to the C-terminus of pHLIP through
a disulfide bond (Burns et al., 2016). The anti-proliferative effect of
pHLIP–KLAKLAK obtained in cancer cells appeared to be due to
the pH-selective translocation of the peptide across the plasma
membrane, disulfide reduction, and the binding of KLAKLAK to

the mitochondrial membrane to destabilize it. However, A caution
in the interpretation is that positively charged peptides have a high
affinity for negatively charged cell membranes and are readily taken
up by endocytosis, so there may be more than one pathway for
uptake, with pHLIP insertion into the endosome as an alternative
route. Nonetheless, pHLIP delivery has enhanced the presence of the
agent in the cytoplasm.

Even a large, polar protein payload, the 30 kDa glycoprotein
gelonin, was successfully delivered by pHLIP to the cytoplasm (Ding
et al., 2022). Gelonin, is a type I ribosome inactivating protein
phytotoxin, which inhibits protein synthesis by cleaving Adenine
4,324 of the 28S ribosomal RNA, resulting in cell death (Shin et al.,
2014). Gelonin is too toxic to be used in a non-targeted form. The
Trx-pHLIP-gelonin fusion protein was prepared and tested in vitro,
in cultured cells, and, in vivo, in mouse tumor models. Trx-pHLIP-
gelonin treatment of SKOV3 ovarian solid tumors in mice was very
effective with negligible toxicity.

3.4 Nucleotide-based therapeutic payloads

Other classes of polar, cell-impermeable therapeutic payloads
that are not “drug-like” are siRNAs and peptide nucleic acids
(PNAs). PNAs are less polar compared to siRNA, since they are
artificial oligonucleotide mimetics with a peptide backbone that
lacks the highly polar phosphates of a conventional nucleic acid
(Nielsen et al., 1991; Egholm et al., 1993). A PNA forms more stable
duplexes with DNA or RNA than either of the DNA or RNA
homoduplexes, it is metabolically stable, and it could be used as
an antisense, gene-regulation, immuno-modulating, or gene editing
agent (Saarbach et al., 2019). PNA, being a membrane-impermeable
molecule, needs to be delivered intracellularly. In an early pHLIP
paper, pH-driven intracellular delivery of fluorescently labeled (by
carboxytetramethylrhodamine, TAMRA) antisense PNA by WT
pHLIP peptide was shown (Reshetnyak et al., 2006). Later, in a
systematic study of WT-pHLIP delivery of TAMRA-PNAs of
different lengths (sizes) including 12-mer (4.1 kDa), 16-mer
(5.2 kDa), 20-mer (6.3 kDa) and 25 mer (7.7 kDa), effective pH-
dependent intracellular translocation of PNAs up to 7 kDa was
shown. Effective tumor-targeting was reduced for PNA cargoes
greater than ~6 kDa (Svoronos et al., 2020). Also, delivery of a
modified PNA with (R)-diethylene glycol at the γ position (γPNA)
was tested with pHLIP (Kaplan et al., 2020). pHLIP delivered
antisense γPNA targeting protein KU80, a DNA double-strand
break repair factor, to cancer cells and suppressed
KU80 expression in a pH-dependent manner. Treatment of mice
with pHLIP- γPNA led to knockdown of KU80 expression in
tumors, which resulted in selective radiosensitization within
tumors, but not in normal tissue.

pHLIP delivery of PNAs was successfully used to target micro
RNAs (miR), which play important regulatory roles in many
pathological processes. Targeting of miR-155 was shown in cultured
cancer cells and in an animal tumor model (Cheng et al., 2015). pHLIP
altered the biodistribution of PNA, preventing its liver accumulation
and promoting renal clearance without affecting kidney function and
histology. In a mouse model of lymphoma, pHLIP-PNA led to the
inhibition of miR-155 and the suppression of metastasis while not
affecting the level of lymphocytes.
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pHLIP anti–miR-21 PNA was used to target miR-21 in tumor
associated macrophages (Sahraei et al., 2019). mIR-21 regulates
various downstream effectors and is associated with tumor
pathogenesis during all stages of carcinogenesis (Feng and Tsao,
2016). As a result, tumor growth was reduced even under conditions
where miR-21 expression was deficient in cancer cells.

The protein target of miR-29a is a carcinoembryonic antigen-
related cell adhesion molecule 6 (CEACAM6), a glycoprotein that
mediates cell–cell interactions and is involved in cell adhesion,
proliferation, migration, invasion, and metastasis (Beauchemin
et al., 1999; Blumenthal et al., 2005) and that is overexpressed in
a wide variety of carcinomas (Blumenthal et al., 2007; Zang et al.,
2017). pHLIPanti-miR-29a PNA was effective in the reduction of
cell viability and inhibited tumor growth in a mouse tumor model as
a monotherapy or combined with cisplatin, which reduced tumor
volume by 40% (Son et al., 2023).

pHLIP was used for targeted intracellular delivery of a PNA
conjugated to a cell penetrating peptide (CPP) (RRRQRRKKR). The
PNA was designed to target long non-coding HOX transcript
antisense RNA (HOTAIR), which is frequently overexpressed in
solid tumors and correlates with chemoresistance and poor patient
prognosis (Malek et al., 2014; Ozes et al., 2016). Treatment of mice
harboring platinum-resistant ovarian tumor xenografts with
pHLIP-CPP-PNA construct suppressed HOTAIR activity,
reduced tumor formation and improved survival (Ozes et al., 2017).

pHLIP also mediated successful intracellular delivery of siRNAs
(Zhao et al., 2018; Son et al., 2019). pHLIP-siRNA-
CEACAM6 treatment resulted in tumor growth inhibition of up
to 36%, and combined with cisplatin, up to 47% (Son et al., 2019). In
another example, pHLIP-siRNA targeting cell division cycle-
associated protein 1 (CDCA1), highly expressed in prostate
cancer cells and human samples, was investigated. pH-dependent
intracellular delivery of CDCA1-siRNA by pHLIP was
demonstrated, as well as inhibition of tumor growth as
monitored after pHLIP-siRNA treatment (Zhao et al., 2018).

While the regulatory pathways and roles of small RNA
molecules are complex and interdependent, targeted pHLIP
delivery of PNA or siRNA to suppress some of them in tumors
has been shown and is a promising direction for possible future
therapeutic development. Selective inhibition may also serve as an
important research tool as the roles of the miRs are examined.

4 Targeted delivery of pHLIP-coated
nanomaterials

Nanotechnology plays an important role in medicine and,
specifically, in cancer imaging and treatment (Ajith et al., 2023;
Sell et al., 2023). Some nanomaterials are designed for diagnostic or
therapeutic applications, and most nanomaterials can also possess
theranostic properties and so could be used for both imaging and
therapy. The enhanced permeability and retention (EPR) effect
supports passive tumor targeting of nanoparticles (NPs) due to
the leaky vasculature found in some tumors. However, there are
many reports indicating that active targeting or activation within the
TME can significantly improve the delivery of NPs to tumors (Sun
et al., 2023). pHLIP has been employed as a coating of a variety of
nanomaterials for enhanced targeting and intracellular or

membrane delivery of payloads. In the examples of pHLIP uses
described above (Figures 2, 3), a single pHLIP peptide is conjugated
with a single payload, either a small molecule or a protein. In some
cases, two antigens (HA-PEG) were bound to a single pHLIP.
However, when a larger entity, like a NP, is coated with multiple
pHLIP peptides inserting simultaneously into a cellular membrane
at low pH, cell membrane destabilization is promoted, which leads
to fusion (if the NP has a lipid shell) and/or endocytotic uptake
(Figure 4). An important factor to note is that pHLIP strongly inserts
into the endosomal membranes, where the pH is 5.0–5.5, even more
readily facilitating cytoplasmic payload release.

4.1 Liposomes and niosomes

In a pioneering experiment, lipid nanoparticles (LNPs) were
prepared by using DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine) or DOPE (1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine) phospholipids and varying amounts (up
to 10%) of DSPE (1,2-distearoyl-sn-glycero-3-
phosphorylethanolamine) linked with 2 kDa PEG and pHLIP
(Yao et al., 2013a). pHLIP promoted the fusion of the pHLIP-
coated LNPs with cancer cells, resulting in intracellular delivery of a
polar propidium iodine (PI) cargo encapsulated within the LNPs.
The fusion also resulted in the delivery of C6 ceramide incorporated
into the lipid bilayers of LNPs into the target membrane. The
delivered ceramide induced cell death at low pH. Another
formulation of pH-triggered fusogenic pHLIP-coated LNPs was
prepared without PEG and consisted of DOPC lipids and 5%
pHLIP-DSPE, with gramicidin channels included in the bilayers
of the liposomes. Targeted fusion of the liposomes with a cell
membrane put the channels into the membrane bilayer, leading
to the disruption of the cellular monovalent ion balance and
pH gradient and depolarization of the mitochondrial membrane,
which resulted in inhibition of cancer cell proliferation (Wijesinghe
et al., 2013).

Additionally, LNPs were prepared from DOPE, cholesterol,
vitamin E, PEG-DSPE or pHLIP-DSPE, where the PEG version
serves as a control for comparison with the pHLIP coated version
(Wang et al., 2020). The PEG or pHLIP components were
conjugated via cleavable disulfide links with DM1, a potent
maytansinoid cytotoxin inhibiting the assembly of microtubules.
pHLIP-LNPs and PEG-LNPs were studied in cells and mouse tumor
models. When pHLIP-LNP formulations containing a few percent
of fluorescently labeled lipids were used to treat cells, the fluorescent
signal was found in the endoplasmic reticulum or mitochondria, as
opposed to the same compositions of LNPs where pHLIP was
replaced with PEG, which were mostly found in endosomes. The
pHLIP-LNP formulations were more effective in inhibition of cell
proliferation and tumor growth in mice.

pH-sensitive niosomes (80–90 nm in diameter) were formulated
using non-ionic surfactants Span20 and Tween20, cholesterol and
5 mol% of pHLIP conjugated with DSPE lipids or the hydrophobic
fluorescent dye, pyrene, which incorporates into niasome
membranes (Pereira et al., 2016; Rinaldi et al., 2018).
Fluorescently labeled pHLIP-coated niosomes showed tumor
targeting with a resulting homogeneous distribution within
tumors and a minimal accumulation in major organs. pHLIP-
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niosomes exhibited 2–3 times higher tumor uptake compared to the
non-targeted PEG-niosomes. This lead may be worth further
investigation as a delivery vehicle.

4.2 Gold nanomaterials

Gold NPs (GNPs) of different sizes and shapes are finding a
variety of biomedical applications (Zhang and Gao, 2023). Often,
GNPs are useful for the enhancement of therapeutic radiation
effects. In a number of versions, the gold nanoparticles can be
made to absorb near infrared radiation to produce local heating,
since surrounding tissues will be relatively transparent at these
wavelengths. In other versions, soft x-rays are used to produce
locally effective Auger electron radiation. There have been a number
of different investigtions of GNP delivery by pHLIP, with
promising results.

The first example of GNP delivery employed pHLIP coated
13 nm GNPs containing europium luminescent complexes in efforts
to target human platelets, which are typically not susceptible to
transfection or microinjection (Davies et al., 2012). pHLIP
promoted the internalization of GNPs into platelets within
minutes at low pH.

Tumor targeting of GNPs functionalized with pHLIP enhanced
the effectiveness of soft x-rays (20 Gray of radiation), reducing
cancer cell survival and tumor size in mice through the production
of Auger electrons (Yao et al., 2013b; Antosh et al., 2015; Sah et al.,
2019). GNPs having a 7 nm metallic core stabilized by 0.83% wt/vol
citrate, 10% pHLIP and 90% PEG were found to possess the best
stability and tumor targeting (Daniels et al., 2017).

Irregular shapes, multispiked or shell-like structures of GNPs
exhibit strong spatial confinement of an electromagnetic field, which
leads to an increase of the excitation cross section and enhancement
of plasmon polaritons (Hao et al., 2007; Melnikau et al., 2013). Disk-
like shape bicelles of different aspect ratios composed of DMPC (1,2-
dimyristoyl-sn-glycero-3-phosphocholine) and DHPC (1,2-
dihexanoyl-sn-glycero-3-phosphocholine) lipids were used as a
template for deposition of colloidal gold and coating with PEG
and pHLIP, which resulted in the formation of multispiked GNPs
with a mean metallic core diameter of ~146 nm and a mean

hydrodynamic size of ~161 nm (Daniels et al., 2017). pHLIP
targeting gave an excellent concentration of the nanoparticles in
tumors, with little or no accumulation in muscle. The irradiation of
spiked pHLIP-GNPs by an 805 nm laser led to a time- and
concentration-dependent increase of local temperature that might
have therapeutic potential.

Gold nanostars (GNSs) coated with pHLIPs (GNS-pHLIPs)
were investigated together with non-targeting GNS-PEGs NPs as
controls (Tian et al., 2017). GNS-PHLIPs exhibited higher cellular
internalization at low pH compared with GNS-PEGs, and 3-fold
higher breast tumor targeting in mice. GNS-pHLIPs exhibited
stronger CT and photo-acoustic imaging signals compared to
GNS-PEGs. Photothermal therapeutic efficacy on tumors treated
with GNS-pHLIPs was observed with minimal side effects to
normal tissues.

In another formulation, a photosensitizer, chlorin e6 (Ce6), and
pHLIP were absorbed onto the surfaces of hollow gold nanospheres
(HAuHS) to prepare HAuNS-Ce6, HAuNS-pHLIP, and HAuNS-
pHLIP-Ce6 (Yu et al., 2015). HAuHS NPs (about 40 nm in size)
exhibited high Ce6 and pHLIP loading capacity, forming a 4 nm
shell. GNPs had a plasmonic peak in the NIR spectral range, and
showed strong photothermal coupling under irradiation, which
triggered the release of Ce6 and pHLIP from the surface upon
heat generation. Reactive oxygen species (ROS) were produced as
result of the reaction between Ce6 and surrounding oxygen in the
tissues. Superior cytotoxicity, tumor targeting and photothermal
effect restricted to the TME was demonstrated for HAuNS-pHLIP-
Ce6 after irradiation at 670 nm or 808 nm laser wavelengths, which
resulted in inhibition of tumor growth (Yu et al., 2016).

Gold nanorods were coated with mesoporous silica and capped
with chitosan (CMGs) conjugated with pHLIP for multispectral
optoacoustic tomography (MSOT) and drug delivery (Zeiderman
et al., 2016). Treatment of cancer cells with pHLIP nanorods
containing gemcitabine resulted in significantly greater
cytotoxicity compared to the cytotoxicity of gemcitabine alone.
pHLIP nanorods were targeted to tumors, and MSOT signal in
tumors was significantly higher for pHLIP-NPs compared to non-
targeted NPs without pHLIP.

A different idea is to trigger local drug release from nanocages.
Gold nanocages (GNCs) were conjugated with a thermo-responsive

FIGURE 4
Delivery of nanomaterials. Multiple pHLIP peptides on the surface of nano-sized materials insert into the plasmamembrane lipid bilayer of an acidic
cell, promoting endocytotic uptake or fusion. Fusion occurs even more readily if the NP reaches the endosomal compartment, which has a very low pH.
As a result, payloads encapsulated in NPs can be delivered and released in the cytoplasm. In this review, we describe targeted delivery of a large variety of
NPs comprised of lipids, surfactants, metals, polymers and biological molecules coated with pHLIP.
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polymer, coated with pHLIP and loaded with Doxorubicin (DOX)
(Huang et al., 2019). Irradiation with a NIR laser triggers the
shrinkage of the thermo-responsive polymer, resulting in the
opening of the pores of the GNCs and a rapid release of DOX.
DOX alone and DOX loaded into GNPs with and without pHLIP
coatings were investigated in human breast MCF-7 and adriamycin-
resistant (ADM) MCF-7/ADM cancer cells, in human
hepatocellular carcinoma HepG2 and HepG2/ADM cells, and in
MCF-7/ADM tumors in mice. The pHLIP coating significantly
enhanced the cellular uptake of NPs and laser irradiation
triggered the release of DOX. pHLIP-enhanced tumor targeting
was observed with homogeneous distribution of released DOX
within the tumor mass. The data indicate a synergistic antitumor
effect and possibility a reversal of multidrug resistance.

4.3 Magnetic nanomaterials

By delivering atoms that have strong magnetic properties, MRI
can be used to image tumors and facilitate therapies of different
kinds. There have been several innovative uses of this approach, and
they are described below.

In an early study, paramagnetic pHLIP-NPs were developed by
using a G5–PAMAM dendrimer conjugated with about 44 chelated
gadolinium atoms (Gd-DOTA-4AmP5- ions), and intracellular
uptake of the agent was found (Janic et al., 2016). A different
Gd-based NP (AGuIX) conjugated with pHLIP were introduced
for T1 MRI and radiation therapy (RT) (Liu et al., 2020). AGuIX is a
3 nm NP composed of a polysiloxane network surrounded by about
10 Gd chelates. pHLIP-AGuIX NPs were studied in cultured cancer
cells and MRI was recorded in tumor-bearing mice. The use of these
particles allows visualization of the tumor and establishes the
concentration of the agent in the tumor and healthy tissue by
MRI, which then could be used for calculation of radiation dose
for treatment. Enhancement of RT occurs due to generation of a
cascade of Auger electrons within the NPs.

Another approach is multimodal T1 MRI/PET using citrate-
stabilized magnetic iron oxide (Fe3O4) NPs modified with PEG-
pHLIP and PEG-DOTA or just PEG-DOTA, and 68Ga was
incorporated as a chelate with DOTA (dodecane tetraacetic acid),
for PET imaging (Wei et al., 2022). Both T1 weighted fast spin-echo
MRI and PET signals of pHLIP-PEG-NPs in 4T1 tumors in mice
were significantly higher compared to non-targeted PEG-NPs.

Manganese (II) ion (Mn2+), another T1 contrast agent, can be
precipitated at neutral pH by arsenite trioxide (ATO) to form a
manganese arsenite complex (MnAs). ATO is an FDA approved
drug for the treatment of acute promyelocytic leukemia (Zhang
et al., 2010). MnAs dissociates in a mildly acidic environment
releasing i) Mn2+ ions, which enhances T1 signal, and ii) arsenite,
which kills tumor (Zhao et al., 2015). NPs (30 nm in hydrodynamic
diameter) were prepared where MnAs was complexed into silica shells,
and the NPs were coated with fluorescent pHLIP-PEG8 to form 90 nm
stable particles (Zhang et al., 2019). pH-dependent Mn2+ release,
enhancement of T1 signal, cellular uptake, superior tumor targeting
of pHLIP-coated NPs over non-targeted NPs, and significant inhibition
of tumor growth and mice survival were shown.

Superparamagnetic iron oxide nanoparticles (SPIONs) of
different sizes including 64, 82, 103 and 121 nm NPs were coated

with pHLIPs. The 64 nm SPION-pHLIP nanoclusters exhibited the
most effective pH-responsive retention in cells and gave a strongMR
signal recorded in various animal tumormodels (Wei et al., 2017). In
other work, Fe3O4 magnetic NPs obtained by co-precipitation,
modified by 3-aminopropylsilane (APS) (APS-MNP) and coated
with pHLIP (pHLIP-MNP) to form NPs with 130–140 nm
hydrodynamic diameters was investigated (Pershina et al., 2020a).
T2 weighted MRI and distribution of Fe in breast tumors of different
sizes revealed high targeting of small-to-medium sized tumors
(80–400 cm3) and less accumulation in larger tumors (Pershina
et al., 2020b). Later, similar type of MNPs coated with either
PEG or PEG-pHLIP were introduced (Demin et al., 2021). A
higher accumulation of pHLIP-MNP compared to PEG-MNP
was shown by MRI in 4T1 breast cancer tumors orthotopically
grown in BALB/c mice and MDA-MB231 xenografts. No
pathological changes were noted in the organs or blood of mice
after MNP administration. The amount of Fe measured within TME
was directly correlated with pH measured using nanoprobe
pH sensor. The areas of higher Fe accumulation had lower
pH (Pershina et al., 2021).

An interesting approach was utilized by locating pHLIPs at the
surfaces of Magnetospirillum magneticum AMB-1 magnetosomes
(Schuerle et al., 2020). Magnetosomes are found in magnetotactic
bacteria (MTB) that use iron to sense magnetic fields. MTB form
membrane-bounded intracellular nanocrystals of magnetite
(Fe3O4), which can serve as excellent T2 MRI contrast agents
(Alphandery, 2014). Purified magnetosomes consisting of 40 nm
NPs with single superparamagnetic domains were decorated with
pHLIP peptides. pH-dependent interactions of pHLIP-coated
magnetosomes were shown in vitro, and tumor targeting and
MRI imaging were seen in vivo in a mouse tumor model.

4.4 Other metallic nanoparticles

A number of non-magnetic metals have potential for imaging or
various therapeutic approaches. An imaging approach using zinc
gallate (ZGO)-based persistent luminescence NPs coated with
pHLIP were tested on breast cancer cells and 4T1 breast tumor
targeting was demonstrated in mice (Sharma et al., 2021).

A therapeutic approach that has been discussed for years is
based on the capture of an epithermal neutron by a boron atom,
resulting in an alpha particle and a recoiling lithium atom, and
producing very local damage. A problem has been to concentrate
enough boron in a tumor. The surface of ZGO-NPs was
functionalized with poly (vicinal diol), conjugated with pHLIP
and loaded with large amounts of boron 10B for boron neutron
capture therapy (BNCT) (Sharma et al., 2022). The in vitro
evaluation of the formulation against cancer cells followed by
neutron irradiation revealed its potent cytotoxicity with IC50 ~
25 μM. Animal studies performed on melanoma and
fibrosarcoma tumor models gave a reduction in tumor volume
(75%–80%) as compared with a control tumor after neutron
irradiation.

Copper-cysteamine (Cu-Cy), a promising photosensitizing
agent for photodynamic therapy (PDT) that can also be
effectively activated by X-rays to produce singlet oxygen for
efficient deep cancer treatment, was used to make NPs (Shrestha
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et al., 2019). Cu-Cy-NPs coated with pHLIP led to a reduction in
tumor size in mice upon X-ray activation. Large Cu-Cy pHLIP-NPs
(~300 nm) exhibited the most intense photoluminescence, while
medium sized NPs (~100 nm) produced the most reactive oxygen
species upon X-ray irradiation, and the smallest NPs (~40 nm) gave
the best outcome in the treatment of tumors in mice upon 90 kVp
radiation (Sah et al., 2020).

An interesting idea is to combine a sensitizer with photothermal
therapy. Hollow copper sulfide (HCuS) NPs modified with PEG-
pHLIP were used for encapsulation of an inhibitor of stress granules
(ISRIB) together with NIR responsive material, lauric acid (Tong
et al., 2023). Stress granules regulate protein expression and cell
viability under various stress conditions, and their formation is
triggered by heat shock proteins, which are overexpressed in cancer
cells (Mahboubi and Stochaj, 2017). As a result, the benefits of
photothermal therapy (PTT) are greatly limited by the heat
tolerance of cancer cells, but inhibition of stress granule
formation can reduce the heat tolerance, possibly improving the
therapy. The light-controlled release of the ISRIB inhibitor was
found to effectively sensitize tumor cells to PTT, increasing the
antitumor effect and inducing immunogenic cell death. Significant
inhibition of tumor growth and of the development of lung
metastases was seen, along with the infiltration of cytotoxic
T-cells and reprogramming of M2-macrophages to the
M1 phenotype.

4.5 Polymeric and silica nanoparticles

Nanoparticles based on polymer or silica technologies and
targeted by pHLIP have been developed for detection, imaging
and therapy of tumors. An interesting, flexible design for
detection and imaging has been tested, incorporating the pHLIP
technology into a multimodal nanosensor, PRISM (protease-
responsive imaging sensors for malignancy), with the goal of
targeting tumor acidity and using metalloproteases in the TME
to release urinary reporters (Hao et al., 2021). An eight-arm PEG
polymeric scaffold (40 kDa) was functionalized with pHLIP and a
substrate (PLGVRGK) for matrix metalloproteinase 9 (MMP-9).
Also, the pHLIP could be further modified with chelate-metal
complexes for PET (or probes for fluorescence imaging),
specifically 64Cu-NOTA was tested, and MMP-9 substrate could
be modified with reporters that will be found in urine after cleavage
of the substrate to serve as a detector for cancer (specifically,
fluorescein amidite - biotin tags were tested). Lung metastases,
which are typically challenging to image, were very well
distinguished and visualized in mice using 64Cu-pHLIP-PRISM
with a 4-fold higher signal for pHLIP-targeted PRISM compared
to a non-targeted version. Importantly, the PET signal in lungs was
not obscured by the signal in the heart, which is a significant issue
using traditional FDG (fludeoxyglucose F18) PET imaging since
there is a high cardiac uptake. Tumors derived from human
colorectal cancer with low glucose uptake demonstrated an 8.6-
fold pHLIP-PRISM uptake over the surrounding normal muscles,
whereas the tumor uptake of FDG was indistinguishable from the
background tissue signal, and progression of liver metastases was
correlated with an increase of pHLIP-PRISM signal. Finally, a
significant reduction of the PET signal was observed in mice

after chemotherapy treatment with 5-fluorouracil/leucovorin,
which indicates that pHLIP-PRISM and acidity imaging with
other pHLIP agents could be used for the detection of metastases
and monitoring the outcome of therapy.

Another type of NP was developed using PEG and a nitrated
gluconic acid copolymer core, coated with pHLIP and loaded with
the DOX prodrug, boronate-DOX (BDOX), and also the ß-
lapachone drug (Li et al., 2021). ß-lapachone is a novel drug that
induces the production of high level of ROS catalyzed by NAD(P)H:
quinone oxidoreductase-1 (Yang et al., 2017). NPs were targeted to
tumors by pHLIP and activated by high-intensity focused
ultrasound. Subsequently, nitric oxide (NO) was produced by
transfer of hydrophobic nitrated gluconic acid to the hydroxyl
under exposure to glutathione inside a cell, followed by BDOX
and ß-lapachone release. NPs were tested in cells and in a athymic
mice breast tumor model, and significant tumor reduction with no
sign of toxicity was observed as assessed by biochemical parameters.

Mesoporous silica NPs about 140 nm in diameter and with
about 3 nm pores were coated with pHLIP and loaded with DOX
(Zhao et al., 2013). The cellular uptake and kinetics of DOX release
were investigated and cytotoxicity at low pH was monitored. Smaller
(60–80 nm in diameter) thioether-bridged mesoporous organosilica
NPs labeled with the fluorescent dye Cy5.5 and coated either with
PEG or pHLIP, and loaded with DOX were introduced, where DOX
release was responsive to glutathione. The cytotoxic effect, tumor
targeting, and inhibition of tumor growth of the pHLIP-coated NPs
was higher compared to PEG-coated NPs.

In another study, 26, 45 and 73 nm mesoporous silica NPs,
which could be used for drug and imaging agents’ delivery, were
functionalized with pHLIP (MacCuaig et al., 2021). Superior
targeting of pancreatic tumors in mice was observed for pHLIP-
NPs compared to non-targeted NPs, with the highest uptake of 26-
nm sized pHLIP-NPs. The MSOT signal was detected from a
IR780 dye retained within the NPs.

Covalent organic framework (COF) nanosheets conjugated with
GNPs (COF-Au) and coated with pHLIP (pHLIP-COF-Au) were
loaded with DOX and tested in vitro and in vivo (Chen et al., 2021).
DOX release, cell proliferation and survival, tumor targeting and
therapeutic efficacy on mice were investigated for pHLIP-coated and
non-targeted NPs with or without 635 nm light illumination. The
best results were achieved in cells and animals by using pHLIP-
coated NPs loaded with DOX and irradiated with light.

4.6 Biologically-based nanomaterials

An interesting approach has been developed using a pH- and
ATP-sensitive nanomaterial, where Cy5-and biotin-labeled aptamer
strands are hybridized with quencher (BHQ2)-bearing
complementary strands and mixed with biotin-pHLIP and
streptavidin to form NPs (Di et al., 2019). In the duplex state,
the fluorescence of the aptamer strand is quenched. However, ATP
binding to the aptamer leads to the disruption of the duplex
structure and an increase of fluorescence. ATP sensing imaging
was demonstrated in vitro and in vivo in primary tumors, lung
metastases, and lymph nodes. Since ATP is released from cells upon
cell death, it is a marker, and the nanomaterial might find wide
applications in immune-oncology studies.
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An effective T-cell activation strategy was introduced by creating
pHLIP-coated NPs (Qiu et al., 2018). Ovalbumin (OVA), widely
used in inducing antigen-specific immune responses, and lipo-
polysaccharide (LPS), an amphiphilic Toll-like receptor 4 ligand,
were mixed under mild stirring and uniform spherical OVA-LPS
NPs (91 nm) were formed. The NPs were coated with biocompatible
and biodegradable polyphenol, a class of natural compounds
abundantly found in plants and food, and that is degradable by
glutathione. pHLIP was used to functionalize the NPs to facilitate
endolysosomal escape and promote cytoplasmic localization, with
the aim to enhance cross-presentation of the antigen by DCs to
effectively activate cytotoxic T-cells. The results demonstrate that
pHLIP-NPs can induce endolysosomal escape and enhance
CD8 T cell activation both in vitro and in vivo.

Minicells are nanosized forms of bacteria, which can be produced in
large quantities and used for drug delivery (Yu and Margolin, 2000;
MacDiarmid et al., 2007). Escherichia coli Nissle 1917 (EcN) mainly
proliferate in the interface between the necrotic and hypoxic regions of
tumors and the specific cell membrane of EcN can directly interact with
the adaptive immune system to reduce inflammation (Sturm et al.,
2005; Stritzker et al., 2007; Arribas et al., 2009). pHLIPwas expressed on
the surfaces of minicells, which were then loaded with DOX (Zhang
et al., 2018). In some experiments GFP was also expressed in minicells
for visualization purposes. pHLIP-minicells loaded with DOX injected
into mice were found in necrotic and hypoxic regions of orthotopic
breast cancers, where drugs typically cannot reach due to vascular
insufficiency and high interstitial fluid pressure. As a result, inhibition of
tumor growth was observed.

5 Cancer and beyond

This review has taken its focus on pHLIP applications for the
assessment, imaging and treatment of solid tumors. It is evident that
there are many avenues to explore, and that some of them are
progressing well in clinical trials, while others are nearing the clinical
stage. The future, as has been often noted, is difficult to predict, but
the rapid growth of the field and the diversity of promising
approaches inspire optimism that benefits to patients are likely to
emerge. The pHLIP technology may find applications not only in

tumor imaging and treatment, but also in the targeting (and
treatment) of inflamed and fibrotic tissues (Price et al., 2019;
Visca et al., 2022; Matsui et al., 2023), atherosclerosis (Zhang
et al., 2022), ischemic stroke (Ye et al., 2023) and ischemic
myocardium (Sosunov et al., 2013; Hulikova et al., 2022). These
diseased states are associated with elevated levels of acidity due to the
presence of overactivated immune cells and/or due to hypoxia
developed in diseased tissues. Time will tell!
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