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Purpose: This study aimed to develop and validate a physiologically based
pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough
concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants)
inhibition in Caucasian, Japanese, and Chinese populations. The PBPKmodel was
also utilized to investigate inter-ethnic and inter-patient differences in OSI
pharmacokinetics (PK) and determine optimal dosing regimens.

Methods: Population PBPK models of OSI for healthy and disease populations
were developed using physicochemical and biochemical properties of OSI and
physiological parameters of different groups. And then the PBPK models were
validated using the multiple clinical PK and drug-drug interaction
(DDI) study data.

Results: Themodel demonstrated good consistency with the observed data, with
most of prediction-to-observation ratios of 0.8–1.25 for AUC, Cmax, and Ctrough.
The PBPK model revealed that plasma exposure of OSI was approximately 2-fold
higher in patients compared to healthy individuals, and higher exposure observed
in Caucasians compared to other ethnic groups. This was primarily attributed to a
lower CL/F of OSI in patients and Caucasian. The PBPK model displayed that key
factors influencing PK and EGFRm+ inhibition differences included genetic
polymorphism of CYP3A4, CYP1A2 expression, plasma free concentration (fup),
albumin level, and auto-inhibition/induction on CYP3A4. Inter-patient PK
variability was most influenced by CYP3A4 variants, fup, and albumin level. The
PBPK simulations indicated that the optimal dosing regimen for patients across
the three populations of European, Japanese, and Chinese ancestry was OSI
80 mg once daily (OD) to achieve the desired range of plasma Ctrough

(328–677 nmol/L), as well as 80 mg and 160 mg OD for desirable pulmonary
EGFRm+ inhibition (>80%).
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Conclusion: In conclusion, this study’s PBPK simulations highlighted potential
ethnic and inter-patient variability in OSI PK and EGFRm+ inhibition between
Caucasian, Japanese, and Chinese populations, while also providing insights into
optimal dosing regimens of OSI.
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dosing regimens

1 Introduction

Lung cancer is the leading cause of cancer-related deaths globally,
contributing to approximately 18.4% of total cancer mortality (Thandra
et al., 2021). The majority of lung cancer cases (over 80%) are classified
as non-small cell lung cancer (NSCLC) (Fujimoto et al., 2019). Among
NSCLC patients, the Epidermal Growth Factor Receptor (EGFR) has
been identified as an effective therapeutic target (Liu et al., 2017). EGFR
mutations (EGFRm+) are crucial oncogenic driver alterations in
NSCLC, occurring in approximately 10%–15% of cases in
Caucasians and with a higher frequency of up to 50% among East
Asians. (Low et al., 2023). Exon 19 deletions and L858R mutations are
themost common types, accounting for 90% of all EGFRm+ (Low et al.,
2023). These EGFRm+ mutations still are highly responsive to EGFR
tyrosine kinase inhibitors (TKIs) (Low et al., 2023). In 2004, the T790M
mutation in exon 20 of EGFR was first discovered and described
(Yasuda et al., 2013; Low et al., 2023). Although T790M mutations
only account for approximately 5% of all EGFRm+ cases, around 50% of
these mutations develop resistance to TKIs (Food and Drug
Administration FDA, 2015).

Osimertinib (OSI) is an oral, third-generation EGFR TKI
developed by AstraZeneca specifically for the treatment of
NSCLC (Greig, 2016). It targets the EGFR T790M mutation
present in NSCLC patients who have developed resistance to
other EGFR TKIs. The approved dosage strength of OSI tablets
for patients is 80 mg (Food and Drug Administration, 2022). The
primary metabolic pathway of OSI is through CYP3A, with minor
contributions from CYP1A2 and CYP2C9 (Food and Drug
Administration FDA, 2015). Furthermore, OSI acts as a
competitive inhibitor of CYP3A4 and significantly induces the
expression of CYP3A4 (Food and Drug Administration FDA, 2015).

Variability in the plasma area under the curve (AUC) of AZ5104
(metabolite of OSI) has been observed among different ethnic groups,
with a 10%–23% decrease in Asian NSCLC patients compared to
Caucasian patients (Brown et al., 2017). Moreover, there is a high
degree of variability in OSI pharmacokinetics (PK) of inter-patients,
with a percentage coefficient of variation (%CV) exceeding 50% and, in
some cases, even surpassing 80% (Planchard et al., 2016). The relationship
between exposure and response demonstrates that optimal efficacy and
safety are achievedwhen the plasma trough concentration (Ctrough) ofOSI
falls within the range of 164–338 ng/mL (equivalent to 328–677 nM)
(Abu Hamdh and Nazzal, 2023), resulting in longer progression-free
survival (PFS) and potentiallymitigating certain adverse events. However,
it is suggested that the pulmonary EGFRm+ inhibition could serve as a
more valuable indicator for clinical efficacy, as it reflects the twoEGFRm+

engagement in the targeted tissue.
The variability in the PK of OSI can be influenced by genetic

polymorphism of the CYP3A4 enzyme, which plays a key role in OSI

metabolism. Differences of CYP3A4 metabolism in ethnic groups
can also contribute to PK variability. Another significant enzyme
involved in OSI metabolism is CYP1A2 (Food and Drug
Administration FDA, 2015). It has been demonstrated that
smoking can induce CYP1A2 expression, leading to 1.55-fold
higher enzyme activity in smokers compared to non-smokers
(Dobrinas et al., 2011). Consequently, PK variability of OSI may
occur in both smokers and non-smokers. Two clinical studies have
indicated a statistically significant correlation between smoking and
clinical efficacy (Rodier et al., 2022; Abu Hamdh and Nazzal, 2023).
Additionally, auto-inhibition and induction effects of OSI on
CYP3A4 can cause differences in PK between multiple doses
(MD) and single dose (SD). OSI has a high plasma albumin
binding rate of approximately 99%, with a 10-fold difference in
the remaining fraction (fup) at different concentrations (Food and
Drug Administration FDA, 2015). Variations in fup can result in
greater PK variability. Moreover, several clinical studies have
demonstrated that the level of plasma albumin, which
predominantly binds to OSI (Food and Drug Administration
FDA, 2015), can influence the distribution and clearance of OSI
in NSCLC patients, and have a statistically significant correlation
with the efficacy of OSI in NSCLC patients (Yokota et al., 2022;
Ishikawa et al., 2023).

The current literature includes seven the clinical PK studies on
OSI, but a systematic assessment of variability in systemic exposure
has not been conducted. To this end, a physiologically based
pharmacokinetic (PBPK) model was developed and validated in
three populations (Caucasian, Japanese, and Chinese). The PBPK
model is then used to evaluate inter-ethnic and inter-patients
differences in plasma PK and the inhibition of pulmonary
EGFRm+ (T790M and L858R). Furthermore, this study utilized the
PBPK model to analyze the impact of several major sensitive factors,
including CYP3A4 genetic polymorphism, CYP1A2 activity, auto-
inhibition and induction, fup, and albumin level, on the plasma Ctrough

of OSI and the inhibition of EGFRm+. Finally, the PBPK model was
employed to determine an optimal dosing regimen forOSI in different
populations based on the plasma Ctrough and pulmonary EGFRm+

inhibition threshold value for efficacy and safety.

2 Methods

2.1 Development and validation of the PBPK
model in three ethnic populations

The PBPK models for healthy and diseased population in three
ethnic groups were developed using the PK-Sim® (Version 10.0,
Bayer Technology Services, Leverkusen, Germany).
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TABLE 1 OSI-specific and physiological parameters used in the development of PBPK model.

Parameters (Units) Values used in the model Source and comments

Healthy Diseased

MW(g·mol-1) 499.6 Chemspider

pKa (Base) 9.5, 4.4 Pilla Reddy et al. (2018)

Log P 5.45

Solubility (mg·mL-1) 3.1(Water) Pharmaceuticals and Medical Devices Agency PMDA (2023)

Peff (✕10–4 cm·s-1) 0.187 Pilla Reddy et al. (2018)

fup 0.013 0.019 0.013 from the Ref. (Pilla Reddy et al., 2018) and 0.019 was
calculated using Eq. 1

Rbp 1.0 1.1 1.0 from the Ref. (Pilla Reddy et al., 2018) and 1.1 was calculated
using equation(2)/(3)

CYP1A2 CLint,u (μL/min/pmol) 0.52 Pilla Reddy et al. (2018)

CYP2A6 CLint,u (μL/min/pmol) 0.37

CYP2C9 CLint,u (μL/min/pmol) 0.48

CYP2E1 CLint,u (μL/min/pmol) 0.11

CYP3A4 CLint,u (μL/min/pmol) 0.73

CYP3A5 CLint,u (μL/min/pmol) 0.21

CLR(L/h) GFR*fup Default calculation in PK-Sim

Liver volume (L) Caucasian: 2.38, Japanese: 1.91, Chinese: 2.16 Default value of ethnic population in PK-Sim

GET (min) 15 120 Default 15 min; 120 min was optimized from 190 min (Ref.
(Alsmadi et al., 2021))

Klu,p 28.5 Mean value form the Ref. (Dickinson et al., 2016)

Kp scale 1.5 Optimized based on better tissue distribution description

Hematocrit 0.47 0.33 Default value of 0.47. 0.33 from the Ref. (Dixon et al., 2003)

Albumin (g/dl) 0.45 0.31(Caucasian,20%CV; Japanese and Chinese,
30%CV)

Ref. (Dixon et al., 2003; Hashino et al., 2023)

Concentration (μM/L liver
tissue)

CYP1A2 1.80 1.33 Default value for healthy population. Obtained for CYP2C9 and
CYP3A4 for diseased population from Ref. (Alsmadi et al., 2021);
CYP1A2/2A6/2E1/3A5 concentrations were calculated with
20%–33% reductions based on Ref (Schwenger et al., 2018)

CYP2A6 2.72 1.90

CYP2C9 3.84 3.20

CYP2E1 1.96 1.37

CYP3A4 4.32 3.02

CYP3A5 0.04 0.028

Abundance (pmol/mg
protein)

CYP1A2 Caucasian: 52, Japanese: 31.8, Chinese: 42 Obtained from Ref (Barter et al., 2013; An et al., 2021)

CYP2A6 Caucasian: 36, Japanese:11.5, Chinese:14

CYP2C9 Caucasian: 73, Japanese: 59.2, Chinese: 60

CYP2E1 Caucasian: 61, Japanese: 36, Chinese: 70.5

CYP3A4 Caucasian: 137, Japanese:112, Chinese:120

CYP3A5 Caucasian: 116, Japanese:27.8, Chinese:99

(Continued on following page)
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2.1.1 The PBPK model for healthy population
Table 1 provides a summary of themodeling parameters utilized in

the PBPKmodel (Dixon et al., 2003; Barter et al., 2013; Dickinson et al.,
2016; Pilla Reddy et al., 2018; Schwenger et al., 2018; Alsmadi et al.,
2021; An et al., 2021; Hashino et al., 2023; Pharmaceuticals andMedical
Devices Agency PMDA, 2023). Rodgers and Rowland, and PK-Sim’s
standard methods provided the human tissue distribution and cellular
permeability estimate for OSI. While Rodgers and Rowland’s method
can estimate the human tissue-to-plasma partition coefficient, it is
preferable to incorporate experimental values into the PBPK model,
particularly for the target tissue. The lung-to-plasma partition
coefficient (Klu,p) has been experimentally determine for the
distribution of OSI in lung tissue. Based on average tissue-to-blood
ratios at 1 h and 6 h from reference (Dickinson et al., 2016), the
experimental Klu,p-value was manually entered into this model.

Additionally, the Kp scale was optimized to 1.5 to better represent
the tissue distribution of OSI. The involvement of kidney transporters
or tubules in the uptake or excretion of OLA was not reported. Thus,
the fraction of glomerular filtration rate (GFR) was set as 1.0. The
renal clearance (CLR) was estimated by the glomerular filtration rate
(GFR)✕fup method using PK-Sim. Hepatic clearance of OSI was
estimated by considering six metabolism enzymes.

When considering inter-ethnic differences, the enzyme
abundances and liver volume are the most commonly considered
factors. In this study, default liver volumes of 2.38 L for Caucasians,
2.16 L for Japanese, and 1.91 L for Chinese populations were
utilized. Additionally, Table 1 presents the abundance of six
metabolizing enzymes in different ethnic groups based on
literature data from references (Barter et al., 2013; An et al.,
2021). These enzyme abundances are taken into account to
capture potential inter-ethnic variations in OSI metabolism.

2.1.2 The PBPK model for diseased population
In the diseased PBPK model, the same model structures as the

healthy PBPK model were used, with some modifications specific to
NSCLC populations based on previous published papers. Firstly, the
gastric emptying time (GET) parameter was optimized to 120 min,
different from the previously used value of 190 min, according to
reference (Alsmadi et al., 2021). This adjustment was made based on
the peak time that better aligned with the clinical PK data. The
concentrations of CYP3A4 and CYP2C9 enzymes were assigned
based on reference (Alsmadi et al., 2021). The concentration of
CYP1A2 in cancer patients was calculated to be 1.33 μM, taking
into account a 26% downregulation relative to the healthy population
as reported in reference (Schwenger et al., 2018). For the remaining

three metabolizing enzymes, their expression levels in patients were
calculated assuming a ratio of 0.7 compared to the healthy population.
The plasma albumin levels were set at 0.45 g/dL in the healthy
population and 0.31 g/dL in the diseased population, based on
information from published papers (Dixon et al., 2003; Hashino
et al., 2023). Finally, the fup and blood-to-plasma concentration
ratio (Rbp) in NSCLC patients were determined using Eqs 1–3:

f up patients( ) � 1/(1 + ((1 − f up(healthy))
× P[ ] patients( ))/( P[ ] healthy( ) × fup healthy))( )

(1)
Where [P](patients) and [P](healthy) represent the plasma

albumin levels in patients and healthy population, respectively.

Rbp patients( ) � 1 +Hct × fup healthy( )*KpuBC−1( ) (2)

Where Rbp (Patients) represents the patients’ blood-to-plasma
concentration ratio in; Hct represents the hematocrit value; KpuBC is
affinity of blood cells to the OSI. KpuBC is estimated by:

KpuBC � (Hct − 1 + Rbp healthy( ))/ Hct × fup healthy( )( ) (3)

In the diseased PBPK model, the remaining modeling
parameters were assumed to be the same as those used for the
healthy population.

2.1.3 Validation of the PBPK model
To validate the predictive performance of the PBPK model,

multiple clinically observed PK data of OSI in Caucasian (Planchard
et al., 2016; Vishwanathan et al., 2018a; Harvey et al., 2018; Grande
et al., 2019; Vishwanathan et al., 2019), Japanese (Planchard et al.,
2016; Fujiwara et al., 2023), and Chinese (Zhao et al., 2018)
populations were utilized. The model’s accuracy was assessed by
comparing the coincidences between predicted and observed PK
variables such as area under the curve (AUC) and maximum
concentration (Cmax) in healthy and diseased populations after a
single dose and repeated doses.

In general, an accurate prediction model is considered acceptable
when the ratios of these PK variables between prediction and
observation fall within the range of 0.5–2.0. This criterion ensures
that the model’s predictions are reasonably close to the observed
values, indicating a good level of accuracy and reliability in the PBPK
model’s performance for OSI across different ethnic populations.

The fraction metabolic contribution for CYP3A4 on OSI is
estimated to be 47.6%, and OSI can inhibit and reduce activity of
CYP3A4. Hence, to ensure the accuracy of CYP3A4 metabolism

TABLE 1 (Continued) OSI-specific and physiological parameters used in the development of PBPK model.

Parameters (Units) Values used in the model Source and comments

Healthy Diseased

Ki CYP3A4/5 (μM) 2.55 Pilla Reddy et al. (2018)

EC50 CYP3A4 (μM) 0.12

Emax CYP3A4 10.8

MW, molecular weight; pKa (Base), Base dissociation constant; Log P, lipophilicity; fup, Free fraction in plasma; Rbp, Blood-to-plasma concentration ratio; CLint,u, Intrinsic clearance; CLR, renal

clearance; GET, gastric emptying time; GFR; Klu,p, lung-to-plasma partition coefficient; Kp scale:Organ-to-plasma partition coefficient; Ki, 50% maximal inactivation rate; EC50, Inducer

concentration required to achieve 50% inductive effect; Emax, Maximum inductive effect for CYP3A4.
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contribution in the PBPK model, the PK interactions between OSI
and itraconazole (ITR) as well as rifampicin (RIF) were simulated in
Asian populations. The PBPK model and interaction parameters for
ITR and RIF were obtained from published papers (Gao et al., 2023).
Based on the clinical drug-drug interaction (DDI) study
(Vishwanathan et al., 2018b), The DDI simulation between OSI
and ITR involved administering OSI at a dose of 80 mg once daily
(OD) on day 1 and 10, while ITR was administered at a dose of
200 mg twice daily from day 7 to day 19. Similarly, in the DDI
simulation between OSI and RIF, OSI was dosed at 80 mg OD on
day 1 and 29, while RIF was administered at a dose of 600 mg OD
from day 7 to day 29. The simulated fold difference for the DDIs of
OSI with ITR and RIF were then compared with clinically observed
ratios. By evaluating the agreement between the simulated and
observed data for these DDIs, the reliability and predictive
performance of the CYP3A4 metabolism parameters can be verified.

2.2 Sensitivity analysis

The modeling parameters that were optimized and identified as
having potentially significant effects on PK variables of OSI (under
the steady-state concentration-time curve: AUCss, steady-state peak
concentration: Css,max and plasma Ctrough) were chosen for the
sensitivity analysis. These specific parameters include: 1) fup, 2)
Rbp, 3) GET, 4) Albumin level, 5) CYP CLint,u, 6) CYP3A4 auto
inhibition and induction parameters, 7) CYP enzyme expression,
and 8) liver volume.

To evaluate the influences of the selected parameters on PK
variables, each parameter’s value was altered by ±20% during the
sensitivity analysis. The sensitivity coefficient (SC) was then
calculated using the following Eq. 4 (Li et al., 2020):

SC � ΔY/Y ÷ ΔP/P (4)

Where ΔY is the alteration of predicted PK variables; Y is the
initial value of predicted PK variables; ΔP is the alteration of model
parameters; P is initial value of assessed parameters. If the absolute
value of SC is above 1.0, it indicates that this parameter has a
significant influence on the predicted PK variables.

2.3 Plasma Ctrough and EGFRm+ inhibition
prediction

The developed PBPK model was utilized to simulate the plasma
Ctrough and EGFRm

+ inhibition time profiles for three ethnic populations
with NSCLC. The virtual population’s demographic characteristics and
dosage regimes were based on relevant clinical papers (Table 2). Each
simulation consisted of ten virtual subjects. The estimation of EGFRm+

(T790M and L858R) inhibition in plasma or lung time profiles was
achieved through the utilization of the following Eqs 5–7:

dOEm

dt
� kon× Clung × Emfree − koff × OEm (5)

dEmfree

dt
� Em0 − Emfree( ) × kturnover − kon× Clung × Emfree

+ koff × OEm (6)

Inhibition %( ) � OEm
Emfree + OEm

× 100 (7)

Where OEm is the concentration of OSI-EGFRm+ complex
formed. Emfree is the free concentration of EGFRm+. Em0 is
starting concentration of EGFRm+, and was set 0.299 μM based
on the paper (Bartelink et al., 2022). Clung, kon, koff, and kturnover are
the free OSI concentration in the lung, association, dissociation rate
constant of OSI, and re-synthesis rate constant of EGFRm+,
respectively. The kon values of 0.91 (binding to T790M) and 0.44
(binding to L858R) μM−1s−1 were obtained from the paper (Zhai
et al., 2020), equivalent to the ratio of Kinact/Ki. koff was assumed to
be 0 due to irreversible covalent binding to EGFR for OSI. kturnover
was obtained to be 0.025 h−1 from the paper (Greig et al., 2015).

2.4 Effect of the key factors on Plasma
Ctrough and EGFRm+ inhibition

The diseased PBPK model was used to evaluate the influence of
CPY3A4 variants, CYP1A2 CLint,u, auto-inhibition/induction on
CYP3A4, fup, and albumin level on plasma Ctrough and
pulmonary EGFRm+ inhibition. 26 CPY3A4 variant CLint,u values
from a referenced paper (Gao et al., 2022) were incorporated into the
PBPK model to assess the impact. The CYP1A2 CLint,u was varied
within the range of 0.52–5.2 μL/min/pmol. Additionally, Auto-
inhibition and induction were set at 0 for Ki/Emax CYP3A4 and
2.5 μM (Ki CYP3A4)/10.8 (Emax CYP3A4), respectively. The fup
values were set within the range of 0.009–0.034, while the albumin
levels were set within the range of 1.1–6.1 g/dL. The dosing regimen
involved taking 80 mg MD for 14 consecutive days, with the
assumption that steady-state is reached after 14 days of OSI
intake. The virtual population’s demographic characteristics were
set to Caucasian, as mentioned in Table 2.

2.5 Statistical analysis

In the analysis conducted using JMP software (JMP Pro 16.0.0,
SAS Institute Inc., NC, United States), a one-way analysis of variance
(ANOVA) was performed. The Tukey-Kramer test was used to
compare multiple groups. A p-value of less than 0.05 and 0.01 was
considered statistically significant, indicating a significant difference
between the groups being compared.

3 Results

3.1 Development and validation of the
PBPK model

According to Table 2, the ratios of predicted and observed
geometric mean AUC and Cmax for OSI were within the acceptable
range of 0.5–2.0, indicating that the population PBPKmodel accurately
predicts the PK variables of OSI at single-dose and steady-state in the
three ethnic populations (Caucasian, Japanese, andChinese).Moreover,
it is notable that most of the predicted/observed ratios fell within the
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TABLE 2 Comparisons of the geometric mean values between predicted and observed PK variables in different population ancestry.

Ancestry Dosing
regimen

Population Age
range
(year)

Proportion
of female

Parameters PBPK
prediction

Observed
value

Fold-
error

Clinical
study

Caucasian 20 mg, SD Healthy 21–53 50% Cmax (nmol/L) 32.7 (26.2–39.3) 31.6 (18.9–55.2) 1.03 Planchard
et al. (2016)

AUC (nmol·h/L) 1408
(970–1922)

1060
(607–1520)

1.33

80 mg, SD Healthy 18–55 0 Cmax (nmol/L) 134.4
(113.9–165.1)

126.1
(49.0–200)

1.07 Vishwanathan
et al. (2018a)

AUC (nmol·h/L) 7729
(3938–10930)

6269
(2670–14200)

1.23

Patients 31–84 68 Cmax (nmol/L) 281.6
(212.4–384.9)

218.0
(95.2–381)

1.29

AUC (nmol·h/L) 20317
(11397–33406)

12530
(6050–25500)

1.62

80 mg, SD Healthy 21–61 0 Cmax (nmol/L) 131.2 (18.4%) 118.0 (28.1%) 1.11 Vishwanathan
et al. (2019)

AUC (nmol·h/L) 7487.2 (33.8%) 6791 (27.6%) 1.10

80 mg, OD
for 29 days

Patients 44–83 71 Css,max (nmol/L) 577.3 (64.0%) 620.1 (34%) 0.93 Harvey et al.
(2018)

AUCss

(nmol·h/L)
13643 (61.0%) 11530 (37%) 1.18

80 mg, SD Patients 56–73 60 Cmax (nmol/L) 254.1 (14.6%) 291.8 (45%) 0.87 Grande et al.
(2019)

AUC (nmol·h/L) 13698.3 (56.0%) 15780 (38%) 0.87

Japanese 80 mg, SD Patients 62.5
(median)

75 Cmax (nmol/L) 295.3
(224.8–370.9)

198.3
(85.3–598.0)

1.49 Planchard
et al. (2016)

AUC (nmol·h/L) 11446
(8756.4–16499)

10590
(4940–25000)

1.08

160 mg, SD Cmax (nmol/L) 588.8
(448.2–740.8)

430.1
(236.0–813.0)

1.37

AUC (nmol·h/L) 22198
(16956–32089)

24610
(15600–39100)

0.90

240 mg, SD Cmax (nmol/L) 815.1
(648.5–1002.6)

458.7
(164.0–1040)

1.78

AUC (nmol·h/L) 32300
(24617–46849)

29360
(9920–59000)

1.10

20 mg, OD
for 22 days

Css,max (nmol/L) 128.9
(103.5–172.8)

106.4
(45.4–280.0)

1.21

AUCss

(nmol·h/L)
2402

(1853–3448)
1964

(871–4990)
1.22

40 mg, OD
for 22 days

Css,max (nmol/L) 283.4
(225.6–38.1)

306.2
(127–807)

0.93

AUCss

(nmol·h/L)
5802

(4432–8337)
5640

(2040–14100)
1.03

80 mg, OD
for 22 days

Css,max (nmol/L) 542.4
(426.5–729.6)

623.8
(167–2100)

0.87

AUCss

(nmol·h/L)
11727

(8921–16913)
11930

(3650–38900)
0.98

160 mg, OD
for 22 days

Css,max (nmol/L) 988.8
(769.4–1316.8)

1255
(282–4760)

0.79

AUCss

(nmol·h/L)
22111

(16801–32035)
23910

(5950–97000)
0.92

(Continued on following page)
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range of 0.8–1.25, further suggesting a high level of accuracy in the
PBPK model’s predictions. This indicates that the model is capable of
accurately capturing the PK behavior of OSI in individuals from
different ethnic backgrounds, both in terms of OSI exposure (AUC,
Cmax). Overall, the simulations validate the predictive performance of
the PBPK model for OSI in healthy and diseased populations, also
providing confidence in its ability to estimate PK parameters across
diverse ethnic populations.

Additionally, the predicted ratios of PK variables for OSI co-
administered with ITR and RIF are provided in Supplementary
Table S1. These predicted ratios were found to be consistent with the
clinical data (Vishwanathan et al., 2018b), further confirming the
accuracy of the CYP3A4metabolic contribution in the PBPKmodel.

3.2 Sensitivity analysis

According to Table 3, the most sensitive parameters with a
significant impact on the AUCss, Css,max and plasma Ctrough of OSI
are fup and albumin level. The albumin level has a significant impact
on all three PK variables, in particular on plasma Ctrough, with a SC
value of −2.10. Similarly, fup also has a significant impact on two PK
variables. Additionally, CYP3A4 CLint,u, CYP3A4 concentration,
and liver volume also exhibit a relatively large influence on PK
variables. However, the majority of the modeling parameters had
only a slight impact on the PK variables of OSI, as revealed by the
sensitivity analysis.

TABLE 2 (Continued) Comparisons of the geometric mean values between predicted and observed PK variables in different population ancestry.

Ancestry Dosing
regimen

Population Age
range
(year)

Proportion
of female

Parameters PBPK
prediction

Observed
value

Fold-
error

Clinical
study

240 mg, OD
for 22 days

Css,max (nmol/L) 1414.0
(1096.4–1901.2)

1491
(723–2620)

0.95

AUCss

(nmol·h/L)
32332

(24535–46970)
28310

(1150–51200)
1.14

80 mg, OD,
on day 15

53–78 69 Css,max (nmol/L) 620.7
(449.5–1017.0)

612 (510–882) 1.01 Fujiwara et al.
(2023)

AUCss

(nmol·h/L)
11813.6

(6915–1998)
11000

(5100–15820)
1.07

Chinese 40 mg, OD,
on day 1

Patients 33–73 47 Cmax (nmol/L) 164.3 (19.9%) 103.8 (79.2%) 1.58 Zhao et al.
(2018)

AUC (nmol·h/L) 6878 (62.9%) 6323 (55.8%) 1.09

40 mg, OD,
on day 8

Css,max (nmol/L) 379.1 (37.0%) 303.4 (48.0%) 1.25

AUCss

(nmol·h/L)
7243 (43.9%) 5698 (52.6%) 1.27

80 mg, OD,
on day 1

35–76 69 Cmax (nmol/L) 285.7 (13.9%) 195.9 (49.8%) 1.46

AUC (nmol·h/L) 13364 (70.1%) 10260 (33.1%) 1.30

80 mg, OD,
on day 8

Css,max (nmol/L) 595.5 (51.4%) 550.4 (32.4%) 1.08

AUCss

(nmol·h/L)
10637 (64.9%) 9570 (35.9%) 1.11

SD, Single-dose; OD, once daily; AUC, Area under PK, curve; AUCss, Area under PK, curve at steady state; Cmax, Peak concentration; Css,max, Peak concentration at steady state; CL/F, apparent

clearance; CLss/F, apparent clearance at steady state.

TABLE 3 Sensitivity analysis of modelling parameters.

Modelling parameters SC values

AUCss Css,max Ctrough

fup −1.73 −0.91 −1.32

Rbp 0.05 0.05 0.08

GET −0.02 −0.1 0.01

Albumin −1.63 −1.34 −2.10

CYP1A2 CLint,u −0.30 −0.16 −0.23

CYP2A6 CLint,u −0.06 −0.04 −0.07

CYP2C9 CLint,u −0.45 −0.25 −0.35

CYP2E1 CLint,u −0.02 −0.01 −0.02

CYP3A4 CLint,u −0.80 −0.47 −0.64

CYP1A2 concentration −0.30 −0.16 −0.23

CYP2A6 concentration −0.06 −0.04 −0.07

CYP2C9 concentration −0.45 −0.25 −0.35

CYP2E1 concentration −0.02 −0.01 −0.02

CYP3A4 concentration −0.80 −0.47 −0.64

Liver volume −0.64 −0.39 −0.51

CYP3A4 auto inhibition/induction 0.19 0.12 0.16

Frontiers in Pharmacology frontiersin.org07

Liang et al. 10.3389/fphar.2024.1363259

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1363259


3.3 Plasma Ctrough and EGFRm+ inhibition
prediction

Table 4 displays the predicted plasma Ctrough values for various
dosing regimens in NSCLC patients of three ethnic groups, as
determined by the PBPK model. The observed ratios ranged from
0.80 to 1.25, indicating a good agreement between the predicted and
actual Ctrough values. These simulations demonstrate that the diseased
PBPK model is capable of accurately predicting steady-state OSI
plasma Ctrough in NSCLC patients.

Figure 1 illustrates the time profiles of plasma and pulmonary
EGFRm+ (T790M and L858R mutants) inhibition in the three ethnic
groups during a 14-day period of treatment with 80 mg MD of OSI.
According to a study on the effect of EGFRm+ suppression (Food and
Drug Administration FDA, 2015), an effective pharmacodynamics
(PD) threshold for OSI was defined as more than 80% EGFRm+

inhibition. The time-course of plasma and pulmonary T790M and
L858R inhibition is similar across the three ethnic groups. Notably, the
minimal rates of pulmonary inhibition for both mutants exceed 80%,
which is significantly higher than in plasma. The simulations of

TABLE 4 Comparisons of the geometric mean plasma Ctrough between predicted and observed data in different population ancestry.

Clinical study Ancestry Dosing
regimen

Predicted plasma Ctrough

(nmol/L)
Observed plasma Ctrough

(nmol/L)
Predicted/
Observed

Harvey et al. (2018) Caucasian 80 mg, MD 342.4 (53.3%) 381.7 (39.0%) 0.90

Planchard et al.
(2016)

Japanese 20 mg, MD 62.9 (51.2%) 51.2 (36.0%) 1.23

40 mg, MD 161.9 (49.1%) 179.3 (50.0%) 0.90

80 mg, MD 350.5 (54.5%) 386.4 (56.6%) 0.91

160 mg, MD 699.2 (55.8%) 784.4 (62.8%) 0.89

240 mg, MD 973.4 (64.1%) 929.1 (55.4%) 1.05

Fujiwara et al.
(2023)

Japanese 80 mg, MD 372.2 (64.2%) 346.3 (32.9%) 1.07

Zhao et al. (2018) Chinese 40 mg, MD 198.0 (48.7%) 183.0 (60%) 1.08

80 mg, MD 366.3 (46.1%) 318 (43%) 1.15

FIGURE 1
Simulations of EGFRm+ inhibition in plasma and lung in the three ethnic groups by OSI. The time-course of plasma and pulmonary EGFRm+

inhibition in Caucasian (A), Japanese (B), and Chinese (C) following 80 mg OD for 14 consecutive days. The blue and green solid lines represent
pulmonary EGFRm+ inhibition; the black and red solid lines represent plasma EGFRm+ inhibition.
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pulmonary 80% inhibition align well with a study conducted on NCI
H1975 cells (Food and Drug Administration FDA, 2015). As a result,
the prediction of pulmonary T790M and L858R inhibition, as target
tissue, over time proves valuable for assessing clinical efficacy
compared to plasma EGFRm+ inhibition.

3.4 Assessment of inter-ethnic differences
and Plasma Ctrough variability

3.4.1 Apparent CL/F simulations of OSI in healthy
and diseased populations

Figure 2A illustrates the predicted CL/F of OSI in both healthy
and diseased Caucasian populations. The CL/F in the healthy
population is statistically significant higher (p < 0.01) compared
to that in patients. This disparity can account for the observed
clinical OSI exposure, which is approximately two times higher in
Caucasian patients when compared to healthy individuals (Harvey
et al., 2018; Vishwanathan et al., 2019). The difference in exposure
between healthy and diseased populations is primarily attributed to
variations in fup and albumin levels. When the fup and albumin levels
in the diseased PBPK model were adjusted to the same values with
the healthy PBPK model, an approximately 1.29-fold difference in
exposure was observed between the two groups. This difference of
1.29-fold can be further explained by variations in CYP enzyme
concentration between healthy and diseased populations. Moreover,
the PBPK model prediction of relative contribution of the three
factors to total CL/F of OSI is present in Supplementary Table S2.

Figures 2B, C displays the predicted apparent CL/F of OSI in the
three ethnic groups. ANOVA analysis of the simulated CL/F values
indicated a significant difference between Caucasian and Japanese
patient s (p<0.05), as well as between Caucasian and Chinese
patients (p < 0.05), for both single-dose (80 mg) and multiple-
dose (80 mg) regimens. However, no significant difference was
observed between Japanese and Chinese patients. The geometric
mean CL/F in Caucasian patients was approximately 1.3-fold higher
than in Japanese and Chinese patients for the single-dose regimen,
and 1.2-fold lower for the multiple-dose regimen. The lower CL/F in
Asian patients resulted in a lower AZ5104 AUC compared to
Caucasian patients, indicating a 10%–23% decrease in
AZ5104 AUC in Asian NSCLC patients relative to Caucasian
patients (Brown et al., 2017).

3.4.2 Effect of CPY3A4 variants on Plasma Ctrough

and EGFRm+ inhibition
In Figure 3A, it is evident that CYP3A4 variants have a significant

impact on the plasma Ctrough of OSI. The most substantial decrease in
OSI plasma Ctrough was observed with the CYP3A4.29 variant, which
resulted in approximately 61% lower plasma Ctrough levels compared
to the wild type. Conversely, the maximal increase in plasma Ctrough

was seen with CYP3A4.2 variants, where the plasma Ctrough were
approximately 1.93-times higher than the wild type. Among these
CYP3A4 variants, two plasma Ctrough values (CYP3A4.2/17) exceeded
the PK threshold for safety, while six Ctrough values (CYP3A4.15/28/
29/32/33/34) fell below the effective PK threshold. On the other hand,
only slight changes were observed in pulmonary EGFRm+ E790M

FIGURE 2
Predicted apparent clearance (CL/F) of OSI in the three ethnic groups for healthy Caucasian (A) and Patients (B and C) after single-dose (B) and
multiple-doses (C). Note:* and ** denotes statistically significant difference, p < 0.05 and p < 0.01.
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inhibition, within a range of 15% compared to the wild type. However,
three inhibition values against L858R were below the 80% inhibition
threshold (Figure 3B).

3.4.3 Effect of CPY1A2 activity on Ctrough and
EGFRm+ inhibition

In Figure 3C, the influence of CYP1A2 activity on the plasma
Ctrough of OSI is demonstrated. The simulations indicate that
CYP1A2 activity has a statistically significant impact (p < 0.01)
on the plasma Ctrough of OSI at tow data points. Specifically, when
the CYP1A2 CLint,u increased to 5- and 10-fold higher than the
original value (0.52 μL/min/pmol) in the model, the two plasma
Ctrough values were below 328 nmol/L of PK effective threshold. On
the other hand, in Figure 3D, it can be observed that pulmonary
T790M inhibition is less affected by CYP1A2 activity. However, for
pulmonary L858R inhibition, two data points were below the 80%
inhibition threshold when the CYP1A2 CLint,u increased to 5- and
10-fold higher compared to the original value.

3.4.4 Effect of fup on Ctrough and EGFRm+ inhibition
In Figure 3E, the influence of fup on the plasma Ctrough of OSI is

shown. The simulations demonstrate that fup has a highly
statistically significant impact on the plasma Ctrough of OSI, with
four values having p < 0.01. As fup increases, the plasma Ctrough

gradually decreases, and three data points fall below the PK efficacy
threshold. Similarly, in Figure 3F, a significant influence of fup is
observed in both pulmonary T790M and L858R inhibition.
Specifically, for pulmonary L858R inhibition, three data points
were below the 80% inhibition PD threshold.

3.4.5 Effect of albumin level on Ctrough and EGFRm+

inhibition
In Figure 3G, the influence of albumin levels on the plasma

Ctrough of OSI is depicted. The simulations reveal that albumin levels
have an extremely significant impact on the plasma Ctrough of OSI.
The ANOVA analysis of the simulated data indicates that all values
differ statistically significantly compared to the original level (0.31 g/

FIGURE 3
Effect of multiple factors on plasma Ctrough and pulmonary EGFRm+ inhibition. Plasma Ctrough values are affected by CYP3A4 variants (A),
CYP1A2 Clint,u (C), fup (E), albumin level (G), andwith or without auto-inhibition/induction (I). EGFRm+ inhibition values are affected by CYP3A4 variants (B),
CYP1A2 Clint,u (D), fup (F), albumin level (H), and with or without auto-inhibition/induction (J). One-way ANOVA was performed with the Tukey test. Note:
*, ** denotes statistically significant difference, p < 0.05 and p < 0.01, respectively.
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dL) in themodel. Additionally, four data points fall outside the range
of efficacy and safety PK thresholds, suggesting inadequate clinical
efficacy and potential safety. Similarly, in Figure 3H, a significant
impact of albumin levels is observed on pulmonary EGFRm+

inhibition. As albumin levels increase, there is a gradual decrease
in EGFRm+ inhibition, with several data points falling below 80% for
L858R inhibition.

3.4.6 Effect of auto-inhibition/induction Ctrough

and EGFRm+ inhibition
In Figure 3I, the influence of auto-inhibition/induction on the

plasma Ctrough of OSI is presented. The simulations indicate that
auto-inhibition/induction towards CYP3A4 has a statistically
significant impact (p < 0.05) on the plasma Ctrough of OSI.
However, this impact remains within the range of efficacy and
safety PK thresholds, suggesting that it may not significantly
compromise the effectiveness or safety of the OSI. On the other
hand, in Figure 3J, only a slight impact on pulmonary EGFRm+

inhibition is observed due to auto-inhibition/induction.
This suggests that changes in CYP3A4 activity resulting from
auto-inhibition/induction have minimal effects on the inhibition
of pulmonary EGFRm+ inhibition.

3.4.7 Key factors of affecting the PK variability of
inter-patients

Figure 4 demonstrates the impact of %CV of CYP3A4 CLint,u, %CV
of fup, and %CV of albumin level on the PK variability of inter-patients.
The PBPK model simulations reveal that the %CV of albumin level
primarily contributes to the PK variability among patients (as shown in

Figures 4E, F). Notably, the influence of %CV of albumin on PK
variability is more prominent in Caucasian than in Japanese, and
Chinese populations. Specifically, it is observed that a 20% CV of
albumin in Caucasian and 30% CV in Japanese and Chinese
populations can result in an approximate 50% CV of PK variability
among patients. Considering the diseased PBPKmodel, it is reasonable to
set the %CV of albumin level at 20% in Caucasians and 30% in Japanese
and Chinese populations to account for the observed PK variability.

3.5 Optimal dosage recommendation based
on the PBPK model

Based on Figures 5A, B, the plasma Ctrough and pulmonary EGFRm+

inhibition in three ethnic populations were evaluated for four dosing
regimens ofOSI. The optimal dosing regimens for each ethnic groupwere
determined based on the geometric mean of Ctrough and minimal
EGFRm+ inhibition (Calculated using pulmonary Ctrough), along with
a 95% confidence interval (95% CI). The results show that the plasma
Ctrough values at the dose of 80mgOD in all three ethnic NSCLC patients
fall within the desired PK threshold range. This ensures both clinical
efficacy (Ctrough > 338 nmol/L) and safety (Ctrough < 677 nmol/L).
Additionally, the minimal EGFRm+ inhibition achieved at the doses of
80mg and 160mg OD in all three ethnic NSCLC patients exceeds the
desired 80% inhibition. Moreover, it is observed that the minimal
EGFRm+ inhibition approaches 100% at the dose of 80 mg OD
compared to 160mg OD. This suggests that higher dosing regimens
may have limited increases in clinical efficacy, and result in more adverse
event. Therefore, the recommended dose of 80 mg OD in NSCLC

FIGURE 4
The effect of %CV of CYP3A4 CLint,u (A and B), fup (C and D), and albumin level (E and F) on the variability in AUC and plasma Ctrough in three ethnic
populations.
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patients, as suggested by the PBPK model, aligns well with the clinical
dose suggestion.

4 Discussion

This study successfully developed the PBPK models for OSI in
healthy and diseased populations across three ethnic groups. These
models were utilized to simulate the plasma Ctrough and time-profiles
of pulmonary EGFRm+ inhibition (specifically T790M and L858R
mutants). The accuracy of the PBPK predictions was supported by
multiple clinical PK studies (provided in Table 2/4) conducted on
different ethnic populations and a clinical DDI study
(Supplementary Table S1). Furthermore, the study investigated
the impact of five factors on OSI plasma Ctrough and pulmonary
EGFRm+ inhibition. Additionally, the research aimed to identify key
factors influencing the inter-patient and inter-ethnic PK variability
of OSI. Notably, this study is the first to assess the PK and EGFRm+

inhibition of OSI in three ethnic populations while also evaluating
the crucial factors that contribute to the PK variability of OSI.

4.1 Simulation of OSI distribution and
EGFRm+ inhibition

The Klu,p parameter plays a crucial role in characterizing the
lung distribution of OSI from the plasma. According to the Rodgers
and Rowland approach, the predicted Klu,p-value was 14.3. However,
experimental analysis revealed a mean Klu,p-value of 28.5 (Dickinson
et al., 2016). The impact of the Klu,p-value on OSI plasma and lung
PK is detailed in Supplementary Table S3. The analysis revealed that

the Klu,p-value has a significant impact on lung PK but hardly impact
on plasma PK. Consequently, in this model, a Klu,p-value of 28.5 was
ultimately utilized to enhance the accuracy of lung concentration
prediction.

4.2 Key factors of affecting the plasma
Ctrough and pulmonary EGFRm+ of OSI in
PBPK model

In this study, the PBPK model was employed to simulate the
impact of key parameters on OSI plasma Ctrough and pulmonary
EGFRm+ inhibition. The simulations revealed that
CYP3A4 variants, fup, and albumin levels significantly influence
these PK and PD outcomes. Sensitivity analysis further emphasized
that fup and albumin level are the most sensitive parameters affecting
the PK variables of OSI. Given the significance of three parameters,
adjustments were made in the diseased PBPK model. As no
differences in fup were observed among the different ethnic
groups, the same fup value was utilized for the PBPK model
across all three ethnic populations. However, hypoalbuminemia is
commonly observed in NSCLC patients and those with hepatic
impairment, leading to a decrease in albumin levels. This decrease
can substantially alter the plasma protein binding of OSI, which has
a high affinity for albumin. The simulations conducted in this study
strongly demonstrated that albumin level has a substantial impact
on the PK variables of OSI as well as EGFRm+ inhibition. These
findings align well with multiple clinical observations where
albumin levels in patients have shown a strong correlation with
clinical efficacy (Brown et al., 2017; Yokota et al., 2022; Ishikawa
et al., 2023).

FIGURE 5
PBPK simulations of OSI plasma Ctrough (A) and pulmonary EGFRm+ inhibition (B) in three ethnic populations. Data were shown as geometric mean
values ±95% CI. In Figure 4B, Solid Square and Open Square denote minimal inhibition against T790M and L858R mutants, respectively.
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In this study, despite CYP3A4 CLint,u not showing high
sensitivity in the sensitivity analysis, it still exhibits a large impact
on OSI plasma Ctrough as shown in Figure 3A. Additionally, the effect
of CYP1A2 activity on OSI (a CYP1A2 substrate) plasma Ctrough and
pulmonary EGFRm+ inhibition was also examined, considering that
smoking can induce CYP1A2 activity. The simulation demonstrated
that significant changes occur in OSI plasma Ctrough and pulmonary
EGFRm+ inhibition when CYP1A2 activity is increased by 5- or 10-
fold. On the other hand, OSI plasma Ctrough and pulmonary
EGFRm+ inhibition exhibited a decreasing trend but no
significant change when CYP1A2 activity increased to 1.5-fold
(approximately 1.55-fold higher in enzyme activity caused by
smoking). This finding aligns with multiple clinical observations
where there is no significant impact on the clinical efficacy between
smokers and nonsmokers (Food and Drug Administration FDA,
2015; Kishikawa et al., 2020; Jin et al., 2022; Yokota et al., 2022),
despite two clinical studies suggesting a potential impact (Rodier
et al., 2022; Abu Hamdh and Nazzal, 2023).

It’s worth noting that OSI inhibits its own metabolism through
competitive inhibition against CYP3A4 and also enhances its own
metabolism through induction of CYP3A4 expression. Although the
sensitivity analysis did not show significant effects of auto-inhibition
and induction parameters on PK variables of OSI (as seen in
Table 3), statistically significant changes in plasma Ctrough were
observed with or without auto-inhibition and induction (Figure 3I).
Hence, it is necessary that auto-inhibition/induction parameters
were incorporated into the PBPK model of OSI.

Overall, this study highlights the crucial role of several factors in
influencing the plasma Ctrough and pulmonary EGFRm+ inhibition
of OSI, particularly in diseased populations. The study supports the
clinical relevance of fup and albumin levels in predicting OSI efficacy.
Additionally, the CYP3A4 and CYP1A2 activities also play relative
important roles in determining OSI plasma Ctrough and pulmonary
EGFRm+ inhibition. The impact of smoking-induced
CYP1A2 activity on OSI appears to be less significant compared
to the influence of CYP3A4 activity. Additionally, the competitive
inhibition and induction of CYP3A4 by OSI may contribute to
changes in plasma Ctrough, even though these effects were not
prominently reflected in the sensitivity analysis.

In addition, the study revealed that T790M inhibition is less
impacted by multiple factors compared to L858R inhibition. This
disparity is primarily attributed to the larger kon value of OSI against
T790M than L858R (0.91 μM−1s−1 vs. 0.44 μM−1s−1). These key
factors equally influence the plasma concentration of OSI,
potentially resulting in smaller variations in pulmonary T790M
inhibition due to the larger kon value.

4.3 Efficacy and safety PK and PD
thresholds defining

In certain clinical studies (Brown et al., 2017; Boosman et al.,
2022; Hashino et al., 2023), when patients’ plasma Ctrough levels for
OSI were divided into only two groups, the relationship between
exposure and efficacy was not observed. This is likely because
clinical efficacy requires a minimal plasma Ctrough, while
excessive Ctrough levels can lead to adverse events and result in
shorter progression-free survival (PFS). However, in a specific

clinical study (Abu Hamdh and Nazzal, 2023), when patients’
plasma Ctrough levels were divided into four groups, it was found
that a Ctrough level above 328 nmol/L was associated with longer PFS,
whereas a Ctrough level below 677 nmol/L could avoid some adverse
events and also induce longer PFS. Therefore, for OSI, defining the
range of 328 nmol/L to 677 nmol/L for efficacy and safety PK seems
appropriate. However, the exact target inhibition level for clinical
efficacy is not yet fully defined. In some relevant papers, thresholds
such as >90% inhibition for soluble epoxide hydrolase (Lee et al.,
2019), >70% inhibition for α-Glucosidase (Wang et al., 2019),
and >75% inhibition for ALK (Yamazaki, 2013) have been
established. Considering these references, in this study, a
duration of >80% pulmonary EGFRm+ inhibition was selected as
the efficacy PD threshold. This choice aligns with a study on NCI
H1975 cells (Food and Drug Administration FDA, 2015).

4.4 PK variability between healthy and
patient populations, inter-patient, and inter-
ethnic group for OSI

In NSCLC patients, the exposure and CL/F of OSI are much
lower compared to healthy subjects. The fup, albumin level, and
metabolizing enzyme concentration may contribute to a
significant increase in exposure among patients compared to
healthy individuals (Figure 3). There is significant variability
observed in OSI plasma concentration among individuals, with
some patients showing more than 50% and even up to 80%
variability (Planchard et al., 2016). Additionally, plasma
exposure to AZ5104 is reported to be 10%–23% higher in
Caucasian individuals compared to Asians (Brown et al., 2017).
To account for these variabilities, the PBPK model analyzes key
factors that influence the PK of OSI (as shown in Figures 2–4). The
higher CL/F observed in Caucasians compared to Japanese and
Chinese individuals is likely a main contribution of differences in
healthy subjects and NSCLC patients (Figure 2). The observed
higher CL/F in Caucasians may be linked to the greater abundance
of CYP enzymes and larger liver volume in this population.
Sensitivity analysis has shown that CYP3A4 concentration and
liver volume have a relatively significant impact on AUC.
(Table 3). The higher CL/F in healthy subjects may result from
the difference in fup, CYP enzyme abundance and albumin level in
the two populations. The inter-patient PK variability can be
attributed to variations in %CV of albumin levels and
metabolism enzyme variants among different patients
(Figure 4). The %CV of albumin levels is approximately 20%
CV in Caucasians and 30% CV in Japanese and Chinese
populations, leading to a 50% PK variability among patients
(Figure 4). Moreover, The PK variability in inter-ethnic group
may be attributed to metabolism difference of CYP enzyme in the
three inter-ethnic groups.

4.5 The PBPK model suggesting optimal
dosage of OSI

In this study, the optimal dosage regimens of OSI for each
ethnic population were determined based on the geometric mean
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and 95% CI of plasma Ctrough and pulmonary EGFRm+ inhibition
(Figure 5). These values were assessed to ensure they fell within the
range of efficacy and safety PK/PD thresholds. This approach
builds upon strategies proposed in previous studies (Johnson et al.,
2019) and utilized in another research paper (Einolf et al., 2017).
The PBPK model for patient population suggested that a dosage of
80 mg OD for OSI can achieve desirable values for both efficacy
and safety based on plasma Ctrough. Additionally, pulmonary
EGFRm+ inhibition was observed to be above 80% at both
80 mg and 160 mg OD dosages. Furthermore, the 95% CI
values for T790M inhibition (a specific mutation) in the three
ethnic groups were found to be above 80%, indicating a favorable
therapeutic response.

4.6 The PBPK model limitations

The present model has several limitations that should be
acknowledged. Firstly, the time-course of pulmonary EGFRm+

inhibition by OSI could not be directly verified using human
clinical study data, which limits the ability to fully validate the
model’s predictions in this regard. Secondly, the two active
metabolites of OSI have not been incorporated into the
current PBPK approach, which may lead to incomplete
representation of the potential EGFRm+ inhibition. This
could affect the accuracy of the model’s predictions.
Additionally, it is worth noting that the mean value of
albumin levels was used in the PBPK model due to the lack
of experimentally determined albumin data in multiple PK
studies. However, individual variations in albumin levels can
exist, and not accounting for this variability may introduce
some errors or inaccuracies in the predictions of plasma
concentrations and PK parameters.

5 Conclusion

In conclusion, this study effectively developed and validated
PBPK models for OSI in both healthy individuals and patient
populations from three different ethnic groups. The models
provided valuable insights into the PK and EGFRm+ inhibition
profiles across these populations. Furthermore, the study
explored the key factors that contribute to inter-patient
variability and the differences in PK between healthy
individuals and patients, as well as between different ethnic
groups. By addressing these important aspects, this study
advances our understanding of the PK characteristics of OSI
and provides a foundation for optimizing dosage regimens for
different patient populations. The insights gained from this
research have the potential to guide personalized treatment
approaches and improve the therapeutic outcomes of OSI in
diverse patient populations.
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