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Introduction: The most common primary brain tumor in adults is glioblastoma
multiforme (GBM), accounting for 45.2% of all cases. The characteristics of GBM,
a highly aggressive brain tumor, include rapid cell division and a propensity for
necrosis. Regretfully, the prognosis is extremely poor, with only 5.5% of patients
surviving after diagnosis.

Methodology: To eradicate these kinds of complicated diseases, significant focus
is placed on developing more effective drugs and pinpointing precise
pharmacological targets. Finding appropriate biomarkers for drug discovery
entails considering a variety of factors, including illness states, gene
expression levels, and interactions between proteins. Using statistical
techniques like p-values and false discovery rates, we identified differentially
expressed genes (DEGs) as the first step in our research for identifying promising
biomarkers in GBM. Of the 132 genes, 13 showed upregulation, and only 29
showed unique downregulation. No statistically significant changes in the
expression of the remaining genes were observed.

Results: Matrix metallopeptidase 9 (MMP9) had the greatest degree in the hub
biomarker gene identification, followed by (periostin (POSTN) at 11 andHes family
BHLH transcription factor 5 (HES5) at 9. The significance of the identification of
each hub biomarker gene in the initiation and advancement of glioblastoma
multiforme was brought to light by the survival analysis. Many of these genes
participate in signaling networks and function in extracellular areas, as
demonstrated by the enrichment analysis.We also identified the transcription
factors and kinases that control proteins in the proteinprotein interactions (PPIs)
of the DEGs.

Discussion: We discovered drugs connected to every hub biomarker. It is an
appealing therapeutic target for inhibiting MMP9 involved in GBM. Molecular
docking investigations indicated that the chosen complexes (carmustine,
lomustine, marimastat, and temozolomide) had high binding affinities of −6.3,
−7.4, −7.7, and −8.7 kcal/mol, respectively, themean root-mean-square deviation
(RMSD) value for the carmustine complex andmarimastat complex was 4.2 Å and
4.9 Å, respectively, and the lomustine and temozolomide complex system
showed an average RMSD of 1.2 Å and 1.6 Å, respectively. Additionally, high
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stability in root-mean-square fluctuation (RMSF) analysis was observed with no
structural conformational changes among the atomic molecules. Thus, these in
silico investigations develop a newway for experimentalists to target lethal diseases
in future.

KEYWORDS

biomarker, gene expression, glioblastoma, protein–protein interactions, molecular
dynamic simulations

1 Introduction

Glioblastoma multiforme (GBM) is a major form of primary brain
tumor with a high incidence in the adult population, i.e., 45.2% of all the
primary brain and central nervous system tumors. It has been
categorized as a grade IV cancer by the WHO. GBM is highly
malignant, mitotically active, and has a predisposition to necrosis
with a poor prognosis. The survival rate of GBM patients is quite
low as only 5.5% of patients survive after the diagnosis (Kanderi and
Gupta, 2023a). GBM is associated with many genetic and epigenetic
mutations. Genome-wide studies have revealed different risk factors
that can increase the chances of GBM, including low susceptibility to
allergy, defective immune system, genetic factor, and some single-
nucleotide polymorphisms (SNPs) (Wrensch et al., 2009).

The survival rate for older people with GBM is unlike that for
individuals aged from 20 to 39 years. This is mainly due to the
suboptimal treatment therapy. Several different strategies are
adopted for the treatment of GBM, including radiotherapy,
chemotherapy (use of alkylating drugs such as temozolomide (TMZ)
and antiangiogenic drugs such as bevacizumab), and surgical
interventions. Some novel treatments and chemotherapy have
proven to be promising in the prognosis of GBM. However, the
overall survival rate and quality of life among GBM patients remain
dismal (Kumari and Kumar, 2023). The design and incorporation of
more potent drugs and the precise selection of treatment strategies
including drug targets can possibly optimize the survival rate in GBM
patients. Multi-omics data, including genomics, transcriptomics, and
proteomics, can reveal important information that can be used for the
optimization of prognosis and treatment methods. In this regard,
utilizing in silico methods to anticipate structural consequences of
mutations will prove highly valuable in gaining insights into the
mechanisms behind drug resistance, allowing for a quantitative
assessment of the resulting phenotypic resistance outcomes.

Network-based gene expression profiling is one of the
recommended tools for discovering drug targets considering
different aspects, including phases of disease, severity of
disease indicated by the expression of certain genes, and
protein–protein interactions (PPIs) (Su et al., 2018). System
biology is a holistic approach that is adopted globally for the
drug design and search of novel drug targets by incorporating all
the linked components including genes, proteins, and enzymes
rather than considering only a single component of this
complicated and interconnected mesh (Noor et al., 2023b). It
has been revealed that all these related genes and proteins interact
and work coherently to construct a molecular network that plays
a specific role in a pathological condition (Khan et al., 2020;
Alamri and Tahir ul Qamar, 2024).

To find the potential biomarkers for GBM, an integrated
approach was used that included the proteomic and
transcriptomic modeling of molecular networks of microarray
data (Noor et al., 2023a) that have not been established
previously. We used gene expression data for defining the
prospective gene/protein biomarkers that can be targeted for the
treatment of glioblastoma multiforme utilizing the system biology
approach based on microarray datasets. For the identification of
differentially expressed genes (DEGs), the statistical method p-value
and false discovery rate (FDR) were used, followed by survival and
expression analyses and the construction of subnetwork modules.
The obtained data for DEGs were evaluated for functional and
structural roles via KEGG pathways and the interpretation of
cellular components. Hub genes were identified, in which the
matrix metallopeptidase 9 (MMP9) gene was selected as a
biomarker gene.

The degradation of the extracellular matrix (ECM) is a crucial
physiological process facilitated by matrix metalloproteinases
(MMPs), which are zinc-dependent endopeptidases (Mondal
et al., 2020). Research has shown that the ECM plays a
significant role in the advancement of cancer (Dobra et al.,
2023). Several ECM proteins, including fibronectin,
thrombospondin-1, laminin, and osteopontin, influence the
biological characteristics of tumors via their impact on cell
migration and angiogenesis. The interaction between cancer
cells and ECM components is crucial for both cell
transformation and the development of cancer (Jabłońska-
Trypuć et al., 2016). MMPs play several biological roles
throughout all phases of cancer, ranging from the initial stages
to the formation of metastases, in addition to their role in ECM
degradation (Chambers and Matrisian, 1997; Mannello et al.,
2005). Although MMPs are linked to the survival and
dissemination of cancer cells, they are produced by cancer cells
in minimal quantity. Cancer cells induce the production of MMPs
in neighboring host cells by the secretion of interleukin, interferon,
growth factors, and extracellular MMP inductors, hence exhibiting
a paracrine mechanism (Dobra et al., 2023). Additionally, there
were reports of increased levels of MMP9 in human brain tumors
throughout the 1990s (Stetler-Stevenson, 1990). Rao et al.
demonstrated a notable increase in the expression of MMP9 in
highly malignant gliomas, which is shown to be associated with the
course of the disease. This finding implies that MMP9 may play a
role in facilitating the observed invasiveness (Rao et al., 1996).
Molecular docking and molecular dynamic simulation of potential
drugs for targeted genes provided valuable information that can
provide the basis for further research to develop a better
understanding of disease mechanisms and optimization of

Frontiers in Pharmacology frontiersin.org02

Alqahtani et al. 10.3389/fphar.2024.1364138

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1364138


therapeutic agents that can upscale the process of diagnosis and
treatment of glioblastoma multiforme.

2 Materials and methods

Figure 1 shows the step-by-step process of an integrated system
biology analytical technique used to find novel biomarkers and their
associated pathways connected to glioblastoma multiforme tumors.

2.1 Retrieval dataset

The Gene Expression Omnibus (GEO) database of NCBI
(https://www.ncbi.nlm.nih.gov/geo/), a freely accessible database
that offers a full set of microarrays, high-throughput
hybridization, chips, and other resources for research purposes,
was used to collect the gene expression profile (GSE11100) of
glioblastoma multiforme, which has a total of 22 samples,
including from the healthy vs malignant regions of the human
brain [2]. GSM280297, GSM280298, GSM280360, GSM280361,
GSM280362, GSM280363, GSM280367, GSM280368,
GSM280375, and GSM280376 were used as human brain healthy
samples, and GSM279179, GSM279182, GSM279184, GSM279187,
GSM280369, GSM280370, GSM280371, GSM280372, GSM280373,
GSM280374, GSM280377, and GSM280378 were used as the human
brain malignant samples. This information is based on the GPL570

Affymetrix Human Genome U133 Plus 2.0 Array (HG-U133_Plus_
2). In this study, we used a variety of analytical techniques. We first
investigated differential gene expression and then used principal
component analysis (PCA) to organize data with related properties.
To demonstrate the genes that showed differential expression
visually, we also used heatmaps. Additionally, we created a
system of PPIs that was especially targeted at the DEGs. We
located sub-networks within this network and highlighted
significant hub genes. We developed a network that shows how
proteins and drugs interact. Finally, as the final step in our thorough
research, we performedmolecular docking andMD simulation tests.

2.2 Data preprocessing and identification
of DEGs

Using the Network Analyst web server tool (https://www.
networkanalyst.ca/), the dataset was evaluated for genes
displaying differential expression. The focus of this assessment
was to locate genes with statistically significant expression
variations (Clough and Barrett, 2016). Rows representing specific
gene entries and columns representing the various samples made up
the dataset’s structure. We used experimental data to determine the
inclusion of 10 healthy samples and 12malignant samples to achieve
an equitable distribution. To provide uniformity and clarity
throughout the dataset, all gene-probe IDs were also changed
into Entrez IDs (Stacklies et al., 2007). We carried out a meta-

FIGURE 1
Diagram showing the order of stages of the integrated bioinformatics analytical approach used in this study.
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analysis of the microarray data using NetworkAnalyst, an integrated
meta-analysis web application (Xia et al., 2015). Then, we
normalized each dataset using a different technique, such as the
log2 transformation, quantile normalization, and variance
stabilization normalization (VSN). The normality of the data was
then confirmed by inspecting principal component analysis (PCA)
plots and box plots (Khan et al., 2020). Using a significance
threshold of p < 0.05, we carried out differential expression
analysis on each individual dataset. The Benjamini–Hochberg
approach was used to determine an FDR cutoff of ≥2, which we
also used. In addition, a t-test using the Limma algorithm (LAT) was
included in this analysis (Davis, 2007).

2.3 Analyzing the functional characteristics
of gene sets

The initial ontology analysis of the DEGs was performed using
the online bioinformatics program DAVID v6.8 (https://david.
ncifcrf.gov/). This was done by tagging them with KEGG
pathway information and Gene Ontology (GO) terminology, and
annotations with a significance level of p < 0.05 were considered
(Jiao et al., 2012). Both DEGs and hub genes were included in the
modules that we uploaded. Next, we set up several characteristics,
including mode-function, species (Homo sapiens), molecular
function, cellular component, and ontology/pathway–biological
process. Data from the Gene Ontology and KEGG databases
were used as support for this analysis of functional roles and
pathway enrichment (Ashburner et al., 2000; Hulsegge et al.,
2009). Utilizing the Benjamini–Hochberg approach, we
performed an enrichment analysis utilizing the two-sided
hypergeometric test. Using a kappa score of 0.96, the analysis
was conducted, and the enrichment was calculated using a
threshold value greater than 0.005.

2.4 Generating a PPI network

We created a PPI network including eachDEG using the STRING
database (https://string-db.org/) (Szklarczyk et al., 2015). The
database currently comprises 67,592,464 human proteins and
20,052,394,041 documented interactions. The interactions were
generated using Cytoscape_v3.10.1 and evaluated using a variety of
essential variables. The protein interactions were first imported into
Cytoscape version 3.10.1, and they were subsequently evaluated using
the integrated tools (Chen Y.-C. et al., 2013). For the combined score
to be deemed significant, it must be less than 0.75 (medium
confidence score) (Oany et al., 2021). We searched for the direct
interactions between each DEG and its first-level interactors. The
network design was changed to only include the primary DEGs after a
complete dataset with data on both DEGs was imported. Zero-order
interactions were specifically chosen to enable exact PPI visualization
while removing the crowded and complex network appearance
commonly known as the hairball effect (Xia et al., 2014). The
network can be analyzed and compared using several different
topological variables. Even though Cytoscape is open-source, it has
a “NetworkAnalyzer” capability that can be used to examine protein/
gene networks. NetworkAnalyzer was used in this study to evaluate

significant characteristics such as clustering coefficient, power law-
conforming node distribution, node degree distribution, network
centralization, and density. These evaluations were carried out to
separate the features of the three generated networks (Ma et al., 2011).

2.5 Selection of central hub proteins from
the PPI network

In order to show and explore the generated PPI networks,
Cytoscape version 3.10.1 (https://cytoscape.org/) was used
(Shannon et al., 2003). The degree of nodes in the PPI network
is determined by the number of edges to which they are connected.
Hub genes are identified as nodes with high degree values (Ghafouri-
Fard et al., 2023). We mapped the hub genes to examine their PPI
details. Essentially, CytoHubba is a well-known integrated
Cytoscape tool that analyzes the attributes and ranks the nodes
correspondingly (Pan et al., 2023). It uses 11 approaches to examine
the functionality of the network, including locating hub genes or
network nodes. Therefore, we used CytoHubba to identify hub genes
that would make viable novel therapeutic targets for glioblastoma
multiforme tumor therapy.

2.6 Correlation between transcription
factors and regulatory networks

The relationship between transcription variables and their
related target genes was established using the X2K
eXpression2Kinases (X2K) online application, which can be
found at http://www.maayanlab.net/X2K/. This server
received as input the whole set of DEGs, along with their
individual gene symbols (Chen E. Y. et al., 2013). Established
Fisher test p-values were used to determine the 10 most notable
transcription factors (TFs) and kinases, as well as their
enrichment scores. These results came from the TF and
kinase module, which was built using information from the
ChEA69 database to build the ChIP-X. A regulatory network
was created, and Cystoscope was then used to view the
“graphml” file (Brandes et al., 2001). It is ensured that the
regulatory network has enough interconnected nodes
throughout the network development process. If there is a
gap in the pathway between kinases and TFs, the system
automatically widens it to allow TFs to bind with enough
intermediary proteins.

2.7 Hub gene survival and expression
profile analysis

The Gene Expression Profiling Interactive Analysis (GEPIA2)
(http://gepia2.cancer-pku.cn/) (Tang et al., 2017) is an extensive
online platform that quickly and adaptably offers a variety of
features based on information from The Cancer Genome Atlas
(TCGA) and Genotype-Tissue Expression (GTEx). For genes that
display differential expression in a particular cancer sample,
GEPIA2 evaluates both the effect on survival and the analysis of
expression patterns. The overall survival impact of hub genes in
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GBM was assessed using the GEPIA2 single-gene analysis by
calculating the log-rank p-value and the 95% confidence interval-
based hazard ratio (HR) (Schröder et al., 2011). The hub genes, on
the other hand, were chosen according to their relative levels of
expression, with a log2FC cutoff value of less than 1 and a q-value
cutoff of less than 0.01.

2.8 Construction of the protein and drug
interaction network

The analysis focused on the top 10 hub genes to investigate
gene–drug interactions. DrugBank version 5.1.10 (https://go.
drugbank.com/), which was integrated with the NetworkAnalyzer
program, provided information about the drugs and their
corresponding targets. It has 16,222 medication entries in total,
of which 2,751 are approved small-molecule pharmaceuticals,
1,604 are approved biologics (including proteins, peptides,
vaccines, and allergens), and 134 are approved as nutraceuticals.
More than 6,722 investigational medications are also now in the
discovery stage. The data entry of each drug is detailed, offering a
substantial quantity of information in its 200 or more data fields.
This dataset includes information on a number of different topics,
such as the chemical makeup and characteristics of the medicine and
specifics regarding the target or targets (Wishart et al., 2018).

2.9 Molecular docking

Prior to docking, the 2D structures of all possible compounds as
inhibitors against the target protein were sketched and minimized
usingMM2 Force-Field of ChemOffice 2012. Under the Tripos force
field (TFF) of UCSF Chimera, a monomer of the target
MMP9 protein (pdb id: 5th6) was assigned with Gasteiger
charges and minimized for 1,500 steps, which may be divided
into 750 of conjugate and 750 of the steepest descent. Molecular
docking performed via PyRx 0.9 was used. Molecular docking is an
in silico approach for determining the binding modes and affinities
of two molecules. In the current work, Arg56-N, a charged amino
acid, was employed as a binding site residue to dock a molecule with
a protein-specific site. A total of four top ligands were docked in the
MMP9 protein active site. PyRx 0.9 (Dallakyan and Olson, 2015)
software was used to investigate the binding free energies of the
docked complexes. For each molecule, 10 solutions were prepared
and screened for the best docked pose with high binding affinity.
Further investigation was performed to check the binding
interactions among the inhibitor moieties and the atomic
residues of the protein active site. This was inferred via
Discovery Studio (Biovia, 2017), where hydrogen bonds and
other active bonds were observed.

2.10 MD simulation analysis

First, docked complicated system preparatory simulation was
carried out. For protein synthesis, AMBER16 (Case et al., 2016) force
fields ff03.rl, GAFF (Sprenger et al., 2015), and ff14SB (Case et al.,
2014) were utilized, and the system was solvated within a three-point

transferable intermolecular potential (TIP3P) (Brice and Dominy,
2013) water box of 8.0. Minimization was used to remove
unfavorable conflicts. For minimization, a conjugate gradient
with 1,000 steps and the steepest decent technique were used at a
value of 8. Heating was carried out for 10-ps using the Langevin
dynamics method for temperature control; at a constant
temperature of 300 K, 100-ps equilibration is necessary before the
manufacturing run begins. The total energy remains constant during
equilibration, whereas kinetic and potential energies change. The
docked complex was produced in 200-ns increments, followed by
equilibration. Periodic boundary conditions were suggested in the
simulation box using a canonical ensemble. To keep the temperature
constant, the Berendsen coupling integration approach was applied
(Berendsen et al., 1984). The AMBER16 PTRAJ (Process
TRAJectory) (Roe and Cheatham, 2013) module was used to
generate output files for result analysis. PTRAJ was used to
calculate four attributes, and graphical representations were
examined in xmgrace (Srivastava et al., 2021).

2.10.1 Binding free energies
The MM(PB/GB)SA approach, which was used in AMBER16,

was used to calculate the binding free energy of the top five systems
(Case et al., 2016; Srivastava et al., 2021). After extracting
1,000 frames from the simulation trajectories, the AMBER
MMPBSA.py module was used for a comprehensive analysis. The
MM(PB/GB)SA approach takes into account the difference between
the complex free energy and the individual free energies of the ligand
and receptor when computing binding free energy. To eliminate
false positive results, avoid the limits of one method, and cross-
validate the results, binding free energies were estimated using two
alternative methods. An implicit solvent system is used by MM(PB/
GB)SA to fill the space created by the ligand decoupling process.
According to Woods et al. (2004), the water molecules that are
inserted into the cavity that is created interact with the protein active
site and greatly increase the total binding free energy.

3 Results

3.1 Assurance of quality and principal
component analysis

The fundamental components of a biological system are genes and
the products they produce, which interact randomly to form a complex
network (Alamri and ul Qamar, 2023). Understanding immunology,
the mechanisms of defense, signaling tasks, modes of transportation,
and the onset of diseases more thoroughly can be accomplished by
analyzing both genes and protein expression. Specifically, in situations
where the variation is subject to fluctuations, the VSN, followed by the
quantile normalization method, was used to standardize the expression
data from microarray analysis. Box plots, density plots, and the data
means are shown in Figure 2 both before and after the normalizing
process. The figure illustrates how the normalization procedure
produces constant means across all samples and successfully
removes any noise that may have been present in the data. The
PCA of the data revealed clear clusters. PCA was used to separate
the controlled and mutant samples of the dataset into discrete clusters
based on the levels of gene expression.
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3.2 Investigation of DEGs and network
analysis of PPIs

Several statistical tests were run on the datasets for both the
control and disease state, including Student’s t-test,
Benjamini–Hochberg technique, and Pearson’s correlation test.
A total of 132 DEGs were discovered Utilising these
investigations (Table 1). A total of 13 of these DEGs showed
upregulation, while only 29 showed downregulation individually,
and the rest of genes were insignificant. Using the adjusted
p-value, the final ranking of the DEGs was established
(Table 2). The network of PPIs is very important for
understanding the workings of cellular networking. To assess
how serious the issue is, changes in the protein cellular network

in both healthy and diseased states are useful. In the present
investigation, proteins and genes are represented by nodes, while
interactions between these proteins and genes are represented by
edges. We mapped these genes and created an interaction
network for the identified DEGs. The mapped DEGs were
shown graphically using Cytoscape. All interactions involving
the DEGs were retrieved from the STRING database using a
moderate confidence level of 0.40. The network created utilizing
every DEG found is shown in Figure 3.

A created network consisted of 66 nodes linked by 105 edges.
The network topological metrics showed that there were significant
interactions within it, with an average node degree of 1.75 and an
average local clustering coefficient of 0.304. Both a volcano plot and
a heatmap are shown in Figure 4 to represent the DEGs.

FIGURE 2
Both box plots and density plots are used to visualize the samples. These graphs are shown in the image both before and after the normalizing
process. For mean correction and noise removal, variance stabilization normalization (VSN), followed by quantile normalization, was used.
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3.3 Analysis of the KEGG pathway and GO
function enrichment

The top 10 results of the enrichment analysis for DEGs that are
upregulated and downregulated in the context of GO analysis were
determined using the DAVID database, including topics such as

cellular components, molecular functions, biological processes, and
KEGG pathways, as described by GO. A highly significant criterion
for the terms used in the analysis was the FDR. Our analysis of the
GO cellular components (CCs) of the DEGs revealed a highly
significant and distinctive distribution pattern for our proteins,
including extracellular space, extracellular region, extracellular
matrix, collagen trimer, cell surface, basement membrane,
voltage-gated calcium channel complex, microtubule bundle,
synapse, tertiary granule lumen, perinuclear region of the
cytoplasm, GABAergic synapse, glutamatergic synapse,
sarcoplasm, and voltage-gated sodium channel complex. We
found 15 key functional categories for which our proteins
actively participate in terms of molecular functioning (MF), such
as extracellular matrix structural constituent, growth factor activity,
heparin binding, carbohydrate binding, collagen binding, calcium
ion binding, sequence-specific double-stranded DNA binding,
identical protein binding, dehydroascorbic acid transporter
activity, oxidoreductase activity, integrin binding, D-glucose
transmembrane transporter activity, co-receptor binding,
metalloendopeptidase inhibitor activity, and protein
dimerization activity.

Furthermore, the significant KEGG pathways are primarily
connected to cancer-related processes, and the reported pathways,
which include ECM–receptor interaction, Notch signaling pathway,
breast cancer, and endocrine resistance, are highly enriched.

The enhanced biological processes (BPs) identified in DEGs
include extracellular matrix organization, cell adhesion, negative
regulation of neuron differentiation, Notch signaling pathway,
positive regulation of osteoblast differentiation, skeletal system
development, negative regulation of cardiac muscle cell
differentiation, regulation of neurogenesis, positive regulation of
osteoblast proliferation, central nervous system myelination,
cell–matrix adhesion, astrocyte differentiation, cell migration,

TABLE 1 Top 10 DEGs in the protein–protein interaction network from the
STRING database ranked by the degree method.

Rank Gene name Score logFC Adjusted
p-value

1 Matrix Metallopeptidase 9
(MMP9)

14 1.4035 0.21842

2 Periostin (POSTN) 11 1.5999 0.25854

3 Hes Family BHLH
Transcription Factor 5
(HES5)

9 −1.0343 0.18261

4 Achaete-Scute Family
BHLH Transcription
Factor 1 (ASCL1)

8 −1.0575 0.18658

4 Collagen Type V Alpha 2
Chain (COL5A2)

8 1.2027 0.21842

6 Fibroblast Growth Factor 1
(FGF1)

7 1.0553 0.17267

6 Collagen Type VI Alpha 2
Chain (COL6A2)

7 1.3605 0.20412

8 Syndecan 4 (SDC4) 6 1.2696 0.073206

8 Bone Morphogenetic
Protein 2 (BMP2)

6 −1.0586 0.11314

8 Delta Like Canonical
Notch Ligand 3 (DLL3)

6 −2.0239 0.028407

TABLE 2 Identification of proposed drugs against the hub proteins retrieved from the database.

S. no. Protein UniProt id Drug name DrugBank id Groups

Matrix Metallopeptidase 9 (MMP9) P00390 Carmustine DB00262 Approved

Q9H169 Lomustine DB01206 Approved

P14780 Marimastat DB00786 Investigational

A0A6M3QJP3 Temozolomide DB00853 Approved

Periostin (POSTN) P46721 Prednisolone DB00860 Approved

P35354 Salicylic acid DB00936 Approved

Hes Family BHLH Transcription Factor 5 (HES5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Collagen Type V Alpha 2 Chain (COL5A2) H6U5S3 Clofarabine DB00631 Approved

Fibroblast Growth Factor 1 (FGF1) P05067 Flutemetamol F-18 DB09151 Approved

Collagen Type VI Alpha 2 Chain (COL6A2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Syndecan 4 (SDC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bone Morphogenetic Protein 2 (BMP2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Delta Like Canonical Notch Ligand 3 (DLL3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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inner-ear receptor stereocilium organization, positive regulation of
neural precursor cell proliferation, oligodendrocyte development,
positive regulation of oligodendrocyte differentiation, positive
regulation of sprouting angiogenesis, nervous system
development, positive regulation of angiogenesis, positive
regulation of the transforming growth factor beta receptor
signaling pathway, and negative regulation of the canonical Wnt
signaling pathway.

3.4 Hub gene identification

The interactions of hub genes with the red nodes determined and
ranked the nodes according to their degree of significant connection.
Nodes having a degree value > 10 were classified as hub nodes using
CytoHubba, which calculated the node degrees (Table 1).MMP9 had
the highest degree, followed by 11 POSTN and Hes family BHLH
transcription factor 5 (HES5) with a 9-degree score. Herein, achaete-

scute family BHLH transcription factor 1 (ASCL1), collagen type-V
alpha 2 (COL5A2), fibroblast growth factor 1 (FGF1), collagen type-VI
alpha 2 (COL6A2), syndecan 4 (SDC4), bonemorphogenetic protein 2
(BMP2), and delta-like canonical notch ligand 3 (DLL3) were among
the additional genes revealed to have lower degree values. The shortest
path network of these hub gene interactions showing strong
interactions based on the degree of score and color is given in Figure 5.

3.5 Transcription factor analysis

The most well-known TFs and protein kinases connected to
DEGs were identified in this analysis based on their contributions to
the development of regulatory network activities. TFs, kinases, and
transient proteins involved in their development were connected to
create a network that served as a regulatory complex. First, we used
ChIP-seq experiments (ChEA) to identify integrated target genes for
transcription factors, which were then used to predict the most

FIGURE 3
Network of the protein–protein interactions (PPIs) of all themapped differentially expressed genes (DEGs), and a confidence level of 0.400was used
to build this network using information from the STRING database.
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important TFs, which were then mapped onto PPI networks. Figures
6A,B depict the TFs predicted here and the PPI network. Based on
the hypergeometric p-value, the main transcription factors in this
case are SUZ12 polycomb repressive complex 2 subunit (SUZ12),
enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2),
(tripartite motif containing 28 (TRIM28), SRY-box transcription
factor 2 (SOX2), (RE1 silencing transcription factor (REST), and
(SMAD family member 4 (SMAD4). We also identified and
subsequently added into the PPI network kinases that are most
likely to behave as regulators for the extended PPI network, as
shown in Figures 6C,D. The major kinases in these DEGs identified
based on the hypergeometric p-value were cyclin-dependent kinase
1 (CDK1), casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated
protein kinase 14 (MAPK14), cyclin-dependent kinase 2 (CDK2),
glycogen synthase kinase 3 beta (GSK3B), homeodomain interacting
protein kinase 2 (HIPK2), mitogen-activated protein kinase 1
(MAPK1), mitogen-activated protein kinase 3 (MAPK3), AKT
serine/threonine kinase 1 (AKT1), cyclin-dependent kinase 4
(CDK4), cyclin-dependent kinase 2 (ERK2), mitogen-activated

protein kinase 3 (ERK1), casein kinase 2 alpha 1 (CK2ALPHA),
glycogen synthase kinase 3 beta (GSK3BETA), and component of
inhibitor of nuclear factor kappa B kinase complex (IKKALPHA).
All the TFs and kinases identified with their scores are given in
Supplementary Table S1.

3.6 Identified hub gene survival and
expression analysis

To analyze the overall impact on the survival of 10 important
hub genes chosen from both the upregulated and downregulated
DEGs, GEPIA survival evaluation was used. Figure 7 shows the
findings of the current study. COL6A2 had a hazard ratio (HR) of
1.4 and was the only one of the 10 genes under investigation to show
decreased overall survival in the group with increased expression.
On the other hand, from the expression level of the hub genes, we
identified that the nine hub genes MMP9, periostin (POSTN),
ASCL1, COL5A2, FGF1, COL6A2, SDC4, BMP2, and DLL3 were

FIGURE 4
(A) Intensity distribution of each gene is shown on the volcano plot. Red indicates genes that are elevated based on a false discovery rate (FDR)
threshold greater than 2, blue indicates genes that are downregulated, and gray indicates non-significant genes in the samples. (B) The genes are shown
against each sample in the form of a heatmap, and the legend shows the distribution of expression values, which range from low (blue) to high (red).
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downregulated in the normal cells, and only one hub gene, HES5,
was upregulated in the tumor cells (Figure 8).

3.7 Protein–drug interactions

Following the identification of the top hub genes, the
DrugBank database was searched for possible therapeutic
candidates. In this study, we investigated each target and,
using manual searches, identified the drugs related to them.
The search panel included medication from a range of
categories, including FDA-approved, investigational, and
nutraceuticals. We manually searched for medications that
interacted with each hub gene-recognized protein. In total,
eight medications were found. Four drugs for MMP9, two for
POSTN, and one each for COL5A2 and FGF1 were found, while
no potential drugs were found for the rest of the targets. The
identified drugs for all these targets are given in Table 2.

3.8 Molecular docking

We obtained the four best compounds from the database against
the target hub gene. All the compounds were docked into the target
protein active site, with the coordinates of the Arg56: N atom set as
the center of binding. A radius of 10 Å was set around Arg56: N, and
10 iterations were generated for each docked compound. Docked
scores were used to assess chemical binding affinity for protein
activity. The docked score for the complexes carmustine, lomustine,
marimastat, temozolomide, and solasodine (control drug) with the
MMP9 protein is −6.3, −7.4, −7.7, −8.7, and −5.7 kcal/mol,
respectively. Furthermore, major residues of the protein active
site implicated in hydrogen bonding, such as Glu47, Arg56,
Tyr179, Pro102, Phe107, Arg106, Pro180, Asp187, Phe59, Gl57,
Pro54, and Val53, were involved in binding forces, as shown
in Figure 9.

Some of the residues indicated possible hydrophobic
interactions. The theoretical activity of a compound requires
both hydrogen and hydrophobic contacts. Furthermore,
numerous additional interactions were observed, which must
be considered for the computational efficacy of the compound.
Thus, it has been inferred that these chemical moieties are
oriented in such a way that they bind along the channel of the
active pocket. Thus, it prevents the total substrate access to the
active site during the metabolic pathways and inhibits the final
production of cancerous substances.

3.9 MD simulation

Protein conformational dynamics are the most essential aspect
linked with their function. The functional information of a protein
molecule is encoded in its structure. To comprehend the functional
variability, an understanding of the structure is required (Karplus
and Kuriyan, 2005). The current work used MD simulation to
investigate the conformational aspect of protein–ligand
interactions and assess the stability of the inhibitor complex
system in a real-time environment. Data reduction analyses such
as root-mean-square deviation (RMSD) and root-mean-square
fluctuation (RMSF) were used to assess the conformational
changes and stability index of secondary structure components of
the simulated complexes. RMSD describes the backbone analysis Cα
atom dynamics of the docked protein during a time scale of 100 ns,
and fluctuation was observed at different time intervals among
carmustine complex and marimastat complex systems, but a
persisting graph of simulation stability was detected among the
marimastat and temozolomide complex system. Figure 10 shows
that the average RMSD value for the carmustine complex and
marimastat complex system is 4.1 Å and 5.03 Å, respectively,
whereas the average RMSD for the lomustine and temozolomide
complex systems is 1.2 Å and 1.6 Å, respectively. To check the
stability of the two carmustine complex and marimastat complex

FIGURE 5
Hub gene identification and interactions based on the degree of color and score. Higher scores having strong interaction with other targets are
shown in red, followed by orange and yellow.
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systems, simulation time intervals were extended for a further
100 ns. It was found that the system gains stability after 100 ns
and remains equilibrated till 200-ns time intervals. Herein, the
average RMSD recorded for both systems was 4.2 Å and 4.9 Å,
respectively. It is possible that the natural flexibility of the
N-terminal area is the cause of the oscillations shown in the
simulation intervals. An overall structure may fluctuate because
of the conformational changes introduced by the loop sections
inside the N-terminal segment. These variations could be caused
by the dynamic interactions the N-terminal residues with the
surrounding solvent or other protein components. Furthermore,
the RMSD for the protein target in Apo and complex states with the
control inhibitor solasodine results in an average mean square value
of 3.61 Å and 3.68 Å, respectively. Fluctuation was recorded in both

Apo and complex states with a time scale of 200 ns. This overall
fluctuation was then observed in the residual system of the RMSF,
where the N-terminal region of the protein target showed high
conformational changes. The average RMSF recorded for the Apo
state was 2.8 Å.Meanwhile, for the control complex, it was measured
as 3.0 Å with a time scale of 200 ns, as shown in Figure 11. The
binding poses during simulation time intervals were retrieved for all
the complexes at the end of the simulation, where it was inferred that
strong hydrogen bond linkages were observed with a time scale of
200 ns, as shown in Figure 12. Overall, the RMSD graph pattern
supports any large domain alterations within the protein–ligand
complex structural framework of carmustine complex and
marimastat complex systems. Herein, the inhibitors remained
inside the active site during the initial time frame but moved as

FIGURE 6
(A) Predicted transcription factors identified in the list of DEGs are shown in a bar chart. The height of each bar, which represents a transcription
factor, reflects that factor score as determined by the hypergeometric p-value. (B) A subnetwork illustration is displayed, emphasizing interrelated
transcription factors and the interacting proteins that go along with them. Pink nodes represent transcription factors, while gray nodes represent the
proteins that connect them. The degree of connectedness between the nodes in this network determines how big they are. (C) Bar graph ranking
the top predicted kinases. Hypergeometric p-values are used in the graph to display the scores of these kinases. (D) By investigating known protein-
protein interactions between mutually overlapping differentially expressed genes (DEGs), one can gain insight into the involvement of transcription
factors and kinases in the upstream pathway.
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the time scale extended till the end of the simulation. On other hand,
the ligands lomustine and temozolomide in the complex system
were properly supplemented inside the binding site and did not
destabilize the protein, as shown in Figure 10. Figure 13 shows
RMSF values that detect the structure flexibility and volatility of Cα
residues over time. A high pitch of fluctuation was recorded among
the carmustine complex and marimastat complex systems. No such
fluctuation was observed till 200-ns simulated time intervals, with a
minor peak due to the loop region of the protein among lomustine
and temozolomide in the complex system. Strong hydrogen bonds
were monitored in the active zone of the MMP9 protein target.
These residues include Asp187, Phe59, Gl57, and Pro54. The average
RMSF of the carmustine complex and marimastat estimated from
200 ns was 1.4 Å and 1.7 Å, with a maximum peak of 4.1 Å and

6.3 Å, respectively, while substantial variations were noted at several
residual points, and finally, at the conclusion of the graph for the
other stable complex systems, a minor residual point was observed
with an average RMSF of 1.0 Å and 0.7 Å, with no such displacement
of atomic residues among the helix and sheet regions, which makes
them highly stable systems. The binding pocket residues involved in
RMSF include His188, Pro54, Asp187, Val53, Leu186, Gly185,
Phe59, Phe62, Leu66, Ala143, Arg56, Arg51, Tyr50, Pro102, and
Arg106. These residues may change as a result of ligands attaching to
the active site. This implies that the flexibility or dynamics of these
regions is higher. Active site residues may be involved in greater
RMSF for a number of reasons; some of these residues have
flexibility, whereas some are compact due to their carbon alpha
background.

FIGURE 7
Hub genes expressed in glioblastomamultiforme (GBM) patients were subject to Kaplan–Meier overall survival analysis. Using The Cancer Genome
Atlas database as a base, curves were produced using Gene Expression Profiling Interactive Analysis (p ≤ 0.01).
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3.9.1 Binding energy calculation
The binding free energies of all four ligands demonstrate their

affinity for the protein active site. They are considered useful
assessment criteria for leading chemical discovery and offer
mechanistic insights into the binding ligands (Slynko et al.,
Citation 2016). Strong interactions between enzyme and inhibitor
complexes were shown by the MM(PB/GB)SA technique of
AMBER16, as shown in Table 3. The entropy computations were
discarded because of a convergence issue. It was determined that in
the instance of MM(PB/GB)SA, complex formation resulted in a
highly favorable electrostatic contribution of −12.48 kcal/mol for

carmustine, −16.14 kcal/mol against lomustine, −10.97 kcal/mol for
marimastat, −17.29 for temozolomide, and −13.35 kcal/mol for
solasodine. Likewise, the dominating electrostatic energy
contribution derived from MMPBSA was also identified.
Furthermore, a highly beneficial contribution to inhibitor
complexes comes from the van der Waal energy values
of −25.10 kcal/mol (carmustine), −57.63 kcal/mol
(lomustine), −30.98 kcal/mol (marimastat), and −51.17 kcal/mol
(temozolomide), and the solasodine complex shows −34.54 from
MMGBSA. Similarly, from MMPBSA, the following complexes had
favorable van der Waal energies: the solvation energy with a binding

FIGURE 8
Hub genes expressed in GBM at different levels of relative expression. Relative gene expression levels for the tumor and normal samples are shown in
red and black boxes, respectively. A total of 163 tumor samples and 207 normal samples from GEPIA are represented on the y-axis as the relative
expression levels of genes in terms of log2 (TPM +1) (p ≤ 0.01) transcribing units per million (TPM).
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energy of 10.63 kcal/mol (carmustine), 9.03 kcal/mol (lomustine),
15.85 kcal/mol (marimastat), and 10.11 kcal/mol (temozolomide),
whereas the control solasodine showed 11.23 kcal/mol after 200-ns
time intervals. Finally, the total average binding energies regarding
MMGB/PBSA were –24.95 kcal/mol for carmustine, –39.74 kcal/
mol for lomustine, –31.07 kcal/mol for marimastat, –41.35 for
temozolomide, and −28.55 kcal/mol for the control complex.
These binding energies show that the simulated complexes
lomustine and temozolomide had high binding affinities and
remain stable during the whole time scale, which results in
building a high ground for the experimentalist.

4 Discussion

Different digital methods are available for analyzing various
kinds of genomic data, including the analysis of SNPs, genome-
wide association studies (GWASs), and the analysis of gene
expression using microarrays. These techniques are essential for
gathering key knowledge about diseases, from diagnosis to
treatment options (Akcay et al., 2018). All these methods,
including genomics, proteomics, transcriptomics, metagenomics,
epigenetics, and metabolomics, can be used to collect a variety of
data from various phases. They frequently play a crucial role in the

FIGURE 9
Interactions of docked complexes. (A) Carmustine complex, (B) lomustine complex, (C) marimastat complex, and (D) temozolomide complex. (E)
Control solasodine with the target protein.
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development and prediction of biomarkers for prediction and
progress evaluation (Khan et al., 2020). PPI network analysis is
frequently used to identify prospective therapeutic targets,
understand metabolic processes, and shed light on the

mechanisms behind various diseases (Hu et al., 2019). The
structural relationships between numerous proteins, which
might differ between healthy and disease phenotypes, have a
significant impact on various biological processes (Ni et al.,

FIGURE 10
Graphical representation of the root mean-square deviation (RMSD) graph of the four simulated systems with a time interval of 200 ns

FIGURE 11
Root-mean-square fluctuation (RMSF) values of complexes in the Apo state and in the control system.
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2009; Liu et al., 2018). Using microarray gene expression data
analysis, one can identify targets for the creation of novel
medications by identifying genes that are differentially
expressed in the setting of a disease as opposed to the normal
condition. The precision and robustness of detecting disease-
linked biomarkers are improved by molecular network

interactions (Ma et al., 2016). Previous studies have
demonstrated the value of such investigations in foretelling the
core nodes and their key roles in a number of diseases (Nayarisseri
et al., 2013; Khan et al., 2018).

Compared to cases of GBM in advanced stages, the prognosis for
early-stage cases is notably better. Through therapies including surgery,

FIGURE 12
Binding pose of the interacting linkages at the end of simulation time intervals. Blue depicts hydrogen bonds inside the pocket residues along with
other active residues throughout the simulation time intervals.

FIGURE 13
Graphical representation of RMSF of all four complex systems with the number of residues throughout simulation time intervals.
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chemotherapy, radiation therapy, or a combination of therapies, early-
stage patients frequently experience significant cure rates. Patients with
advanced-stage glioblastoma multiforme, however, experience extra
challenges, mostly as a result of the tough nature of the disease and
frequent inability to be cured (Henson, 2006).

In this study, we identified the DEGs in glioblastoma multiforme
using microarray data. An enrichment evaluation identified 10 hub
genes that may serve as targets for treatments. The top-ranking gene
with the highest level was discovered to be MMP9. The role of
MMP9 in glioblastoma multiforme has been explored by different
studies, and the expression of MMP9 was reported to be significantly
upregulated in highly malignant gliomas and correlates with the
progression, suggesting a role for MMP9 in promoting the
observed invasiveness (Rao et al., 1996). The development of GBM
is demonstrated to be significantly influenced by POSTN (Park et al.,
2016). HES5 was identified as a possible target for therapeutic
intervention due to its involvement in a number of cancer-related
processes, including increased cell proliferation (Wang et al., 2021).
The other targets we identified are crucial for the development of
GBM. The importance of these hub genes was highlighted by
enrichment analysis, subnetwork building, and the inclusion of all
hub genes within these subnetworks. The roles these genes play in
various interrelated pathways were also clarified through the
examination of KEGG pathways, molecular functions, cellular
components, and biological processes. Determining the regulatory
functions of transcription factors has been made possible by the
identification of these factors and their roles within the enlarged
network. The importance of ECM–receptor interaction and Notch
signaling pathways in GBM has also beenmentioned in earlier studies.
Our KEGG pathways in this study include these specific pathways as
well. Additionally, according to our research, GBM patients have
considerable changes in immune-related pathways (Kanderi and
Gupta, 2023b).

Furthermore, the drugs we discovered for these targets have
given us a useful insight into how to potentially inhibit these targets
and find brand-new FDA-approved medicines.

Furthermore, survival analysis extensively cleared the role of these
hub genes in the progression of breast cancer. Because the compliance
of patients to adjuvant treatment is different, this may influence the
treatment result. This bioinformatics model suggested a catalog of
candidate cellular proteins that could be the targets for breast cancer
therapy. An advance computational strategy has been created to
investigate the FDA-approved drug molecules screened against the
MMP9 hub gene. While performing computer-aided drug design, the
ligand structure has been refined against the therapeutic target.
Furthermore, for validation of the docked complexes, MD
simulation in the drug design process has far-reaching implications
to study the dynamic behavior of receptor–ligand complexes.
Molecular docking methods alone fail to address structural
variability by limiting receptor flexibility and reducing the freedom
of ligand-bound conformations. A simulation approach was used to
examine the dynamic behavior of MMP9, which offered valuable
insights into the structural basis of its potential as a drug.

5 Conclusion

In conclusion, our study not only provides important new
understandings of putative biomarkers linked to patient prognoses
for glioblastoma multiforme tumors but also emphasizes how
critical it is to assess transcription factors and PPI networks as
a solid framework. Identifying potential biomarkers and gaining a
thorough grasp of the fundamental aspects affecting the prognosis
of GBM patients are the main contributions of our research. All
four of the compounds were confirmed as possible
MMP9 inhibitors with high binding scores using the molecular
docking approach. Furthermore, due to structural rearrangements
in a physiochemical environment, MD simulations showed the
extraordinary stability of receptor complexes including
temozolomide and lomustine over a 200-ns time scale
compared to Apo-state and with a control inhibitor system.
Interestingly, small alterations to the side chain and loop

TABLE 3 Binding free energies of all the compounds after 200-ns simulation time intervals.

Parameter Carmustine Lomustine Marimastat Temozolomide Solasodine

MMGBSA

van der Waals energy −25.10 −57.63 −30.98 −51.17 −34.54

Electrostatic energy −12.48 −16.14 −10.97 −17.29 −13.35

Total gas phase energy −32.58 −48.77 −35.95 −55.46 −28.46

Total solvation energy 10.63 9.03 15.85 10.11 11.23

Net energy −24.95 −39.74 −31.07 −41.35 −28.55

MMPBSA

van der Waals energy −25.10 −57.63 −30.98 −51.17 −34.54

Electrostatic energy −12.48 −16.14 −10.97 −17.29 −13.35

Total gas phase energy −32.58 −48.77 −35.95 −55.46 −28.46

Total solvation energy 10.17 9.30 15.97 10.37 10.21

Net energy −24.41 −39.47 −31.98 −41.09 −29.53
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movement of these inhibitors showed very little effect on their
stability. The potential of the chosen ligands as lead-like
compounds was confirmed by the structural stability that was
observed in the docked complexes after simulation. The binding
energies finally calculated showed high binding affinities of the
complexes throughout the time intervals. Using the strong insights
obtained from this research, our study encourages researchers to
investigate the creation of a modified and precisely targeted drug
against GBM in light of these results. The continuous stability of
the system throughout the simulations provides a solid basis for
future research and development of successful glioblastoma
multiforme therapies.
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