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Fatty liver disease, a condition characterized by fatty degeneration of the liver,
mainly classified as non-alcoholic fatty liver disease (NAFLD) and alcoholic liver
disease (ALD), has become a leading cause of cirrhosis, liver cancer and death.
The gut-liver axis is the bidirectional relationship between the gut and its
microbiota and its liver. The liver can communicate with the gut through the
bile ducts, while the portal vein transports the products of the gut flora to the liver.
The intestinal flora and its metabolites directly and indirectly regulate hepatic
gene expression, leading to an imbalance in the gut-liver axis and thus
contributing to the development of liver disease. Utilizing natural products for
the prevention and treatment of various metabolic diseases is a prevalent
practice, and it is anticipated to represent the forthcoming trend in the
development of drugs for combating NAFLD/ALD. This paper discusses the
mechanism of the enterohepatic axis in fatty liver, summarizes the important
role of plant metabolites in natural products in fatty liver treatment by regulating
the enterohepatic axis, and provides a theoretical basis for the subsequent
development of new drugs and clinical research.
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1 Introduction

Fatty liver disease, a disease characterized by fatty degeneration of the liver, is mainly
divided into NAFLD and ALD (Staufer and Stauber, 2023), has become a major cause of
liver cirrhosis, liver cancer and mortality (Ko et al., 2023). The complex interactions
between environment (especially diet), host genetics and gut microbiota are crucial for the
development and progression of fatty liver disease (Wree et al., 2013). The gut liver axis is
the bidirectional relationship between the gut, gut microbiota and liver (Albillos et al.,
2020). The liver allows the bile ducts to communicate with the intestines and the portal vein
transports the products of the intestinal flora to the liver (Tripathi et al., 2018). Intestinal
flora and its metabolites directly and indirectly regulate hepatic gene expression, ultimately
leading to an imbalance in the gut-liver axis, which contributes to the development of liver
disease (Bauer et al., 2022), as shown in Figure 1.

In ALD, excessive alcohol consumption disrupts the intestinal barrier causing elevated
levels of bacterial endotoxin in the portal circulation and dysbiosis of the intestinal flora
thereby exacerbating inflammation levels and liver fibrosis (Szabo, 2015). There is now a
large body of literature suggesting that targeting gut-liver axis homeostasis can be effective
in improving ALD. For instance, dietary supplementation with propionate attenuates
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intestinal epithelial barrier dysfunction and prevents alcohol-
induced liver injury (Xu et al., 2022). Probiotics can reverse
alcohol-induced microbiota changes and prevent ALD
progression by restoring gut microbial composition (Fuenzalida
et al., 2021). Similarly, intestinal flora can use their metabolites
to induce glycolipotoxicity, oxidative stress and intestinal barrier
damage, while bacterial components such as Lipopolysaccharides
(LPS), peptidoglycan, bacterial DNA and extracellular vesicles can
be translocated to the liver via the damaged intestinal barrier,
triggering immune cell hyperactivation and exacerbating the
NAFLD response (Zhang et al., 2021; Pezzino et al., 2022).

In summary, regulating the homeostasis of the liver-gut axis is
expected to provide a potential means to delay the progression of
NAFLD. It has been reported that Gut Akkermansia muciniphila
ameliorates can ameliorate NAFLD by modulating L-aspartate
metabolism in the enterohepatic axis (Rao et al., 2021). Toll-like
receptors (TLR) of intestinal flora modulate TLR ligands to
stimulate liver cells to produce pro-inflammatory cytokines,
which in turn affects the development of NAFLD (Miura and
Ohnishi, 2014). Moreover, bile acid activated nuclear receptor
and G protein-coupled receptors can drive NAFLD/Non-
alcoholic steatohepatitis (NASH) disease progression (Xue et al.,
2021). It follows that pharmacological modulation of the microbiota
based on the gut-liver axis is a promising and useful therapeutic
approach for fatty liver disease (Song and Zhang, 2022).

An increasing number of studies have confirmed that plant
metabolites from natural medicines are an indispensable source for
the development of hepatoprotective drugs. Although there is no
large-scale clinical data as strong evidence to support the therapeutic
efficacy of natural products, investigations have shown that

phytomedicines play an important role in a wide range of
diseases due to their broader biological activity, lower side effects
and more diverse active ingredients (Yan et al., 2020). More and
more pharmaceutical companies are now extracting medicinal
plants to discover more potent natural medicines and their
derivatives and to develop new drugs (He et al., 2022). At
present, many natural products have been found to have the
effect of regulating the intestinal liver axis and improving fatty
liver. These natural products are mainly effective by affecting
intestinal microbiota, bile acid metabolism, inflammatory
reactions and other ways (Cao et al., 2023). This article presents
a comprehensive review of how metabolites derived from natural
products influence the gut microbiota composition. We summarize
the research progress of plant metabolites in improving fatty liver
disease through the “gut-liver axis” and discuss their potential
development trends and shortcomings.

2 Fatty liver disease and gut-liver axis

2.1 ALD and the gut liver axis

ALD is a liver damaging disease caused by excessive and chronic
alcohol intake, including fatty liver, alcoholic steatohepatitis (ASH),
alcoholic hepatitis (AH), cirrhosis, and hepatocellular carcinoma
(HCC) (Yang et al., 2022). Excessive alcohol consumption can cause
cell damage, inflammation, oxidative stress (Louvet and Mathurin,
2015) and can also disrupt the intestinal barrier (Park et al., 2016).
After the intestinal barrier is disrupted, the composition of the gut
microbiome changes due to alcohol consumption (Bull-Otterson

FIGURE 1
The gut microbiota and its metabolites directly or indirectly regulate liver gene expression, which ultimately leads to an imbalance in the gut-liver
axis, leading to the occurrence of NAFLD and ALD. (The one-way arrows in the figure represent recursive relationships and the two-way arrows represent
reciprocal relationships).
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et al., 2013), which leads to an increase in the transport of microbial
products such as LPS from the intestines to the liver via the portal
circulation, resulting in the activation of immune cells and the
production of high levels of the pro-inflammatory cytokines TNF-α,
IL-1β and IL-6, which in turn contributes to the vicious cycle of ALD
(Leclercq et al., 2014). In one study it was noted that The relative
abundance of Mycobacterium avium and Mycobacterium
tuberculosis bacteria in the gastrointestinal tract of mice fed
alcohol for 3 weeks increased significantly (Yan et al., 2011).
Moreover, we learned that intestinal permeability and LPS were
significantly increased in alcohol-dependent subjects at the onset of
withdrawal, suggesting that the gut-liver axis plays an important role
in the pathogenesis of alcohol dependence (Leclercq et al., 2012).
Gao et al. (2023) showed that oral administration of Porphyromonas
gingivalis worsened hepatic inflammation in ALD mice by
increasing the protein expression of Toll-like receptor 4 (TLR4)
and p65, increasing the mRNA expression of IL-6 and TNF-α and
up-regulating the production of Transforming Growth Factor β1
(TGF-β 1) and galactaglutinin-3 (Gal-3). Likewise, in alcoholic
cirrhosis the intestinal flora remains altered and translocated
toward the liver and ascites (Oesterreicher et al., 1995; Naseri
et al., 2021). Currently, there is a plethora of treatments based on
the gut-liver axis. In 2018, a study proposed that bile acid-FXR-
FGF15 signaling could be improved by modulating hepatic
Cyp7a1 and lipid metabolism to reduce ALD in mice (Hartmann
et al., 2018). Lactobacillus plantarum KLDS1.0344 and Lactobacillus
acidophilus KLDS1.0901 Mixture prevents ALD in mice by
protecting the intestinal barrier (Hou et al., 2021). Patel’s Team
Finds Visbiome Prevents Alcohol-Induced Cell Damage, ER Stress,
Oxidative Stress and Regulates Lipid Metabolism (Patel et al., 2021;
Sun et al., 2022). In conclusion, it is significant to further explore the
enterohepatic axis of alcoholic liver disease.

2.2 NAFLD and the gut-liver axis

The gut-liver axis plays a key role in the pathogenesis of NAFLD
and is associated with disease severity (Chen and Vitetta, 2020). In
NAFLD, the abundance of Aspergillus spp. will increase. In
cirrhosis, the Bacteria such as Prevotella and Verotella invade the
distal gut (Aron-Wisnewsky et al., 2020a). In contrast, the
abundance of M. avium was significantly increased in NASH
patients with concomitant hepatic fibrosis and the abundance of
B. Prevotella was decreased (Boursier et al., 2016). It is well known
that obesity is one of the characteristics of NAFLD, but there are
some patients who are thin and they are called lean nonalcoholic
fatty liver disease (Seto and Yuen, 2017; Albhaisi et al., 2019). Almost
all men with lean nonalcoholic fatty liver disease have been reported
to lack the ability to produce estragole and they have reduced
abundance of Slackia (Iino et al., 2022). In addition to changes in
the composition of the gut microbiota, components from the gut
microbiota (LPS, peptidoglycans, DNA, and extracellular vesicles)
(Ji et al., 2019a) and metabolites (bile acids, short-chain fatty acids,
amino acids, choline and ethanol) (Leung et al., 2016) have emerged
as key factors regulating the pathologic process of NAFLD. Several
studies have shown that gut microbiota disorders lead to reduced
synthesis of secondary bile acids, which in turn reduces the
activation of nuclear receptors such as farnesol X receptor (FXR),

pregnane X receptor, Takeda G protein-coupled bile acid protein
5 and vitamin D receptor leading to NAFLD (Chen et al., 2019;
Jayachandran and Qu, 2023). Moreover, the intestinal metabolite
sodium butyrate can prevent the progression of NAFL to NASH by
promoting hepatic glucagon-like peptide-1 recetor (GLP-1R)
expression (Zhou et al., 2018). Tryptophan metabolism in
NALFD has been shown to increase inflammation and
lipogenesis and lower the intestinal barrier by decreasing its
metabolite indole (Ji et al., 2019b). Ethanol, as the biggest
causative agent of ALD, should not be ignored in NAFLD as
well. As early as 2000, ethanol was recognized as a player in the
pathogenesis of NAFLD (Cope et al., 2000). Yuan et al. (2019)
demonstrated that Klebsiella pneumoniae K14, which produces large
amounts of alcohol, is the cause of NAFLD. New therapeutic
approaches to modulate the gut microbiota by administering
probiotics, prebiotics, synbiotics and antibiotics have been
proposed (Cho et al., 2018; Coskun and Celep, 2022), such as
Lactobacillus plantarum MA2 to reduce hepatic cholesterol and
triglyceride levels and to increase fecal Lactobacillus and
Bifidobacterium populations (Wang et al., 2009). Lactobacillus
rhamnosus PL60 produces large amounts of conjugated fatty
acids that can effectively ameliorate NAFLD (Lee et al., 2006; Lee
and Lee, 2009). Therefore, therapies that effectively target the gut
microbiome may be beneficial in the treatment of patients with
NAFLD (Jayakumar and Loomba, 2019).

3 Role of natural products and their
extracts in fatty liver disease

Here, we describe plant-derived active ingredients that modulate
the structure of disturbed intestinal flora under disease conditions,
influence the metabolic processes of some specific flora and alter the
production of intestinal flora metabolites to ameliorate fatty liver
disease in a variety of cellular and animal models. These natural
products are mainly isolated or extracted from plants and can be
broadly categorized into alkaloids, saponins, phenols,
polysaccharides, terpenoids and flavonoids (Table 1).

3.1 Alkaloid

Alkaloids are a class of nitrogen-containing organic secondary
metabolites with diverse structures and have a wide range of
biological functions, including anti-inflammatory, antioxidant,
antitumor and immunomodulatory effects (Liu et al., 2023;
Omidkhoda et al., 2023). Several studies have shown that the
effects of alkaloids on NAFLD/ALD are mediated through the
regulation of gut flora.

Berberine (BBR), an isoquinoline alkaloid derived from Coptis
chinensis Franch., has long been used clinically against intestinal
bacterial infections and has been shown to have significant efficacy
in the treatment of NAFLD. Research indicates that BBR exhibits
low absorption into the bloodstream, with a significant
accumulation in the intestines where it exerts its pharmacological
effects locally. BBR affects the gut-liver axis at several interrelated
levels, including modulation of the gut microbiota structure,
alteration of gut microbe-derived metabolites, etc., which reduces
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TABLE 1 Mechanism of natural products and their extracts in the treatment of fatty liver through the gut-liver axis.

Compound
type

Compound name Machine Diseases References

Alkaloid Berberine • Upregulation of intestinal gene expression of fasting-induced adipokine
(Fiaf) in mice

NAFLD Zhang et al. (2015)

• Increases the ability of short-chain fatty acids (SCFAs) to produce
bacteria

• Reduces intestinal endotoxin entering the bloodstream

• Reduces inflammation, insulin resistance

• Inhibition of the phylum Thick-walled Bacteria and Bacteroidetes

Berberine • Promoting expansion of immunosuppressive cell populations ALD Li et al. (2020b)

• Reduces slime molds

Saponin Ginsenoside Rh4 • Improvement of hepatic steatosis NAFLD Yang et al. (2023)

• Improvement of lobular inflammation levels

• Increased levels of intestinal SCFAs and BAs

Ginsenoside Rk3 • Improved the composition of intestinal flora in mice NAFLD Guo et al. (2023a)

• Decrease the abundance of harmful bacteria such as Phylum
Thickettsiae

• Increase beneficial bacteria

Astragaloside • Decrease the abundance of harmful bacteria NAFLD Zhou et al. (2021)

• Increase the abundance of beneficial bacteria with anti-inflammatory
effects (e.g., Clostridia, Lactobacillaceae, and Buttercupaceae)

Panax ginseng saponin • Slow down the rate of SCFAs from the intestine to the liver NAFLD Xu et al. (2021)

• Inhibit TLR4 to promote AMPKα activation to reduce lipogenesis in
hepatocytes

• Alleviate intestinal leakage phenomenon (intestinal permeability) by
enhancing the expression of the tight junction proteins Claudin-1 and
ZO-1

Phenol Eugenol • Increase the expression of GLP-1 receptor (GLP-1R) in the duodenum,
liver, arcuate (ARC) and paraventricular nucleus (PVN) and c-fos in
the nucleus tractus solitarius (NTS) by modulating the gut-brain-
hepatic axis of glucagon-like peptide-1 (GLP-1)

NAFLD Li et al. (2022a)

Paeonol • Decrease fungal abundance NAFLD Wu et al. (2020)

• Block glucan translocation to the liver

Sorbiferin • Improve abnormal lipid metabolism NASH Qu et al. (2022)

• Regulates the composition of gut microbiota

• Reverses FXR deficiency

Baicalein • Improved MCD diet-induced knot length NAFLD Guo et al. (2023b)

• Restored mucosal barrier integrity by upregulating tight junction
protein intestine in mice

Lignans • Improve intestinal mucosal permeability to high-fat diet-induced
increase in fluorescein isothiocyanate-dextran (FD4) by modulating the
expression of tight junction proteins in the intestinal tract, restoring
intestinal barrier function

NAFLD Liu et al. (2021)

• Decreasing relative abundance ratios of the phylum Thickwell/
anaplasmid phylum

Polysaccharide Salvia miltiorrhiza
polysaccharide

• Regulate the homeostasis of the intestinal microbiota NAFLD Li et al. (2022b)

(Continued on following page)
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microbial exposure and the pro-inflammatory environment of the
liver and modulates liver metabolism (Peng et al., 2019; Dehau et al.,
2023; Zhu and Li, 2023). Zhang et al. (2015) collected feces from
C57 mice fed a high-fat diet (HFD) for 10 weeks and collected feces
from non-alcoholic hepatitis model mice fed BBR (100 mg/kg body
weight) for eight consecutive weeks and performed 16sRNA
sequencing. Comparing the feces from mice fed a HFD at weeks
0, 10, and 18, they found that BBR significantly altered the relative
abundance of the phylum Thick Walled Bacteria (THWB) and
Bacteriodesium anisopliae (BAP) in a concentration-dependent
manner (Zhang et al., 2015). At the onset of obesity, which is
generally characterized by a decrease in the anabolic phylum or an
increase in the thick-walled phylum, BBR participates in the
regulation of hepatic energy metabolism by influencing fatty acid
metabolism through modification of the composition of the
intestinal flora and increasing the abundance of short-chain fatty
acid-producing bacteria.

Piperine (PIP) found in large quantities in Piper nigrum L. that
has anti-obesity, anti-inflammatory, and hepatoprotective
properties (Cheng et al., 2023; Joshi et al., 2023). In vitro studies
have found that PIP regulates lipid metabolism in HepG2 cells in a
Bmal1/Clock-dependent manner (Zhang et al., 2022) and in vivo
studies have found that PIP ameliorates insulin resistance in diabetic
mice constructed by subcutaneous injection of monosodium
glutamate (MSG) in neonatal mice (Liu et al., 2020). Piperine

was administered at 20 and 40 mg/kg body weight per day in an
obese mouse model induced by high-fat dietary feeding. It was found
that piperine at high doses significantly reduced body weight, liver
weight, perirenal fat weight and serum triglyceride, total cholesterol,
LDL-cholesterol and glucose levels. In addition, piperine
significantly attenuated the expression of SREBP-1c mRNA and
downregulated the expression of IL-6. 16S rRNA sequencing showed
that piperine increased the diversity of gut microbiota and the
relative abundance of Muribaculaceae and Ruminococcaceae was
significantly increased, while Dubosiella and Enterorhabdus were
inhibited by piperine. were inhibited by piperine (He et al., 2022).
IL-6 expression is closely associated with macrophage
M1 polarization in adipose tissue and PIP may play an
important role in fatty liver disease by improving the structure of
the intestinal flora and thereby affecting immune cell homeostasis.
Another study showed that PIP also demonstrated its ability to
downregulate jejunal tumor necrosis factor-α, reduce
lipopolysaccharide-induced proliferative damage of intestinal
cells, enhance the intestinal barrier function and inhibit intestinal
fatty acid absorption in cellular and animal models in in vivo and
in vitro studies in Caco-2 cells and HFD-fed C57 mice for 16 weeks
(Wang et al., 2021).

Capsaicin (CAP), a metabolite of Capsicum frutescens L., it has a
long hydrophobic carbon end with a polar amide group and a
benzene ring (Karimi-Sales et al., 2024), plays a role in the metabolic

TABLE 1 (Continued) Mechanism of natural products and their extracts in the treatment of fatty liver through the gut-liver axis.

Compound
type

Compound name Machine Diseases References

• Upregulate the expression of integral membrane proteins (Claudin and
Occludin) and the junction complex protein ZO-1 in the jejunum and
colon

Echinacea polysaccharide • Increase the abundance of Serratia marcescens, Lactobacillus, and
Synechococcus, and decreasing the abundance of Escherichia coli and
Enterococcus

ALD Jiang et al. (2022)

• Increase production of n-butyric acid

Astragalus
polysaccharides

• Improve the ratio of intestinal flora, and the abundance of harmful flora
decreased significantly

ALD Zhou et al. (2021)

Comfrey polysaccharide • Upregulate the expression of ileocecal tight junction proteins NASH Jiang et al. (2021)

• Decrease the entry of enteric endotoxin into the portal circulation

• Attenuate hepatic inflammation and injury

Cordyceps Sinensis
polysaccharide

• Reduce the number of enterococci in the cecum NASH Chen et al. (2020); Wu
et al. (2022)

• Regulate the metabolism of bile acids in the intestine

• Increase the proportion of actinomycetes

• Increase the degree of intestinal flora disruption

MDG-1 • Regulate the balance of the gut microbiota NASH Wang et al. (2019)

• Increase the relative abundance of beneficial bacteria

Glycosides Cornelianoid glycoside • Reverse alcohol-induced changes in the tight junction proteins ZO-1
and occludin

ALD Han et al. (2021)

• Reduce serum levels of LPS, and blocks the hepatic inflammatory
response caused by LPS stimulation

Terpenoids Glycyrrhizic acid • Modulate the relative abundance of Trichoderma, Trichoderma,
Helicobacter and Enterobacter

NAFLD Wang et al. (2022a)
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processes of energy homeostasis and fatty acid oxidation (Saito and
Yoneshiro, 2013), making it a focus of research in obesity treatment.
Clinical studies have shown that moderate amounts of capsaicin can
promote metabolism and improve blood glucose regulation, as well
as increase satiety and reduce overeating. To further explore its
mechanism of action, it was studied in vivo in mice. Hui et al. (2020)
state that CAP specifically activated hepatic transient receptor
potentialvanilloid 1 cation channels in HFD-induced C57BL/6J
NAFLD mice, increased Ca2+ in-flux, promoted hepatic fatty acid
β-oxidation and decreased hepatic TG content and lipid deposition.
CAP has limited its development due to its poor water solubility low
bioavailability and its gastrointestinal mucosal irritation effect.
Currently, capsaicin is gradually being used as a prodrug in
nanoparticles for administration to increase bioavailability,
reduce gastric mucosal irritation and improve its therapeutic
potential for NAFLD and ALD (Feng et al., 2018).

Koumine (KM), derived from the stem and leaves of Gelsemium
elegans (Gardner & Champ.) Benth., has significant anti-
inflammatory effects antitumor, antioxidant, immunomodulatory
and hepatoprotective effects (Wang et al., 2022; Que et al., 2023). Its
immunomodulatory effect on rats with NAFLD has been
demonstrated in recent years. Koumine was intraperitoneally
injected into SD rats fed with cholesterol 1%, bile salt 0.1%, lard
10%, egg yolk powder and whole milk powder 5% and pro-
inflammatory factors in their serum such as cytokine interferon-
c, IL-17A,MCP1 and IL-1βwere significantly suppressed, which was
associated with its inhibition of Th17 cell differentiation and
increase in the number of Treg cells. IL-17A, TNF-a, IL-6,
MCP1 and IL-1β were significantly inhibited, which was closely
related to the inhibition of Th17 cell differentiation and the increase
in the number of Treg cells (Yue et al., 2019). A study using
concanavalin A (Con A)-induced autoimmune hepatitis (AIH)
model in mice verified the pharma-cological activity of KM in
steatohepatopathy, KM activated the Nrf2 pathway, upregulated
the expression of antioxidant factors HO-1 and Nrf2 and
downregulated the expression of Keap1. In addition, the NF-κB
signaling pathway was inhibited. Also KM significantly improved
the composition of the gut microbiota and increased the abundance
of beneficial bacteria (Que et al., 2023).

3.2 Saponin

Saponins, consisting of saponin elements as their glycosidic
elements and carbohydrate chains, are widely found in plants
and are prevalent in Astragalus mongholicus Bunge as well as
Panax ginseng C.A.Mey., exerting their medicinal effects mainly
through interactions with the gastrointestinal environment and
intestinal microbiota (Zhang et al., 2023).

Ginsenoside is the main natural product of ginseng and has a
variety of pharmacological activities. Ginsenoside Rh4 is obtained by
eliminating the water molecule at the C20 position of Rh1. Extensive
pharmacological studies have shown that ginsenoside Rh4 can be
used as an anticancer, anti-inflammatory and anti-oxidative stress
agent. Recent studies have demonstrated that ginsenoside Rh4 can
improve the balance of intestinal flora. In the NAFLD model mice
constructed on a Western diet and CCL4, Ginsenoside
Rh4 significantly increased the levels of intestinal SCFAs and bile

acids (BAs) while ameliorating hepatic steatosis and lobular
i-nflammation levels (Yang et al., 2023), all of which were
attributed to its alteration ofthe gut microbiota composition.

Studies have shown that ginsenoside Rk3 can intervene in high-
fat diet-induced repair of intestinal barrier dysfunction in C57BL/
6 mice, increase the expression of tight junction proteins and reduce
the level of inflammatory cytokines, inhibit the TLR4/NF-B
signaling pathway, si-gnificantly reduce the ratio of Firmicute/
Bacteroidete, which effectively improves the metabolic
dysfunction of the intestinal flora and inhibits the inflammatory
cascade response (Chen et al., 2021). Another study showed that
Rk3 ameliorates dimethylnitrosamine- and CCl4-induced intestinal
dysbiosis in a mouse model of HCC, resulting in the inhibition of the
LPS-TLR4 signaling pathway, which plays a key role in the
prevention of HCC (Qu et al., 2021). Guo et al. (2023) showed
that ginsenoside Rk3 was effective in reducing the number of
harmful bacteria and increasing the number of beneficial bacteria
in the feces of NAFLD mice fed a high-fat, high-cholesterol diet and
injected with CCl4, thereby improving the composition of the
intestinal flora of the mice.

As a legume plant, Astragalus mongholicus Bunge, one of the
plant metabolites, has been applied commonly in China due to its
biological activities, such as antioxidant, anti-inflammatory,
hepatoprotective, immunomodulating, anti-cancer, and anti-
photoaging properties. Triterpene saponins and polysaccharides
are believed to be the two main natural products in Astragalus.
In vivo studies have confirmed that astragalus saponin improves the
gut microbial structure of alcohol-induced ICR mice. The gut
flora of alcohol-induced ICR mice showed an increase in the
number of harmful bacteria (Gardnerella and unclassified_p_
thickness) and a decrease in the number of beneficial bacteria
(Ackermansia). After treatment with high doses (300 and
600 mg/kg bw) of astragaloside, the ratio of intestinal flora in
ALD mice significantly improved and the number of harmful
bacteria decreased. In addition, the number of Lactobacillus, a
beneficial bacterium that regulates inflammation, was
significantly increased (Zhou et al., 2021). From this we can
see that the synthesis of drugs using astragalus saponin as the
main ingredient is very promising and may contribute to the
future development of new drugs for metabolic lipid disorders.
However, there is still no clinical efficacy information available
and more research is needed to assess the safety and efficacy of its
application, clinical trials with a large increase in patient
populations should be conducted.

Xu et al. (2021) showed that Panax notoginseng saponin (PNS)
from Panax notoginseng (Burkill) F.H.Chen could slow down the
rate of SCFAs from the intestine to the liver and inhibit TLR4 to
promote AMPKα activation to reduce lipogenesis in hepatocytes
and alleviate intestinal leakage phenomenon (intestinal
permeability) by enhancing the expression of the tight junction
proteins Claudin-1 and ZO-1, which are important for the
intestinal-hepatic axis, through These three sets of pathways exert
anti-adipogenic and anti-fibrotic effects. This finding was mainly
obtained from in vivo studies with high-fat diet (HFD)-induced
obese mice and obesity-prone Lepob mice. PNS exerts
pharmacological activity in NAFLD/ALD by improving the gut
microbiota through multiple pathways, what are the key
mechanisms should be further explored.
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3.3 Phenol

Phenols are mainly produced by plants through various
metabolic pathways including phenols/phenolic acids, flavonoids,
stilbenes and lignans (Deka et al., 2022).

Eugenol, a natural products are sourced from many aromatic
botanic drugs, in vivo experiments were conducted usingWistar rats
(200 g ± 20 g) to construct a NAFLDmodel, after gavage of eugenol,
the liver index of rats decreased in a dose-dependent manner and the
study of the mechanism revealed that eugenol could increase the
expression of GLP-1R in the duodenum, liver, arcuate (ARC) and
paraventricular nucleus (PVN) and c-fos in the nucleus tractus
solitarius (NTS) by modulating the gut-liver axis of glucagon-like
peptide-1 (GLP-1), providing a novel strategy for the treatment of
NAFLD (Li et al., 2022).

Paeonol, which also has a wide range of biological activities, is
derived from the dried bark of Paeonia lactiflora Pall., which belongs
to Paeoniaceae (Ranunculaceae) or the dried root of Xu Chang qing
(Asclepiadaceae) or the whole grass (Li and Gu, 2022). Hu et al.
(2010) reported experiments on the treatment of alcoholic liver
injury rats with paeonol, which resulted in paeonol decreasing the
level of ALT, the level of reduced hepatic gene expression of
lipogenic genes (p < 0.05) without affecting hepatic
CYP2E1 protein expression, significantly reduced serum and
tissue levels of inflammatory cytokines, tissue lipid peroxidation,
neutrophil infiltration and inhibited hepatocyte apoptosis (p < 0.05),
thereby reducing hepatocyte injury. It has also been reported to
ameliorate acute alcoholic hepatitis-associated liver injury by
decreasing fungal abundance and blocking glucan translocation
to the liver (Wu et al., 2020). A study of a C57BL/6 mouse
model of Candida albicans-induced ALD treated with 480 mg/kg
of Paeonol found that the mechanism of action was mainly through
the Dectin-1/TLR2/NLRP3 pathway (Xiao et al., 2023).

Sorbiferin (SDS) in Rhodiola rosea L. (Hu et al., 2021), improves
abnormal lipid metabolism, regulates the composition of gut
microbiota (Qu et al., 2022), effectively reverses FXR deficiency
during NASH. SDS was intragastrically administered at a dose of
20 mg/kg/day for 4 weeks. After treatment with salidroside, liver
steatosis, TG content and serum inflammatory factors significantly
improved and HFD-induced intestinal bacteria, bile acid disorder
and FXR deficiency were significantly alleviated (Li et al., 2020). The
mechanism of action of SDS is still obscure, but some studies have
demonstrated that SDS attenuates HFD-induced NAFLD by
inhibiting fatty acid uptake-associated (Cd36 and Fabp1) and
synthesis-associated (Fasn, Pparg, Scd1 and Srebf1) factors (Hu
et al., 2021).

The isolated metabolite Luteolin from Reseda odorata L. exerts
pharmacological activity in repairing the intestinal mucosal barrier
and microbiota imbalance in NAFLD rats. Luteolin have been
reported to improve intestinal mucosal permeability to high-fat
diet-induced increase in fluorescein isothiocyanate-dextran (FD4)
by modulating the expression of tight junction proteins in the
intestinal tract, restoring intestinal barrier function, improving
NAFLD by decreasing relative abundance ratios of the phylum
Thickwell/anaplasmid phylum. In this study, 48 Wistar rats
(6 weeks old) were used and all the rats were randomly divided
into 6 groups (n = 8): normal diet group (ND), high fat diet group
(HFD), low dose lignocaine group (L5mg/kg/day), medium dose

lignocaine group (50 mg/kg/day) and high dose group (100 mg/kg/
day). The therapeutic effect of lignocaine on hepatic inflammation
was dose dependent (Liu et al., 2021).

In contrast, flavonoids, as important phenolic compounds, are
widely distributed in a wide range of plant products and enter the
circulatory system mainly through the intestines to exert their
beneficial effects (Li et al., 2023). Baicalein, a dietary flavonoid
extracted from Scutellaria baicalensis Georgi, can improve lipid
levels and hepatic steatosis in choline-deficient diet-induced
NAFLD mice through a multi-target and multi-channel
mechanism (Zhang et al., 2022). Guo et al. (2023) demonstrated
that baicalein significantly improved Methionine-Choline Deficient
(MCD) diet-induced knot length and restored mucosal barrier
integrity by upregulating tight junction protein intestine in mice.
In this study, mainly male C57BL/6 mice were used, administered by
gavage at 200 mg/kg and 400 mg/kg, respectively, with higher doses
showing better therapeutic effects.

3.4 Polysaccharide

Polysaccharides are the main metabolites of botanical drugs,
their biosynthesis is partly controlled by genes as well as by various
environmental factors. In recent decades, polysaccharides isolated
from different kinds of botanical drugs have received widespread
attention for their important biological activities such as antitumor,
antioxidant, antidiabetic, radiation, antiviral, hypolipidemic and
immune regulation (Zeng et al., 2019). Summarizing the existing
reports we can easily find that the polysaccharide components of
several botanical drugs play an important role in fatty liver disease.

Salvia miltiorrhiza Bunge is widely used in the treatment of
cardiovascular diseases and liver injury (Fu et al., 2023). The
addition of Salvia miltiorrhiza effectively attenuates MCD diet-
induced hepatic steatosis and inflammation in C57BL/6 mice,
mainly due to its ability to alter the structure of the intestinal
microbiota and partially reverse intestinal ecological
dysregulation (Li et al., 2021). The polysaccharide component of
Salvia miltiorrhiza can effectively regulate the homeostasis of the
intestinal microbiota. It has been shown to upregulate the expression
of integral membrane proteins (Claudin and Occludin) and the
junction complex protein ZO-1 in the jejunum and colon (Li et al.,
2022). It has also been demonstrated that danshen polysaccharides
modulate the relative abundance in the intestinal flora and
ameliorate HFD-induced intestinal dysbiosis (Li et al., 2022).

Echinacea polysaccharide (EPP), a homogeneous
polysaccharide, was studied microbiomically and metabolomically
in alcoholic model mice and found to reverse alcohol-induced gut
microbiota disruption by increasing the abundance of Serratia
marcescens, Lactobacillus and Synechococcus, and decreasing the
abundance of Escherichia coli and Enterococcus. Also, EPP promotes
increased production of n-butyric acid, a short-chain fatty acid that
maintains the integrity of the intestinal barrier (Jiang et al., 2022).

Some in vivo studies in which we found significant effects of
polysaccharide natural products. High-dose treatment of astragalus
polysaccharides in ALD mice significantly improved the ratio of
intestinal flora, and the abundance of harmful flora decreased
significantly (Zhou et al., 2021). Jiang et al. (2021) used ethanol
stepwise precipitation to obtain three comfrey polysaccharide
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fractions (EPP40/60/80), of which EPP40 had the most pronounced
effect in up-regulating the expression of ileocecal tight junction
proteins, decreasing the entry of enteric endotoxin into the portal
circulation, and attenuating hepatic inflammation and injury.
Cordyceps sinensis (BerK.) Sacc. is a common botanical drugs
with a variety of pharmacological activities including repair,
antioxidant and inhibition of apoptosis (Gu et al., 2015).
Cordyceps sinensis can reduce the number of enterococci in the
cecum and regulate the metabolism of bile acids in the intestine (Wu
et al., 2022). Further studies on Cordyceps Sinensis polysaccharide
(CSP) revealed that CSP increased the proportion of actinomycetes,
increased the degree of intestinal flora disruption, led to further
development of NASH (Chen et al., 2020). MDG-1, a β-D-fructan
extracted from the root ofOphiopogon japonicus (Thunb.) Ker Gawl.
MDG-1 regulates the balance of the gut microbiota and increases the
relative abundance of beneficial bacteria during the onset of NASH.
When MDG-1 is degraded and utilized by the intestinal microbiota,
it can increase the content of acetic acid and valine, which affects
hepatic lipid accumulation (Wang et al., 2019). The role played by
glycosides in hepatoprotection has been previously demonstrated.
For example, cornelianoid glycoside (CIG), a glycoside extracted
from the fruit of Cornus officinalis Siebold & Zucc., has a more
prominent role in ameliorating alcohol-induced intestinal damage.
The mechanism is mainly that CIG reverses alcohol-induced
changes in the tight junction proteins ZO-1 and occludin,
reduces serum levels of LPS and blocks the hepatic inflammatory
response caused by LPS stimulation (Han et al., 2021).

Polysaccharides are essential biomolecules in organismal
activities, usually consisting of 10 or more monosaccharides
linked by different types of glycosidic bonds, are widely found in
botanical medicines. With the deepening of research, researchers
have confirmed the biological activities of polysaccharides in
regulating lipid metabolism disorders, regulating intestinal flora
and oxidative stress (Hu et al., 2020). Since most of the
polysaccharides are mixtures, there are few reports on the exact
molecular structure, which also limits the conformational
relationship of polysaccharides in the prevention and treatment
of metabolic fatty liver disease. It is necessary to carry out in-depth
studies on the pharmacological targets of polysaccharides in
improving NAFLD or ALD on the basis of the existing studies,
so as to provide theoretical support for the development of
polysaccharides wOther plant metabolite.

3.5 Terpenoids

Glycyrrhiza aspera Pall. is a perennial botanical drug, several of
its metabolites play an important role in NAFLD (Sun et al., 2017),
such as glycyrrhizic acid, glycyrrhizic flavonoids, etc. The metabolite
that has been reported to treat NAFLD via the enterohepatic axis
is glycyrrhizic acid. The researchers performed modelling by
randomly dividing 40 male Sprague-Dawley rats (6 weeks of
age) into 5 groups fed a high-fat diet (45% energy from fat;
4.73 kcal/g; D18040307; SYSE Co., Ltd., Changzhou, China),
administering 40 mg/kg glycyrrhetinic acid daily to the groups.
The group was administered 40 mg/kg glycyrrhetinic acid per
day. The body weight of each rat was measured every 3 weeks. At
the end of the 12th week, the faeces of the rats were collected and

sequenced by 16sRNA, which showed that the glycyrrhizic acid
group significantly increased the relative abundance of
Peptostreptolysin and decreased the relative abundance of
Lachnospiraceae and Coriobacteriaceae (Wang et al., 2022).
However, the mechanisms by which such metabolites improve
intestinal flora have not been well studied.

Plant-derived substances have a number of advantages over
animal, mineral and microbial sources, such as the fact that they are
often renewable, which makes them more sustainable than animal
and mineral sources, can be grown and regenerated through natural
processes; they are more readily accepted and absorbed by living
organisms due to a high degree of similarity between the
environment they require and the environment in the body, they
are relatively inexpensive to grow and collect, as compared to
animal-derived substances (e.g., animal proteins) and mineral
sources (e.g., metallic minerals). At the same time, compared
with animal-derived substances (such as animal protein) and
mineral resources (such as metal minerals), plant-derived
substances are relatively inexpensive to grow and collect.
Therefore, plant metabolites in natural products have been
widely used in regulating the enterohepatic axis to improve
NAFLD/ALD. However, we summarise the current research and
find that the mechanism of plant metabolites is not studied in depth,
mainly focusing on the exploration of phenotypes, the research
focuses on in vitro and in vivo studies in animals and lacks a large
amount of data from clinical studies, plant metabolites may act on
multiple targets and thus play an ameliorative and therapeutic role,
so what is the most important mechanism needs to be investigated
in-depth.

4 Common strategies for regulating
intestinal flora to treat and prevent
adipose metabolic diseases

Based on recent research and experimental findings, we have
identified a number of common clinical approaches to ameliorate
metabolic disorders by modulating gut microbes, including
probiotic as well as antibiotic use, dietary fiber intake and Fecal
microbiota transplantation (FMT), which we have summarized and
generalized.

4.1 Probiotics and prebiotics

Probiotics and prebiotics regulating the intestinal flora is an
emerging and promising therapeutic approach widely used in the
prevention and treatment of NAFLD, mainly due to the fact that
probiotics and prebiotics administration can repair the damaged
intestinal barrier and thus restore its function (Fukui, 2015). This
role is mainly based on its antimicrobial activity, which is effective
against pathogens and reduces the number of pathogenic
microorganisms (Paolella et al., 2014). At the same time,
prebiotics can promote the growth and activity of probiotics,
activating beneficial bacteria (Duarte et al., 2017). The regulation
of probiotics and prebiotics restores the intestinal flora to a healthy
balance. Bergheim et al. (2008) demonstrated in a 2008 study that
neomycin and polymyxin B significantly reduced hepatic lipid
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deposition by reducing endotoxin translocation. In addition,
another preclinical study found that antibiotics can modulate
portal bile acid levels by inhibiting intestinal bacteria, thereby
reducing liver inflammation (Janssen et al., 2017). Gut flora is a
complex ecosystem that is influenced by many factors such as diet,
environment and genetics. The intake of probiotics and prebiotics
may be limited by the intestinal environment, thus limiting their
effectiveness.

4.2 Nutrients and dietary components

Dietary fiber intake is a favorable factor in resistance to NAFLD
progression (Xia et al., 2020). Fiber is degraded to short-chain fatty
acids through fermentation by intestinal flora (Tan et al., 2014)
involved in inflammation-related physiological processes. Increased
nutritional fiber intake improves hepatic steatosis and liver function,
while enhancing hepatic barrier function and decreasing intestinal
permeability (Krawczyk et al., 2018). Wang Yong’s research team
published a paper in the Journal of Functional Foods demonstrated
that the combination of ferulic acid with arabinoxylan or β-glucan
significantly improved glucose tolerance and maintained intestinal
homeostasis in mice fed a high-fat diet (Fang et al., 2024). In
contrast, chitosan COST was shown to improve hepatic lipid
metabolism in HFD-induced NAFLD mice by modulating the
expression of lipotoxicity-induced related inflammatory factors in
the gut microbiota (Zhang et al., 2023). Although there is some
research suggesting that nutrients and dietary fiber may be beneficial
in ALD and NAFLD, there is still a lack of long-term, large-scale

clinical trials to validate their effects. Therefore, it is unclear whether
long-term intake of these nutrients is an effective treatment for these
liver diseases.

4.3 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is an emerging
therapeutic approach to transfer fecal microbiota and metabolites
from healthy donors to patients who need to rebuild their gut
microbiota (Zhao et al., 2023). Clinical data demonstrated that
FMT therapy effectively attenuated high-fat diet-induced
steatohepatitis, resulting in a significant reduction in intrahepatic
lipid accumulation and decreased intrahepatic expression of pro-
inflammatory cytokines (e.g., IFN-γand IL-17) (Aron-Wisnewsky
et al., 2020b), as well as restoring intestinal diversity, increasing the
number of anaplastic bacilli, and decreasing the number of
actinomycetes and thickened walled bacilli (Aron-Wisnewsky
et al., 2020a). Ferrere et al. (2017) performed FMT on alcohol-
resistant donor mice (alcohol-fed mice without alcohol-induced
liver lesions) to alcohol-sensitive recipient mice (alcohol-fed mice
with liver lesions) and found that FMT protected alcohol-sensitive
mice from alcohol-induced consumption of Bacteroidetes mimosus.
FMT treatment can involve two major drawbacks: safety and
uncertainty of efficacy. FMT transfers fecal suspension from a
healthy donor to the patient’s intestine and therefore carries the
risk of transmitting disease, infection and allergic reactions. In
addition, it may lead to infection in the patient because the fecal
sample may contain undesirable microorganisms. Although there

FIGURE 2
Natural products and their extracts play a role in the prevention and treatment of fatty liver through the gut-liver axis, and now the treatment of the
gut-liver axis.
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are some preliminary studies suggesting that FMT may positively
affect liver function in patients with certain liver diseases, its exact
therapeutic effect is unknown. There is a lack of large-scale,
randomized controlled clinical trials to validate the effectiveness
of FMT in ALD and NAFLD.

4.4 Combination of natural products with
other biological agents

The combination of natural products and other biological
agents for the treatment of NAFLD can give full play to greater
advantages. On the basis of the pharmacological active effect on
natural products, the combination of other biological agents
synthesised lipid-lowering drugs, liver-protecting drugs and
other drugs can effectively improve the clinical symptoms and
biochemical indexes of patients (Gao et al., 2016).
Microecological agents such as probiotics and prebiotics are
used to regulate the balance of intestinal microorganisms by
supplementing probiotics, prebiotics and other microecological
agents, which can further consolidate the therapeutic effect and
prevent disease recurrence. For example, Li and Gu (2022)
investigated the combined effects of bicyclol and BBR on
Western diet (WD)-induced steatosis and WD/CCl4-induced
NASH in mice. Combination of natural products with other
compounds is an effective way to improve NAFLD (Andreasen
et al., 2023). Combined theories and methods to rebuild intestinal
microecology and improve insulin resistance and fat metabolism
are an effective way to improve NAFLD (Cui et al., 2023).

Since NAFLD was described in the 1980s, a large number of
experimental studies and clinical trials have been conducted in
China to investigate the efficacy of TCM in the treatment of
NAFLD. Herbal medicines for the treatment of diseases are safe
for clinical use and as of now dance adverse effects (Zhang et al.,
2020; Yang et al., 2021). Consider the long-term use of botanical
drugs and Western medicines, which has a broader perspective for
rebuilding the intestinal microecology and improving
NAFLD (Figure 2).

5 Discussion and prospect

The gut-liver axis plays a crucial role in the pathogenesis of
NAFLD/ALD. Dysbiosis, increased gut permeability and gut-
derived endotoxins are closely related to NAFLD/ALD
development. Researchers have found dysregulation in the
host-microbe interaction in various liver disease models, with
impaired gut barrier exacerbating liver inflammation and
disease progression. Clinical evidence demonstrates
alterations in gut microbiota composition and metabolic
products in NAFLD and ALD patients, affecting liver
metabolic signaling pathways. Current treatments for
NAFLD/ALD primarily involve probiotics, prebiotics, dietary
fiber intake and FMT, but their limitations have shifted
researchers’ focus toward natural products. Natural products
can avoid the adverse effects of probiotics prebiotics and dietary
fiber intake treatment due to individual differences. There are
also some individual rejection as well as safety-type issues with

probiotic prebiotics and FMT treatments, which contribute to
the lack of effective treatment for NAFLD/ALD. The current
researchers’ exploration of natural products for the treatment of
NAFLD/ALD by regulating the enterohepatic axis mainly
includes the directions of adjusting the intestinal flora,
improving the intestinal mucosal barrier function, and
reducing the release of endotoxin.

However, Our in-depth investigation reveals that the
mechanism of NAFLD/ALD treatment by natural products
through the intestinal flora is less studied at the histological
level, such as only using 16S rDNA high-throughput sequencing
of the intestinal flora or macro-genomic sequencing of the
intestinal flora to characterize the difference in the flora, and
lacks the analysis of functional metabolism molecules that are
further associated with it, as well as the excavation and validation
of the downstream mechanism of action. How natural products
modify the composition and structure of the intestinal flora to
regulate the production of intestinal metabolites, intervene in
inflammation development and influence the processes of lipid
metabolism in the body remains unclear. Natural products
usually contain multiple active ingredients, which also gives
them multiple mechanisms of action and targets of action that
can affect the pathologic process of NAFLD/ALD in multiple
ways simultaneously. Collating the current research we found
that the mechanism of natural products exerting NAFLD/ALD
effects by influencing immune cell function is becoming clearer,
while the relationship between immune cells and intestinal flora
is very close. On the one hand, gut flora disorders can lead to
abnormal activation of the immune system, exacerbating liver
inflammation and the development of NAFLD/ALD, on the other
hand, an abnormal immune system response can further interfere
with the balance of gut flora, creating a vicious cycle. Therefore,
the interaction between intestinal flora and immunity plays a key
regulatory role in the occurrence and development of NAFLD/
ALD, should also be the focus and direction of research on the
mechanism of natural product treatment of NAFLD/ALD
through the enterohepatic axis.

In summary, we found that exploring the interaction
mechanism between natural products and intestinal flora is
expected to bring new breakthroughs in the treatment of fat-
related metabolic diseases, as well as new opportunities for the
application of natural products to improve the disorders of glucose
and lipid metabolism and related diseases.
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